Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Relationships between holmium laser enucleation of the prostate and prostate cancer

Abstract

Holmium laser enucleation of the prostate (HoLEP) is a size-independent surgical option for treating benign prostatic hyperplasia (BPH) and lower urinary tract symptoms (LUTS) with excellent, durable functional outcomes. The prevalence of LUTS secondary to BPH and prostate cancer both increase with age, although the two diseases develop independently. Urologists often face a diagnostic dilemma, as men with LUTS secondary to BPH might also present with an elevated PSA and, therefore, need a diagnostic work-up to exclude prostate cancer. Nevertheless, ~15% of men with a negative elevated PSA work-up will undergo HoLEP and will be diagnosed with incidental prostate cancer at the time of HoLEP. Indeed, prostate cancer is often found in men undergoing HoLEP, and this situation can be challenging to manage. Variables associated with the detection of incidental prostate cancer, strategies to reduce incidental prostate cancer, as well as the natural history and management of this condition have been extensively studied, but further work in this area is still needed.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Prostate zones during BPH surgery.
Fig. 2: Surgical steps of HoLEP.
Fig. 3: Diagnostic pathway of patients undergoing HoLEP at Northwestern University.

Similar content being viewed by others

References

  1. Sung, H. et al. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 71, 209–249 (2021).

    Article  PubMed  Google Scholar 

  2. Rawla, P. Epidemiology of prostate cancer. World J. Oncol. 10, 63–89 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. American Cancer Society. Cancer Facts and Figures: 2021 1–72 (American Cancer Society, 2021).

  4. Carter, H. B. et al. Early detection of prostate cancer: AUA Guideline. J. Urol. 190, 419–426 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Mottet, N. et al. EAU-EANM-ESTRO-ESUR-SIOG Guidelines on Prostate Cancer-2020 update. Part 1: screening, diagnosis, and local treatment with curative intent. Eur. Urol. 79, 243–262 (2021).

    Article  CAS  PubMed  Google Scholar 

  6. Lerner, L. B. et al. Management of lower urinary tract symptoms attributed to benign prostatic hyperplasia: AUA Guideline part I — initial work-up and medical management. J. Urol. 206, 806–817 (2021).

    Article  PubMed  Google Scholar 

  7. Egan, K. B. The epidemiology of benign prostatic hyperplasia associated with lower urinary tract symptoms: prevalence and incident rates. Urol. Clin. North. Am. 43, 289–297 (2016).

    Article  PubMed  Google Scholar 

  8. Helo, S. W. C. & McVary, K. T. in Campbell-Walsh-Wein Urology 12th edn, Ch. 146 (eds Partin, A. W. et al.) 3403–3448 (Elsevier, 2021).

  9. Roehrborn, C. G. in Campbell-Walsh-Wein Urology 12th edn, Ch. 144 (ed. Partin, A. W. et al.) 3305–3342 (Elsevier, 2021).

  10. Brassetti, A. C. D., Delongchamps, N. B., Fiori, C., Porpiglia, F. & Tubaro, A. Green light vaporization of the prostate: is it an adult technique? Minerva Urol. Nefrol. 69, 109–118 (2017).

    PubMed  Google Scholar 

  11. Ali, A. et al. Prostate zones and cancer: lost in transition? Nat. Rev. Urol. 19, 101–115 (2022).

    Article  PubMed  Google Scholar 

  12. Kelly, D. C. & Das, A. Holmium laser enucleation of the prostate technique for benign prostatic hyperplasia. Can. J. Urol. 19, 6131–6134 (2012).

    PubMed  Google Scholar 

  13. Large, T., Nottingham, C., Stoughton, C., Williams, J. Jr & Krambeck, A. Comparative study of holmium laser enucleation of the prostate with MOSES enabled pulsed laser modulation. Urology 136, 196–201 (2020).

    Article  PubMed  Google Scholar 

  14. Saitta, G. et al. ‘En Bloc’ HoLEP with early apical release in men with benign prostatic hyperplasia. World J. Urol. 37, 2451–2458 (2019).

    Article  PubMed  Google Scholar 

  15. Rivera, M. E., Lingeman, J. E. & Krambeck, A. E. Holmium laser enucleation of the prostate. J. Endourol. 32, S7–S9 (2018).

    Article  PubMed  Google Scholar 

  16. Scoffone, C. M. & Cracco, C. M. The en-bloc no-touch holmium laser enucleation of the prostate (HoLEP) technique. World J. Urol. 34, 1175–1181 (2016).

    Article  PubMed  Google Scholar 

  17. Lerner, L. B. M. K. et al. Management of lower urinary tract symptoms attributed to benign prostatic hyperplasia: AUA Guideline part II, surgical evaluation and treatment. J. Urol. 206, 806–817 (2021).

    Article  PubMed  Google Scholar 

  18. Gravas S, et al. EAU Guidelines: management of non-neurogenic male LUTS. Eur. Assoc. Urol. https://uroweb.org/guidelines/management-of-non-neurogenic-male-luts (2021).

  19. Ibrahim, A., Alharbi, M., Elhilali, M. M., Aube, M. & Carrier, S. 18 years of holmium laser enucleation of the prostate: a single center experience. J. Urol. 202, 795–800 (2019).

    Article  PubMed  Google Scholar 

  20. Elshal, A. M., Soltan, M., El-Tabey, N. A., Laymon, M. & Nabeeh, A. Randomised trial of bipolar resection vs holmium laser enucleation vs Greenlight laser vapo-enucleation of the prostate for treatment of large benign prostate obstruction: 3-years outcomes. BJU Int. 126, 731–738 (2020).

    Article  CAS  PubMed  Google Scholar 

  21. Anderson, B. B., Heiman, J., Large, T., Lingeman, J. & Krambeck, A. Trends and perioperative outcomes across major benign prostatic hyperplasia procedures from the ACS-NSQIP 2011–2015. J. Endourol. 33, 62–68 (2019).

    Article  PubMed  Google Scholar 

  22. Robert, G. et al. Multicentre prospective evaluation of the learning curve of holmium laser enucleation of the prostate (HoLEP). BJU Int. 117, 495–499 (2016).

    Article  PubMed  Google Scholar 

  23. Kampantais, S. et al. Assessing the learning curve of holmium laser enucleation of prostate (HoLEP). A systematic review. Urology 120, 9–22 (2018).

    Article  PubMed  Google Scholar 

  24. Jiang, D. D. et al. Misaligned incentives in benign prostatic enlargement surgery: more complex and efficacious procedures are earning fewer relative value units. J. Endourol. https://doi.org/10.1089/end.2020.0941 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Robles, J., Pais, V. & Miller, N. Mind the gaps: adoption and underutilization of holmium laser enucleation of the prostate in the United States from 2008 to 2014. J. Endourol. 34, 770–776 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Miller, N. L. M. B., Kim, S. C., Kuo, R. L., Watkins, S. L. & Lingeman, J. E. Holmium laser enucleation of the prostate: effect on prostate volume. J. Urol. 175, 490 (2006).

    Article  Google Scholar 

  27. Mauler, D. J., Sella, D. M. & Dora, C. D. Utilizing preoperative magnetic resonance imaging to self-assess enucleation ratio in holmium laser enucleation of the prostate. Urology 160, 176–181 (2022).

    Article  PubMed  Google Scholar 

  28. Watanabe, H., Igari, D., Tanahashi, Y., Harada, K. & Saito, M. Measurements of size and weight of prostate by means of transrectal ultrasonotomography. Tohoku J. Exp. Med. 114, 277–285 (1974).

    Article  CAS  PubMed  Google Scholar 

  29. Elkoushy, M. A., Elshal, A. M. & Elhilali, M. M. Incidental prostate cancer diagnosis during holmium laser enucleation: assessment of predictors, survival, and disease progression. Urology 86, 552–557 (2015).

    Article  PubMed  Google Scholar 

  30. Nunez, R. et al. Incidental prostate cancer revisited: early outcomes after holmium laser enucleation of the prostate. Int. J. Urol. 18, 543–547 (2011).

    Article  PubMed  Google Scholar 

  31. Rosenhammer, B., Lausenmeyer, E. M., Mayr, R., Burger, M. & Eichelberg, C. HoLEP provides a higher prostate cancer detection rate compared to bipolar TURP: a matched-pair analysis. World J. Urol. 36, 2035–2041 (2018).

    Article  PubMed  Google Scholar 

  32. Schaeffer, E. et al. Clinical practice guidelines in oncology for prostate cancer V1. NCCN https://www.nccn.org/professionals/physician_gls/pdf/prostate.pdf (2023).

  33. Wenzel, M. et al. Multiparametric MRI may help to identify patients with prostate cancer in a contemporary cohort of patients with clinical bladder outlet obstruction scheduled for holmium laser enucleation of the prostate (HoLEP). Front. Surg. 8, 633196 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Herlemann, A. et al. “Finding the needle in a haystack”: oncologic evaluation of patients treated for LUTS with holmium laser enucleation of the prostate (HoLEP) versus transurethral resection of the prostate (TURP). World J. Urol. 35, 1777–1782 (2017).

    Article  PubMed  Google Scholar 

  35. Magistro, G. et al. The significance of a high preoperative PSA level for the detection of incidental prostate cancer in LUTS patients with large prostates. World J. Urol. https://doi.org/10.1007/s00345-020-03321-w (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Lee, J. J. et al. Biologic differences between peripheral and transition zone prostate cancer. Prostate 75, 183–190 (2015).

    Article  PubMed  Google Scholar 

  37. Catalona, W. J. Prostate cancer screening. Med. Clin. North. Am. 102, 199–214 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Eyrich, N. W., Morgan, T. M. & Tosoian, J. J. Biomarkers for detection of clinically significant prostate cancer: contemporary clinical data and future directions. Transl. Androl. Urol. 10, 3091–3103 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Tosoian, J. J. et al. Use of the Prostate Health Index for detection of prostate cancer: results from a large academic practice. Prostate Cancer Prostatic Dis. 20, 228–233 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Le, B. V. et al. [-2]Proenzyme prostate specific antigen is more accurate than total and free prostate specific antigen in differentiating prostate cancer from benign disease in a prospective prostate cancer screening study. J. Urol. 183, 1355–1359 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Eklund, M. et al. MRI-targeted or standard biopsy in prostate cancer screening. N. Engl. J. Med. 385, 908–920 (2021).

    Article  PubMed  Google Scholar 

  42. Ahdoot, M. et al. MRI-targeted, systematic, and combined biopsy for prostate cancer diagnosis. N. Engl. J. Med. 382, 917–928 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Kasivisvanathan, V. et al. MRI-targeted or standard biopsy for prostate-cancer diagnosis. N. Engl. J. Med. 378, 1767–1777 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Rosenkrantz, A. B. et al. Prostate magnetic resonance imaging and magnetic resonance imaging targeted biopsy in patients with a prior negative biopsy: a consensus statement by AUA and SAR. J. Urol. 196, 1613–1618 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Demura, T. et al. Mechanism underlying the negative effect of prostate volume on the outcome of extensive transperineal ultrasound-guided template prostate biopsy. Cancer Med. 7, 336–343 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Radtke, J. P. et al. Multiparametric magnetic resonance imaging (MRI) and MRI-transrectal ultrasound fusion biopsy for index tumor detection: correlation with radical prostatectomy specimen. Eur. Urol. 70, 846–853 (2016).

    Article  PubMed  Google Scholar 

  47. Le, J. D. et al. Multifocality and prostate cancer detection by multiparametric magnetic resonance imaging: correlation with whole-mount histopathology. Eur. Urol. 67, 569–576 (2015).

    Article  PubMed  Google Scholar 

  48. Sanda, M. G. C. R. et al. Clinically localized prostate cancer: AUA/ASTRO/SUO guideline. J. Urol. 199, 683–690 (2018).

    Article  PubMed  Google Scholar 

  49. Zigeuner, R. E. et al. Did the rate of incidental prostate cancer change in the era of PSA testing? A retrospective study of 1127 patients. Urology 62, 451–455 (2003).

    Article  PubMed  Google Scholar 

  50. Bhojani, N., Boris, R. S., Monn, M. F., Mandeville, J. A. & Lingeman, J. E. Coexisting prostate cancer found at the time of holmium laser enucleation of the prostate for benign prostatic hyperplasia: predicting its presence and grade in analyzed tissue. J. Endourol. 29, 41–46 (2015).

    Article  PubMed  Google Scholar 

  51. Otsubo, S. et al. Significance of prostate-specific antigen-related factors in incidental prostate cancer treated by holmium laser enucleation of the prostate. World J. Urol. 33, 329–333 (2015).

    Article  PubMed  Google Scholar 

  52. Misrai, V. P. B. et al. A high preoperative PSA level is not accurate to predict incidental prostate cancer detection in patient underwent endoscopic enucleation of the prostate for large glands. J. Urol. 201, e6 (2019).

    Google Scholar 

  53. Seaman, E. et al. PSA density (PSAD). Role in patient evaluation and management. Urol. Clin. North. Am. 20, 653–663 (1993).

    Article  CAS  PubMed  Google Scholar 

  54. Loeb, S. et al. Distribution of PSA velocity by total PSA levels: data from the Baltimore Longitudinal Study of Aging. Urology 77, 143–147 (2011).

    Article  PubMed  Google Scholar 

  55. Shi, Y. F. et al. [Transurethral holmium laser enucleation of the prostate for benign prostatic hyperplasia in patients with a history of transrectal prostate biopsy]. Zhonghua Nan Ke Xue 25, 403–407 (2019).

    PubMed  Google Scholar 

  56. Etafy, M. H. et al. Holmium laser enucleation of prostate within 6 weeks of transrectal ultrasound guided prostate biopsy is safe and effective. Urology 148, 88–92 (2021).

    Article  PubMed  Google Scholar 

  57. Capogrosso, P. et al. Temporal trend in incidental prostate cancer detection at surgery for benign prostatic hyperplasia. Urology 122, 152–157 (2018).

    Article  PubMed  Google Scholar 

  58. Kim, K. H. et al. Role of Holmium laser enucleation of the prostate to increase cancer detection rate in patients with gray-zone PSA level. Minerva Urol. Nefrol. 71, 72–78 (2019).

    Article  PubMed  Google Scholar 

  59. Bjurlin, M. A. & Taneja, S. S. Standards for prostate biopsy. Curr. Opin. Urol. 24, 155–161 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Porreca, A. et al. Preoperative multiparametric prostate magnetic resonance imaging: a safe clinical practice to reduce incidental prostate cancer in Holmium laser enucleation of the prostate. Cent. European J. Urol. 72, 106–112 (2019).

    PubMed  PubMed Central  Google Scholar 

  61. Booker, M. T., Silva, E. III & Rosenkrantz, A. B. National private payer coverage of prostate MRI. J. Am. Coll. Radiol. 16, 24–29 (2019).

    Article  PubMed  Google Scholar 

  62. Hutchison, D. et al. Management of prostate cancer after holmium laser enucleation of the prostate. Urol. Oncol. https://doi.org/10.1016/j.urolonc.2020.11.003 (2020).

    Article  PubMed  Google Scholar 

  63. Rivera, M. E., Frank, I., Viers, B. R., Rangel, L. J. & Krambeck, A. E. Holmium laser enucleation of the prostate and perioperative diagnosis of prostate cancer: an outcomes analysis. J. Endourol. 28, 699–703 (2014).

    Article  PubMed  Google Scholar 

  64. Gupta, N. P., Singh, P. & Nayyar, R. Outcomes of robot-assisted radical prostatectomy in men with previous transurethral resection of prostate. BJU Int. 108, 1501–1505 (2011).

    Article  PubMed  Google Scholar 

  65. Suardi, N. et al. Nerve-sparing radical retropubic prostatectomy in patients previously submitted to holmium laser enucleation of the prostate for bladder outlet obstruction due to benign prostatic enlargement. Eur. Urol. 53, 1180–1185 (2008).

    Article  PubMed  Google Scholar 

  66. Gellhaus, P. T. et al. Robot-assisted radical prostatectomy in patients with a history of holmium laser enucleation of the prostate: feasibility and evaluation of initial outcomes. J. Endourol. 29, 764–769 (2015).

    Article  PubMed  Google Scholar 

  67. Abedali, Z. A. et al. Robot-assisted radical prostatectomy in patients with a history of holmium laser enucleation of the prostate: the Indiana University Experience. J. Endourol. 34, 163–168 (2020).

    Article  PubMed  Google Scholar 

  68. Kretschmer, A. et al. Initial experience with radical prostatectomy following holmium laser enucleation of the prostate. Eur. Urol. Focus. https://doi.org/10.1016/j.euf.2020.09.003 (2020).

    Article  PubMed  Google Scholar 

  69. He, G. et al. The diagnostic value of prostate cancer between holmium laser enucleation of the prostate and transurethral resection of the prostate for benign prostatic hyperplasia: a retrospective comparative study. Int. J. Surg. 79, 217–221 (2020).

    Article  PubMed  Google Scholar 

  70. Schober, J. P., Stensland, K. D., Moinzadeh, A., Canes, D. & Mandeville, J. Holmium laser enucleation of the prostate in men on active surveillance for prostate cancer with refractory lower urinary tract symptoms secondary to enlarged prostates. Prostate https://doi.org/10.1002/pros.24433 (2022).

    Article  PubMed  Google Scholar 

  71. Nottingham, C., Large, T., Fiuk, J., & Lingeman, J. Pd10-05 Clinical and pathologic outcomes following Holmium Laser Enucleation of the prostate in men undergoing active surveillance for prostate cancer. J. Urol. 201, e160 (2019).

    Google Scholar 

  72. Crawford, E. D. & Kavanagh, B. D. The role of α-blockers in the management of lower urinary tract symptoms in prostate cancer patients treated with radiation therapy. Am. J. Clin. Oncol. 29, 517–523 (2006).

    Article  PubMed  Google Scholar 

  73. Guilhen, M. et al. Urinary function and quality of life after radiotherapy for prostate cancer in patients with prior history of surgical treatment for benign prostatic hyperplasia. Radiat. Oncol. 13, 209 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. National Institutes of Health. CTCAE v4.0. NIH https://ctep.cancer.gov/protocoldevelopment/electronic_applications/ctc.htm#ctc_40 (2010).

  75. Liu, M. et al. Urinary incontinence in prostate cancer patients treated with external beam radiotherapy. Radiother. Oncol. 74, 197–201 (2005).

    Article  PubMed  Google Scholar 

  76. Lee, W. R., Schultheiss, T. E., Hanlon, A. L. & Hanks, G. E. Urinary incontinence following external-beam radiotherapy for clinically localized prostate cancer. Urology 48, 95–99 (1996).

    Article  CAS  PubMed  Google Scholar 

  77. Seymore, C. H., el-Mahdi, A. M. & Schellhammer, P. F. The effect of prior transurethral resection of the prostate on post radiation urethral strictures and bladder neck contractures. Int. J. Radiat. Oncol. Biol. Phys. 12, 1597–1600 (1986).

    Article  CAS  PubMed  Google Scholar 

  78. Murthy, V. et al. Safety of prostate stereotactic body radiation therapy after transurethral resection of prostate (TURP): a propensity score matched pair analysis. Pract. Radiat. Oncol. 9, 347–353 (2019).

    Article  PubMed  Google Scholar 

  79. Pepin, A. et al. Urinary morbidity in men treated with stereotactic body radiation therapy (SBRT) for localized prostate cancer following transurethral resection of the prostate (TURP). Front. Oncol. 10, 555 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  80. Becker, A. et al. Holmium laser enucleation of the prostate is safe in patients with prostate cancer and lower urinary tract symptoms–a retrospective feasibility study. J. Endourol. 28, 335–341 (2014).

    Article  PubMed  Google Scholar 

  81. Chen, R. C. et al. Patient-reported quality of life during radiation treatment for localized prostate cancer: results from a prospective phase II trial. BJU Int. 110, 1690–1695 (2012).

    Article  PubMed  Google Scholar 

  82. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03802851 (2022).

  83. Mazur, A. W. & Thompson, I. M. Efficacy and morbidity of “channel” TURP. Urology 38, 526–528 (1991).

    Article  CAS  PubMed  Google Scholar 

  84. Crain, D. S., Amling, C. L. & Kane, C. J. Palliative transurethral prostate resection for bladder outlet obstruction in patients with locally advanced prostate cancer. J. Urol. 171, 668–671 (2004).

    Article  PubMed  Google Scholar 

  85. Pelletier, J. et al. Contemporary outcomes of palliative transurethral resection of the prostate in patients with locally advanced prostate cancer. Urol. Oncol. 36, 363.e7–363.e11 (2018).

    Article  PubMed  Google Scholar 

  86. Krupski, T. L., Stukenborg, G. J., Moon, K. & Theodorescu, D. The relationship of palliative transurethral resection of the prostate with disease progression in patients with prostate cancer. BJU Int. 106, 1477–1483 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  87. Fang, K. et al. The impact of palliative transurethral resection of the prostate on the prognosis of patients with bladder outlet obstruction and metastatic prostate cancer: a population-matched study. Front. Surg. 8, 726534 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  88. Choi, S. Y. et al. Oncological effect of palliative transurethral resection of the prostate in patients with advanced prostate cancer: a propensity score matching study. J. Cancer Res. Clin. Oncol. 144, 751–758 (2018).

    Article  PubMed  Google Scholar 

  89. Mucci, L. A. et al. Prospective study of prostate tumor angiogenesis and cancer-specific mortality in the health professionals follow-up study. J. Clin. Oncol. 27, 5627–5633 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  90. Djavan, B. et al. Durability and retreatment rates of minimal invasive treatments of benign prostatic hyperplasia: a cross-analysis of the literature. Can. J. Urol. 17, 5249–5254 (2010).

    PubMed  Google Scholar 

  91. Tang, M. et al. Efficacy and outcome of holmium laser enucleation of prostate in patients with urinary retention due to advanced prostate cancer. Lasers Med. Sci. 35, 1307–1313 (2020).

    Article  PubMed  Google Scholar 

  92. Abedali, Z. A. et al. The role of prostate specific antigen monitoring after holmium laser enucleation of the prostate. J. Urol. 203, 304–310 (2020).

    Article  PubMed  Google Scholar 

  93. Tinmouth, W. W. et al. Change in serum prostate specific antigen concentration after holmium laser enucleation of the prostate: a marker for completeness of adenoma resection? J. Endourol. 19, 550–554 (2005).

    Article  PubMed  Google Scholar 

  94. Elmansy, H. M., Elzayat, E. A., Sampalis, J. S. & Elhilali, M. M. Prostatic-specific antigen velocity after holmium laser enucleation of the prostate: possible predictor for the assessment of treatment effect durability for benign prostatic hyperplasia and detection of malignancy. Urology 74, 1105–1110 (2009).

    Article  PubMed  Google Scholar 

  95. Lambert, E. et al. Changes in serum PSA after endoscopic enucleation of the prostate are predictive for the future diagnosis of prostate cancer. World J. Urol. https://doi.org/10.1007/s00345-020-03444-0 (2020).

    Article  PubMed  Google Scholar 

  96. Loughlin, K. R. PSA velocity: a systematic review of clinical applications. Urol. Oncol. 32, 1116–1125 (2014).

    Article  PubMed  Google Scholar 

  97. Helfand, B. T. et al. Postoperative PSA and PSA velocity identify presence of prostate cancer after various surgical interventions for benign prostatic hyperplasia. Urology 74, 177–183 (2009).

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

M.S.L., J.G., M.R.S. and A.E.R. researched data for the article. All authors contributed substantially to discussion of the content. M.S.L., J.G., M.R.S., A.E.R. and A.E.K. wrote the article. M.S.L., M.A.A., A.E.R. and A.E.K. reviewed and edited the manuscript before submission.

Corresponding author

Correspondence to Matthew S. Lee.

Ethics declarations

Competing interests

M.S.L. is a consultant for Lumenis. A.E.R. is a consultant for Astellas Pharma Global Development, Inc, Bayer HealthCare Pharmaceuticals, Inc, Blue Earth Diagnostics Ltd, Decipher Biosciences, Inc, Janssen Biotech, Inc, Lantheus Medical Imaging, Inc, Myovant Sciences, Pfizer, Inc, and Tempus Health, Inc. A.E.K. is a consultant for Ambu, Boston Scientific, Lumenis, Karl Storz, Uriprene, and Virtuoso Surgical. A.E.K. is also a board member of Sonomotion. The other authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Urology thanks G. Magistro, C. Netsch and P. Dasgupta for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, M.S., Assmus, M.A., Guo, J. et al. Relationships between holmium laser enucleation of the prostate and prostate cancer. Nat Rev Urol 20, 226–240 (2023). https://doi.org/10.1038/s41585-022-00678-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41585-022-00678-y

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing