Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Considering the potential for gene-based therapy in prostate cancer

Abstract

Therapeutic gene manipulation has been at the forefront of popular scientific discussion and basic and clinical research for decades. Basic and clinical research applications of CRISPR–Cas9-based technologies and ongoing clinical trials in this area have demonstrated the potential of genome editing to cure human disease. Evaluation of research and clinical trials in gene therapy reveals a concentration of activity in prostate cancer research and practice. Multiple aspects of prostate cancer care — including anatomical considerations that enable direct tumour injections and sampling, the availability of preclinical immune-competent models and the delineation of tumour-related antigens that might provide targets for an induced immune system — make gene therapy an appealing treatment option for this common malignancy. Vaccine-based therapies that induce an immune response and new technologies exploiting CRISPR–Cas9-assisted approaches, including chimeric antigen receptor (CAR) T cell therapies, are very promising and are currently under investigation both in the laboratory and in the clinic. Although laboratory and preclinical advances have, thus far, not led to oncologically relevant outcomes in the clinic, future studies offer great promise for gene therapy to become established in prostate cancer care.

Key points

  • Prostate cancer gene therapy research and clinical trials established a foundation and path forwards for future advances in the field.

  • Gene therapy strategies with potential applications in patients with prostate cancer include direct injection into a prostate tumour or systemic administration (vaccination).

  • Preclinical data on both strategies are promising, but large clinical trials have failed to demonstrate oncological benefit in patients.

  • Further work, for example, modified vaccination strategies and the use of the CRISPR–Cas9 system, offers hope for future applications of gene therapy approaches in humans.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Gene therapy treatment approaches in humans: direct tumour injection and vaccine-based systemic injection.
Fig. 2: CRISPR–Cas9 technology and prostate cancer treatment.

Similar content being viewed by others

References

  1. Hacein-Bey-Abina, S. et al. LMO2-associated clonal T cell proliferation in two patients after gene therapy for SCID-X1. Science 302, 415–419 (2003).

    Article  CAS  PubMed  Google Scholar 

  2. High, K. A. & Roncarolo, M. G. Gene therapy. N. Engl. J. Med. 381, 455–464 (2019).

    Article  CAS  PubMed  Google Scholar 

  3. Stratton, M. R., Campbell, P. J. & Futreal, P. A. The cancer genome. Nature 458, 719–724 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Catalona, W. J. et al. Measurement of prostate-specific antigen in serum as a screening test for prostate cancer. N. Engl. J. Med. 324, 1156–1161 (1991).

    Article  CAS  PubMed  Google Scholar 

  5. Cooperberg, M. R., Broering, J. M. & Carroll, P. R. Risk assessment for prostate cancer metastasis and mortality at the time of diagnosis. J. Natl Cancer Inst. 101, 878–887 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Herman, J. R. et al. In situ gene therapy for adenocarcinoma of the prostate: a phase I clinical trial. Hum. Gene Ther. 10, 1239–1249 (1999).

    Article  CAS  PubMed  Google Scholar 

  7. Miles, B. J. et al. Prostate-specific antigen response and systemic T cell activation after in situ gene therapy in prostate cancer patients failing radiotherapy. Hum. Gene Ther. 12, 1955–1967 (2001).

    Article  CAS  PubMed  Google Scholar 

  8. Shalev, M. et al. Gene therapy for prostate cancer. Urology 57, 8–16 (2001).

    Article  CAS  PubMed  Google Scholar 

  9. Thompson, T. C. et al. In situ gene therapy for prostate cancer: immunomodulatory approaches. Expert. Opin. Biol. Ther. 1, 481–495 (2001).

    Article  CAS  PubMed  Google Scholar 

  10. Stewart, R. A., Pilié, P. G. & Yap, T. A. Development of PARP and immune-checkpoint inhibitor combinations. Cancer Res. 78, 6717–6725 (2018).

    Article  CAS  PubMed  Google Scholar 

  11. Pilié, P. G. et al. State-of-the-art strategies for targeting the DNA damage response in cancer. Nat. Rev. Clin. Oncol. 16, 81–104 (2019).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  12. Pilié, P. G. et al. PARP inhibitors: extending benefit beyond BRCA-mutant cancers. Clin. Cancer Res. 25, 3759–3771 (2019).

    Article  PubMed  Google Scholar 

  13. Akagi, K. et al. RTCGD: retroviral tagged cancer gene database. Nucleic Acids Res. 32, D523–D527 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Sadelain, M., Papapetrou, E. P. & Bushman, F. D. Safe harbours for the integration of new DNA in the human genome. Nat. Rev. Cancer 12, 51–58 (2011).

    Article  PubMed  CAS  Google Scholar 

  15. Huber, P. E. & Pfisterer, P. In vitro and in vivo transfection of plasmid DNA in the Dunning prostate tumor R3327-AT1 is enhanced by focused ultrasound. Gene Ther. 7, 1516–1525 (2000).

    Article  CAS  PubMed  Google Scholar 

  16. Wolff, J. A. & Budker, V. The mechanism of naked DNA uptake and expression. Adv. Genet. 54, 3–20 (2005).

    CAS  PubMed  Google Scholar 

  17. Yin, H. et al. Non-viral vectors for gene-based therapy. Nat. Rev. Genet. 15, 541–555 (2014).

    Article  CAS  PubMed  Google Scholar 

  18. Kotterman, M. A., Chalberg, T. W. & Schaffer, D. V. Viral vectors for gene therapy: translational and clinical outlook. Annu. Rev. Biomed. Eng. 17, 63–89 (2015).

    Article  CAS  PubMed  Google Scholar 

  19. Peng, W. et al. Nanoparticulate delivery of suicide DNA to murine prostate and prostate tumors. Prostate 67, 855–862 (2007).

    Article  CAS  PubMed  Google Scholar 

  20. Felgner, P. L. et al. Lipofection: a highly efficient, lipid-mediated DNA-transfection procedure. Proc. Natl Acad. Sci. USA 84, 7413–7417 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Hattori, Y. & Maitani, Y. Folate-linked nanoparticle-mediated suicide gene therapy in human prostate cancer and nasopharyngeal cancer with herpes simplex virus thymidine kinase. Cancer Gene Ther. 12, 796–809 (2005).

    Article  CAS  PubMed  Google Scholar 

  22. Samad, A., Sultana, Y. & Aqil, M. Liposomal drug delivery systems: an update review. Curr. Drug. Deliv. 4, 297–305 (2007).

    Article  CAS  PubMed  Google Scholar 

  23. Xu, L. et al. Self-assembly of a virus-mimicking nanostructure system for efficient tumor-targeted gene delivery. Hum. Gene Ther. 13, 469–481 (2002).

    Article  CAS  PubMed  Google Scholar 

  24. Samad, A., Sultana, Y. & Aqil, M. Liposomal drug delivery systems: an update review. Curr. Drug. Deliv. 4, 297–305 (2007).

    Article  CAS  PubMed  Google Scholar 

  25. Dorraj, G. et al. Lipid nanoparticles as potential gene therapeutic delivery systems for oral administration. Curr. Gene Ther. 17, 89–104 (2017).

    Article  CAS  PubMed  Google Scholar 

  26. Tila, D. et al. Functional liposomes in the cancer-targeted drug delivery. J. Biomater. Appl. 30, 3–16 (2015).

    Article  CAS  PubMed  Google Scholar 

  27. Galanis, E. et al. Immunotherapy of advanced malignancy by direct gene transfer of an interleukin-2 DNA/DMRIE/DOPE lipid complex: phase I/II experience. J. Clin. Oncol. 17, 3313–3323 (1999).

    Article  CAS  PubMed  Google Scholar 

  28. Lu, Y. et al. Peptide T7-modified polypeptide with disulfide bonds for targeted delivery of plasmid DNA for gene therapy of prostate cancer. Int. J. Nanomed. 13, 6913–6927 (2018).

    Article  CAS  Google Scholar 

  29. Fournier, P. G. J. et al. The TGF-β signaling regulator PMEPA1 suppresses prostate cancer metastases to bone. Cancer Cell 27, 809–821 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Darquet, A. M. et al. A new DNA vehicle for nonviral gene delivery: supercoiled minicircle. Gene Ther. 4, 1341–1349 (1997).

    Article  CAS  PubMed  Google Scholar 

  31. Wang, T., Chen, Y. & Ronald, J. A. A novel approach for assessment of prostate cancer aggressiveness using survivin-driven tumour-activatable minicircles. Gene Ther. 26, 177–186 (2019).

    Article  CAS  PubMed  Google Scholar 

  32. Chen, Z.-Y. et al. Minicircle DNA vectors devoid of bacterial DNA result in persistent and high-level transgene expression in vivo. Mol. Ther. 8, 495–500 (2003).

    Article  CAS  PubMed  Google Scholar 

  33. Chen, Z.-Y. et al. Silencing of episomal transgene expression in liver by plasmid bacterial backbone DNA is independent of CpG methylation. Mol. Ther. 16, 548–556 (2008).

    Article  CAS  PubMed  Google Scholar 

  34. Ambrosini, G., Adida, C. & Altieri, D. C. A novel anti-apoptosis gene, survivin, expressed in cancer and lymphoma. Nat. Med. 3, 917–921 (1997).

    Article  CAS  PubMed  Google Scholar 

  35. Eslami, M. et al. Evaluation of survivin expression in prostate specimens of patients with prostate adenocarcinoma and benign prostate hyperplasia underwent transurethral resection of the prostate or prostatectomy. SpringerPlus 5, 621 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Shariat, S. F. et al. Survivin expression is associated with features of biologically aggressive prostate carcinoma. Cancer 100, 751–757 (2004).

    Article  CAS  PubMed  Google Scholar 

  37. Yu, H., Pardoll, D. & Jove, R. STATs in cancer inflammation and immunity: a leading role for STAT3. Nat. Rev. Cancer 9, 798–809 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Su, Y.-L. et al. STAT3 in tumor-associated myeloid cells: multitasking to disrupt immunity. Int. J. Mol. Sci. 19, 1803 (2018).

    Article  PubMed Central  CAS  Google Scholar 

  39. Chen, Y. H., Keiser, M. S. & Davidson, B. L. Viral vectors for gene transfer. Curr. Protoc. Mouse Biol. 8, e58 (2018).

    Article  PubMed  Google Scholar 

  40. Warnock, J. N., Daigre, C. & Al-Rubeai, M. Introduction to viral vectors. Methods Mol. Biol. 737, 1–25 (2011).

    Article  CAS  PubMed  Google Scholar 

  41. Harrington, K. J. et al. Gene therapy for prostate cancer: current status and future prospects. J. Urol. 166, 1220–1233 (2001).

    Article  CAS  PubMed  Google Scholar 

  42. Howe, S. J. et al. Insertional mutagenesis combined with acquired somatic mutations causes leukemogenesis following gene therapy of SCID-X1 patients. J. Clin. Invest. 118, 3143–3150 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Braun, C. J. et al. Gene therapy for Wiskott-Aldrich syndrome — long-term efficacy and genotoxicity. Sci. Transl. Med. 6, 227ra33 (2014).

    Article  PubMed  CAS  Google Scholar 

  44. Ott, M. G. et al. Correction of X-linked chronic granulomatous disease by gene therapy, augmented by insertional activation of MDS1-EVI1, PRDM16 or SETBP1. Nat. Med. 12, 401–409 (2006).

    Article  CAS  PubMed  Google Scholar 

  45. Hay, R. T. The origin of adenovirus DNA replication: minimal DNA sequence requirement in vivo. EMBO J. 4, 421–426 (1985).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Berkner, K. L. Development of adenovirus vectors for the expression of heterologous genes. BioTechniques 6, 616–629 (1988).

    CAS  PubMed  Google Scholar 

  47. Kovesdi, I. et al. Adenoviral vectors for gene transfer. Curr. Opin. Biotechnol. 8, 583–589 (1997).

    Article  CAS  PubMed  Google Scholar 

  48. Gonçalves, M. A. F. V. Adeno-associated virus: from defective virus to effective vector. Virol. J. 2, 43 (2005).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Manno, C. S. et al. Successful transduction of liver in hemophilia by AAV-Factor IX and limitations imposed by the host immune response. Nat. Med. 12, 342–347 (2006).

    Article  CAS  PubMed  Google Scholar 

  50. Vieweg, J. et al. Efficient gene transfer with adeno-associated virus-based plasmids complexed to cationic liposomes for gene therapy of human prostate cancer. Cancer Res. 55, 2366–2372 (1995).

    CAS  PubMed  Google Scholar 

  51. Martuza, R. L. et al. Experimental therapy of human glioma by means of a genetically engineered virus mutant. Science 252, 854–856 (1991).

    Article  CAS  PubMed  Google Scholar 

  52. Mineta, T. et al. Attenuated multi-mutated herpes simplex virus-1 for the treatment of malignant gliomas. Nat. Med. 1, 938–943 (1995).

    Article  CAS  PubMed  Google Scholar 

  53. Oyama, M. et al. Intravesical and intravenous therapy of human bladder cancer by the herpes vector G207. Hum. Gene Ther. 11, 1683–G1693 (2000).

    Article  CAS  PubMed  Google Scholar 

  54. Walker, J. R. et al. Local and systemic therapy of human prostate adenocarcinoma with the conditionally replicating herpes simplex virus vector G207. Hum. Gene Ther. 10, 2237–G2243 (1999).

    Article  CAS  PubMed  Google Scholar 

  55. Puhlmann, M. et al. Thymidine kinase-deleted vaccinia virus expressing purine nucleoside phosphorylase as a vector for tumor-directed gene therapy. Hum. Gene Ther. 10, 649–657 (1999).

    Article  CAS  PubMed  Google Scholar 

  56. Kawakita, M. et al. Effect of canarypox virus (ALVAC)-mediated cytokine expression on murine prostate tumor growth. J. Natl Cancer Inst. 89, 428–436 (1997).

    Article  CAS  PubMed  Google Scholar 

  57. Gnant, M. F. et al. Systemic administration of a recombinant vaccinia virus expressing the cytosine deaminase gene and subsequent treatment with 5-fluorocytosine leads to tumor-specific gene expression and prolongation of survival in mice. Cancer Res. 59, 3396–3403 (1999).

    CAS  PubMed  Google Scholar 

  58. Gulley, J. L. et al. Phase III trial of PROSTVAC in asymptomatic or minimally symptomatic metastatic castration-resistant prostate cancer. J. Clin. Oncol. 37, 1051–1061 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Belldegrun, A. et al. Interleukin 2 gene therapy for prostate cancer: phase I clinical trial and basic biology. Hum. Gene Ther. 12, 883–892 (2001).

    Article  CAS  PubMed  Google Scholar 

  60. Hong, D. et al. AZD9150, a next-generation antisense oligonucleotide inhibitor of STAT3 with early evidence of clinical activity in lymphoma and lung cancer. Sci. Transl. Med. 7, 314ra185 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. US National Library of Medicine. ClinicalTrials.gov https://www.clinicaltrials.gov/ct2/show/NCT03421353 (2021).

  62. Pisters, L. L. et al. Evidence that transfer of functional p53 protein results in increased apoptosis in prostate cancer. Clin. Cancer Res. 10, 2587–2593 (2004).

    Article  CAS  PubMed  Google Scholar 

  63. Trudel, S. et al. A phase I trial of adenovector-mediated delivery of interleukin-2 (AdIL-2) in high-risk localized prostate cancer. Cancer Gene Ther. 10, 755–763 (2003).

    Article  CAS  PubMed  Google Scholar 

  64. Kumon, H. et al. Adenovirus vector carrying REIC/DKK-3 gene: neoadjuvant intraprostatic injection for high-risk localized prostate cancer undergoing radical prostatectomy. Cancer Gene Ther. 23, 400–409 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Reid, T., Warren, R. & Kirn, D. Intravascular adenoviral agents in cancer patients: lessons from clinical trials. Cancer Gene Ther. 9, 979–986 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Larson, C. et al. Going viral: a review of replication-selective oncolytic adenoviruses. Oncotarget 6, 19976–19989 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Xia, Z.-J. et al. Phase III randomized clinical trial of intratumoral injection of E1B gene-deleted adenovirus (H101) combined with cisplatin-based chemotherapy in treating squamous cell cancer of head and neck or esophagus. Ai Zheng 23, 1666–1670 (2004).

    PubMed  Google Scholar 

  68. Garber, K. China approves world’s first oncolytic virus therapy for cancer treatment. J. Natl. Cancer Inst. 98, 298–300 (2006).

    Article  PubMed  Google Scholar 

  69. Heise, C. et al. An adenovirus E1A mutant that demonstrates potent and selective systemic anti-tumoral efficacy. Nat. Med. 6, 1134–1139 (2000).

    Article  CAS  PubMed  Google Scholar 

  70. Dong, W. et al. ORCA-010, a novel potency-enhanced oncolytic adenovirus, exerts strong antitumor activity in preclinical models. Hum. Gene Ther. 25, 897–904 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Yu, D. C., Sakamoto, G. T. & Henderson, D. R. Identification of the transcriptional regulatory sequences of human kallikrein 2 and their use in the construction of calydon virus 764, an attenuated replication competent adenovirus for prostate cancer therapy. Cancer Res. 59, 1498–1504 (1999).

    CAS  PubMed  Google Scholar 

  72. Yu, D. C. et al. The addition of adenovirus type 5 region E3 enables calydon virus 787 to eliminate distant prostate tumor xenografts. Cancer Res. 59, 4200–4203 (1999).

    CAS  PubMed  Google Scholar 

  73. Yu, D. C. et al. Antitumor synergy of CV787, a prostate cancer-specific adenovirus, and paclitaxel and docetaxel. Cancer Res. 61, 517–525 (2001).

    CAS  PubMed  Google Scholar 

  74. Rodriguez, R. et al. Prostate attenuated replication competent adenovirus (ARCA) CN706: a selective cytotoxic for prostate-specific antigen-positive prostate cancer cells. Cancer Res. 57, 2559–2563 (1997).

    CAS  PubMed  Google Scholar 

  75. DeWeese, T. L. et al. A phase I trial of CV706, a replication-competent, PSA selective oncolytic adenovirus, for the treatment of locally recurrent prostate cancer following radiation therapy. Cancer Res. 61, 7464–7472 (2001).

    CAS  PubMed  Google Scholar 

  76. Ren, C. et al. mRTVP-1, a novel p53 target gene with proapoptotic activities. Mol. Cell. Biol. 22, 3345–3357 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Sonpavde, G. et al. GLIPR1 tumor suppressor gene expressed by adenoviral vector as neoadjuvant intraprostatic injection for localized intermediate or highrisk prostate cancer preceding radical prostatectomy. Clin. Cancer Res. 17, 7174–7182 (2011).

    Article  CAS  PubMed  Google Scholar 

  78. Freytag, S. O. et al. Phase I study of replication-competent adenovirus-mediated double-suicide gene therapy in combination with conventional-dose threedimensional conformal radiation therapy for the treatment of newly diagnosed, intermediate- to high-risk prostate cancer. Cancer Res. 63, 7497–7506 (2003).

    CAS  PubMed  Google Scholar 

  79. Freytag, S. O. et al. Prospective randomized phase 2 trial of intensity modulated radiation therapy with or without oncolytic adenovirus-mediated cytotoxic gene therapy in intermediate-risk prostate cancer. Int. J. Radiat. Oncol. Biol. Phys. 89, 268–276 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  80. Nasu, Y. et al. Adenovirus-mediated interleukin-12 gene therapy for prostate cancer: suppression of orthotopic tumor growth and pre-established lung metastases in an orthotopic model. Gene Ther. 6, 338–349 (1999).

    Article  CAS  PubMed  Google Scholar 

  81. Satoh, T. et al. Macrophages transduced with an adenoviral vector expressing interleukin 12 suppress tumor growth and metastasis in a preclinical metastatic prostate cancer model. Cancer Res. 63, 7853–7860 (2003).

    CAS  PubMed  Google Scholar 

  82. Freytag, S. O., Zhang, Y. & Siddiqui, F. Preclinical toxicology of oncolytic adenovirus-mediated cytotoxic and interleukin-12 gene therapy for prostate cancer. Mol. Ther. Oncolytics 2, 15006 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  83. Sasaki, K. et al. A phase I/II study of adenovirus-mediated interleukin-12 gene therapy for hormone refractory prostate cancer: an interim report. J. Clin. Oncol. 29, 148–148 (2011).

    Article  Google Scholar 

  84. Zahm, C. D., Colluru, V. T. & McNeel, D. G. DNA vaccines for prostate cancer. Pharmacol. Ther. 174, 27–42 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Weber, J. S. et al. A phase 1 study of a vaccine targeting preferentially expressed antigen in melanoma and prostate-specific membrane antigen in patients with advanced solid tumors. J. Immunother. 34, 556–567 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Smith, K. A. et al. Enhancing DNA vaccination by sequential injection of lymph nodes with plasmid vectors and peptides. Vaccine 27, 2603–2615 (2009).

    Article  CAS  PubMed  Google Scholar 

  87. Eisenhauer, E. A. et al. New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). Eur. J. Cancer 45, 228–247 (2009).

    Article  CAS  PubMed  Google Scholar 

  88. McNeel, D. G. et al. Safety and immunological efficacy of a DNA vaccine encoding prostatic acid phosphatase in patients with stage D0 prostate cancer. J. Clin. Oncol. 27, 4047–4054 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. McNeel, D. G. et al. Phase II trial of a DNA vaccine encoding prostatic acid phosphatase (pTVG-HP [MVI-816]) in patients with progressive, nonmetastatic, castration-sensitive prostate cancer. J. Clin. Oncol. 37, 3507–3517 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Becker, J. T. et al. DNA vaccine encoding prostatic acid phosphatase (PAP) elicits long-term T-cell responses in patients with recurrent prostate cancer. J. Immunother. 33, 639–647 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Rekoske, B. T., Olson, B. M. & McNeel, D. G. Antitumor vaccination of prostate cancer patients elicits PD-1/PD-L1 regulated antigen-specific immune responses. OncoImmunology 5, e1165377 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  92. Zahm, C. D., Colluru, V. T. & McNeel, D. G. Vaccination with high-affinity epitopes impairs antitumor efficacy by increasing PD-1 expression on CD8+ T cells. Cancer Immunol. Res. 5, 630–641 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Rekoske, B. T. et al. PD-1 or PD-L1 blockade restores antitumor efficacy following SSX2 epitope-modified DNA vaccine immunization. Cancer Immunol. Res. 3, 946–955 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. McNeel, D. G. et al. Concurrent, but not sequential, PD-1 blockade with a DNA vaccine elicits anti-tumor responses in patients with metastatic, castration-resistant prostate cancer. Oncotarget 9, 25586–25596 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  95. Pavlenko, M. et al. A phase I trial of DNA vaccination with a plasmid expressing prostate-specific antigen in patients with hormone-refractory prostate cancer. Br. J. Cancer 91, 688–694 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Mincheff, M. et al. Naked DNA and adenoviral immunizations for immunotherapy of prostate cancer: a phase I/II clinical trial. Eur. Urol. 38, 208–217 (2000).

    Article  CAS  PubMed  Google Scholar 

  97. Todorova, K. et al. Biochemical nature and mapping of PSMA epitopes recognized by human antibodies induced after immunization with gene-based vaccines. Anticancer. Res. 25, 4727–4732 (2005).

    CAS  PubMed  Google Scholar 

  98. Chudley, L. et al. DNA fusion-gene vaccination in patients with prostate cancer induces high-frequency CD8+ T-cell responses and increases PSA doubling time. Cancer Immunol. Immunother. 61, 2161–2170 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Lubaroff, D. M. et al. Phase I clinical trial of an adenovirus/prostate-specific antigen vaccine for prostate cancer: safety and immunologic results. Clin. Cancer Res. 15, 7375–7380 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Pantuck, A. J. et al. Phase I trial of antigen-specific gene therapy using a recombinant vaccinia virus encoding MUC-1 and IL-2 in MUC-1-positive patients with advanced prostate cancer. J. Immunother. 27, 240–253 (2004).

    Article  CAS  PubMed  Google Scholar 

  101. Barnd, D. L. et al. Specific, major histocompatibility complex-unrestricted recognition of tumor-associated mucins by human cytotoxic T cells. Proc. Natl Acad. Sci. USA 86, 7159–7163 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Eder, J. P. et al. A phase I trial of a recombinant vaccinia virus expressing prostate-specific antigen in advanced prostate cancer. Clin. Cancer Res. 6, 1632–1638 (2000).

    CAS  PubMed  Google Scholar 

  103. Kaufman, H. L. et al. Phase II randomized study of vaccine treatment of advanced prostate cancer (E7897): a trial of the Eastern Cooperative Oncology Group. J. Clin. Oncol. 22, 2122–2132 (2004).

    Article  CAS  PubMed  Google Scholar 

  104. DiPaola, R. S. et al. A national multicenter phase 2 study of prostate-specific antigen (PSA) pox virus vaccine with sequential androgen ablation therapy in patients with PSA progression: ECOG 9802. Eur. Urol. 68, 365–371 (2015).

    Article  CAS  PubMed  Google Scholar 

  105. Paschalis, A. et al. Prostate-specific membrane antigen heterogeneity and DNA repair defects in prostate cancer. Eur. Urol. 76, 469–478 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Doudna, J. A. & Charpentier, E. Genome editing. The new frontier of genome engineering with CRISPR-Cas9. Science 346, 1258096 (2014).

    Article  PubMed  CAS  Google Scholar 

  107. Sánchez-Rivera, F. J. & Jacks, T. Applications of the CRISPR-Cas9 system in cancer biology. Nat. Rev. Cancer 15, 387–395 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  108. Friedemann, M. et al. Diverse effects of phospholipase A2 receptor expression on LNCaP and PC-3 prostate cancer cell growth in vitro and in vivo. Oncotarget 9, 35983–35996 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  109. Wei, C. et al. CRISPR/Cas9 targeting of the androgen receptor suppresses the growth of LNCaP human prostate cancer cells. Mol. Med. Rep. 17, 2901–2906 (2018).

    CAS  PubMed  Google Scholar 

  110. Yu, G. et al. Organelle-derived acetyl-CoA promotes prostate cancer cell survival, migration, and metastasis via activation of calmodulin kinase II. Cancer Res. 78, 2490–2502 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Takao, A. et al. Generation of PTEN-knockout (−/−) murine prostate cancer cells using the CRISPR/Cas9 system and comprehensive gene expression profiling. Oncol. Rep. 40, 2455–2466 (2018).

    CAS  PubMed  Google Scholar 

  112. Guo, H. et al. Modulation of long noncoding RNAs by risk SNPs underlying genetic predispositions to prostate cancer. Nat. Genet. 48, 1142–1150 (2016).

    Article  CAS  PubMed  Google Scholar 

  113. Gao, P. et al. Biology and clinical implications of the 19q13 aggressive prostate cancer susceptibility locus. Cell 174, 576–589.e18 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Kardooni, H. et al. CRISPR-mediated reactivation of DKK3 expression attenuates TGF-β signaling in prostate cancer. Cancers 10, 165 (2018).

    Article  PubMed Central  CAS  Google Scholar 

  115. Zhen, S. et al. Targeted delivery of CRISPR/Cas9 to prostate cancer by modified gRNA using a flexible aptamer-cationic liposome. Oncotarget 8, 9375–9387 (2017).

    Article  PubMed  Google Scholar 

  116. Wang, T. et al. Genetic screens in human cells using the CRISPR-Cas9 system. Science 343, 80–84 (2014).

    Article  CAS  PubMed  Google Scholar 

  117. Shalem, O. et al. Genome-Scale CRISPR-Cas9 knockout screening in human cells. Science 343, 84–87 (2014).

    Article  CAS  PubMed  Google Scholar 

  118. Chen, S. et al. Genome-wide CRISPR screen in a mouse model of tumor growth and metastasis. Cell 160, 1246–1260 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Parnas, O. et al. A genome-wide CRISPR screen in primary immune cells to dissect regulatory networks. Cell 162, 675–686 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Fei, T. et al. Genome-wide CRISPR screen identifies HNRNPL as a prostate cancer dependency regulating RNA splicing. Proc. Natl Acad. Sci. USA 114, E5207–E5215 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Zimmermann, M. et al. CRISPR screens identify genomic ribonucleotides as a source of PARP-trapping lesions. Nature 559, 285–289 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Sadelain, M., Brentjens, R. & Rivière, I. The basic principles of chimeric antigen receptor design. Cancer Discov. 3, 388–398 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Gill, S. & June, C. H. Going viral: chimeric antigen receptor T-cell therapy for hematological malignancies. Immunol. Rev. 263, 68–89 (2015).

    Article  CAS  PubMed  Google Scholar 

  124. Yu, H. et al. CART cell therapy for prostate cancer: status and promise. OncoTargets Ther. 12, 391–395 (2019).

    Article  CAS  Google Scholar 

  125. Ma, Q. et al. Advanced generation anti-prostate specific membrane antigen designer T cells for prostate cancer immunotherapy. The Prostate 74, 286–296 (2014).

    Article  CAS  PubMed  Google Scholar 

  126. Liu, X. et al. A chimeric switch-receptor targeting PD1 augments the efficacy of second-generation CAR T cells in advanced solid tumors. Cancer Res. 76, 1578–1590 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Priceman, S. J. et al. Co-stimulatory signaling determines tumor antigen sensitivity and persistence of CAR T cells targeting PSCA+ metastatic prostate cancer. OncoImmunology 7, e1380764 (2018).

    Article  PubMed  Google Scholar 

  128. Zhang, Q. et al. Efficacy against human prostate cancer by prostate-specific membrane antigen-specific, transforming growth factor-β insensitive genetically targeted CD8+ T-cells derived from patients with metastatic castrate-resistant disease. Eur. Urol. 73, 648–652 (2018).

    Article  CAS  PubMed  Google Scholar 

  129. Hillerdal, V. & Essand, M. Chimeric antigen receptor-engineered T cells for the treatment of metastatic prostate cancer. BioDrugs 29, 75–89 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Grigor, E. J. M. et al. Risks and benefits of chimeric antigen receptor T-cell (CAR-T) therapy in cancer: a systematic review and meta-analysis. Transfus. Med. Rev. 33, 98–110 (2019).

    Article  PubMed  Google Scholar 

  131. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT01341652 (2019).

  132. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT01706458 (2019).

  133. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02499835 (2019).

  134. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02555397 (2018).

  135. Parsons, J. K. et al. A randomized, double-blind, phase II trial of PSA-TRICOM (PROSTVAC) in patients with localized prostate cancer: the immunotherapy to prevent progression on active surveillance study. Eur. Urol. Focus. 4, 636–638 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  136. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT01140373 (2019).

  137. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03089203 (2021).

  138. Kloss, C. C. et al. Dominant-negative TGF-β receptor enhances PSMA-targeted human CAR T cell proliferation and augments prostate cancer eradication. Mol. Ther. 26, 1855–1866 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Valerio, M. et al. New and established technology in focal ablation of the prostate: a systematic review. Eur. Urol. 71, 17–34 (2017).

    Article  PubMed  Google Scholar 

  140. Boutros, P. C. et al. Spatial genomic heterogeneity within localized, multifocal prostate cancer. Nat. Genet. 47, 736–745 (2015).

    Article  CAS  PubMed  Google Scholar 

  141. Bill-Axelson, A. et al. Radical prostatectomy or watchful waiting in prostate cancer — 29-year follow-up. N. Engl. J. Med. 379, 2319–2329 (2018).

    Article  PubMed  Google Scholar 

  142. Ko, S. C. et al. Molecular therapy with recombinant p53 adenovirus in an androgen-independent, metastatic human prostate cancer model. Hum. Gene Ther. 7, 1683–1691 (1996).

    Article  CAS  PubMed  Google Scholar 

  143. Eastham, J. A. et al. Suppression of primary tumor growth and the progression to metastasis with p53 adenovirus in human prostate cancer. J. Urol. 164, 814–819 (2000).

    Article  CAS  PubMed  Google Scholar 

  144. Gurnani, M. et al. Adenovirus-mediated p53 gene therapy has greater efficacy when combined with chemotherapy against human head and neck, ovarian, prostate, and breast cancer. Cancer Chemother. Pharmacol. 44, 143–151 (1999).

    Article  CAS  PubMed  Google Scholar 

  145. Radhakrishnan, S. et al. Efficacy of oncolytic mutants targeting pRb and p53 pathways is synergistically enhanced when combined with cytotoxic drugs in prostate cancer cells and tumor xenografts. Hum. Gene Ther. 21, 1311–1325 (2010).

    Article  CAS  PubMed  Google Scholar 

  146. Mishel, S. et al. Delivery of the gene encoding the tumor suppressor Sef into prostate tumors by therapeutic-ultrasound inhibits both tumor angiogenesis and growth. Sci. Rep. 7, 15060 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  147. Spitzweg, C. et al. Prostate-specific antigen (PSA) promoter-driven androgen-inducible expression of sodium iodide symporter in prostate cancer cell lines. Cancer Res. 59, 2136–2141 (1999).

    CAS  PubMed  Google Scholar 

  148. Spitzweg, C. et al. Treatment of prostate cancer by radioiodine therapy after tissue-specific expression of the sodium iodide symporter. Cancer Res. 60, 6526–6530 (2000).

    CAS  PubMed  Google Scholar 

  149. Shalev, M. et al. Suicide gene therapy toxicity after multiple and repeat injections in patients with localized prostate cancer. J. Urol. 163, 1747–1750 (2000).

    Article  CAS  PubMed  Google Scholar 

  150. Eastham, J. A. et al. Prostate cancer gene therapy: herpes simplex virus thymidine kinase gene transduction followed by ganciclovir in mouse and human prostate cancer models. Hum. Gene Ther. 7, 515–523 (1996).

    Article  CAS  PubMed  Google Scholar 

  151. Burton, J. B. et al. Adenovirus-mediated gene expression imaging to directly detect sentinel lymph node metastasis of prostate cancer. Nat. Med. 14, 882–888 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Rice, J., Ottensmeier, C. H. & Stevenson, F. K. DNA vaccines: precision tools for activating effective immunity against cancer. Nat. Rev. Cancer 8, 108–120 (2008).

    Article  CAS  PubMed  Google Scholar 

  153. Moreira, D. et al. STAT3 inhibition combined with CpG immunostimulation activates antitumor immunity to eradicate genetically distinct castration-resistant prostate cancers. Clin. Cancer Res. 24, 5948–5962 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by MD Anderson NCI Prostate Cancer SPORE Grant P50 CA140388 and the NCI Cancer Center Support Grant P30 CA16672.

Author information

Authors and Affiliations

Authors

Contributions

Both authors researched data for the article, made substantial contributions to the discussion of the content and wrote, reviewed and edited the manuscript before submission.

Corresponding authors

Correspondence to Justin R. Gregg or Timothy C. Thompson.

Ethics declarations

Competing interests

Parts of the discussion in this article involve data relevant to intellectual property that has been licensed by Baylor College of Medicine to Progression Therapeutics, Inc., a private biotechnology start-up company. T.C.T. is an inventor of record on patents that are included in this licensing agreement. J.R.G. declares no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Gene Therapy Net: http://www.genetherapynet.com/viral-vectors.html

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gregg, J.R., Thompson, T.C. Considering the potential for gene-based therapy in prostate cancer. Nat Rev Urol 18, 170–184 (2021). https://doi.org/10.1038/s41585-021-00431-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41585-021-00431-x

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer