Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Cancer metabolomic markers in urine: evidence, techniques and recommendations

Abstract

Urinary tests have been used as noninvasive, cost-effective tools for screening, diagnosis and monitoring of diseases since ancient times. As we progress through the 21st century, modern analytical platforms have enabled effective measurement of metabolites, with promising results for both a deeper understanding of cancer pathophysiology and, ultimately, clinical translation. The first study to measure metabolomic urinary cancer biomarkers using NMR and mass spectrometry (MS) was published in 2006 and, since then, these techniques have been used to detect cancers of the urological system (kidney, prostate and bladder) and nonurological tumours including those of the breast, ovary, lung, liver, gastrointestinal tract, pancreas, bone and blood. This growing field warrants an assessment of the current status of research developments and recommendations to help systematize future research.

Key points

  • Initial NMR and mass spectrometry (MS) studies of human urine identified biomarkers that can distinguish patients with cancer from healthy controls and outperform many current clinical markers, possibly enabling early detection.

  • Biomarker panels can be used to identify a single type of cancer, stratify grade and stage, differentiate between multiple cancer types and perform longitudinal evaluations.

  • A similar set of urinary metabolites (hippurate, creatine, tyrosine, citrate, isoleucine, phenylalanine, putrescine, succinate, tryptophan and valine) can indicate malignancy of various organs, possibly reflecting the global metabolic effects of cancer.

  • The lack of specificity means that caution must be exercised and that many biomarkers could be too nonspecific for clinical application.

  • Methodological variations impair comparability of existing studies, highlighting the need for guidelines.

  • The expense of NMR and MS instrumentation means that a centralized testing hub might provide the best solution for eventual clinical implementation of cancer urinary biomarkers.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Timeline of the development of urine analysis.
Fig. 2: Representative data set acquired by NMR spectroscopy from a urine sample of a patient with prostate cancer87.
Fig. 3: Representative data set acquired by mass spectrometry from a urine sample of a patient with ovarian cancer.
Fig. 4: Significantly altered metabolites in cancer.
Fig. 5: Overlap of urinary metabolites in cancers of different organ systems.

Similar content being viewed by others

References

  1. Armstrong, J. A. Urinalysis in Western culture: a brief history. Kidney Int. 71, 384–387 (2007).

    CAS  PubMed  Google Scholar 

  2. Voswinckel, P. From uroscopy to urinalysis. Clin. Chim. Acta 297, 5–16 (2000).

    CAS  PubMed  Google Scholar 

  3. Brian, T. Pisse Prophet, or Certaine Pisse-Pot Lectures (R. Thrale, London, 1637).

  4. Haber, M. H. Pisse prophecy: a brief history of urinalysis. Clin. Lab. Med. 8, 415–430 (1988).

    CAS  PubMed  Google Scholar 

  5. Martin, P. The history of urology. Urol. Cutaneous Rev. 22, 210–214 (1918).

    Google Scholar 

  6. Echeverry, G., Hortin, G. L. & Rai, A. J. Introduction to urinalysis: historical perspectives and clinical application. Methods Mol. Biol. 641, 1–12 (2010).

    CAS  PubMed  Google Scholar 

  7. Pezzuto, F., Buonaguro, L., Buonaguro, F. M. & Tornesello, M. L. The role of circulating free DNA and microRNA in non-invasive diagnosis of HBV- and HCV-related hepatocellular carcinoma. Int. J. Mol. Sci. 19, 1007 (2018).

    PubMed Central  Google Scholar 

  8. Lu, T. & Li, J. Clinical applications of urinary cell-free DNA in cancer: current insights and promising future. Am. J. Cancer Res. 7, 2318–2332 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Nemoto, R., Kato, T., Harada, M., Shibata, K. & Kano, M. Mass screening for urinary tract cancer with urine cytology. J. Cancer Res. Clin. Oncol. 104, 155–159 (1982).

    CAS  PubMed  Google Scholar 

  10. Morrissey, J. J. et al. Evaluation of urine aquaporin-1 and perilipin-2 concentrations as biomarkers to screen for renal cell carcinoma: a prospective cohort study. JAMA Oncol. 1, 204–212 (2015).

    PubMed  PubMed Central  Google Scholar 

  11. Theodorescu, D. et al. Discovery and validation of urinary biomarkers for prostate cancer. Proteomics Clin. Appl. 2, 556–570 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. He, W. S. & Bishop, K. S. The potential use of cell-free-circulating-tumor DNA as a biomarker for prostate cancer. Expert Rev. Mol. Diagn. 16, 839–852 (2016).

    CAS  PubMed  Google Scholar 

  13. Kao, H. W. et al. Urine miR-21-5p as a potential non-invasive biomarker for gastric cancer. Oncotarget 8, 56389–56397 (2017).

    PubMed  PubMed Central  Google Scholar 

  14. Erbes, T. et al. Feasibility of urinary microRNA detection in breast cancer patients and its potential as an innovative non-invasive biomarker. BMC Cancer 15, 193 (2015).

    PubMed  PubMed Central  Google Scholar 

  15. Gasparri, M. L. et al. Beyond circulating microRNA biomarkers: urinary microRNAs in ovarian and breast cancer. Tumour Biol. 39, 1010428317695525 (2017).

    PubMed  Google Scholar 

  16. Debernardi, S. et al. Noninvasive urinary miRNA biomarkers for early detection of pancreatic adenocarcinoma. Am. J. Cancer Res. 5, 3455–3466 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Radon, T. P. et al. Identification of a three-biomarker panel in urine for early detection of pancreatic adenocarcinoma. Clin. Cancer Res. 21, 3512–3521 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Weeks, M. E. et al. Analysis of the urine proteome in patients with pancreatic ductal adenocarcinoma. Proteomics Clin. Appl. 2, 1047–1057 (2008).

    CAS  PubMed  Google Scholar 

  19. Zhang, C. et al. Urine proteome profiling predicts lung cancer from control cases and other tumors. EBioMedicine 30, 120–128 (2018).

    PubMed  PubMed Central  Google Scholar 

  20. Leng, W. et al. Proof-of-concept workflow for establishing reference intervals of human urine proteome for monitoring physiological and pathological changes. EBioMedicine 18, 300–310 (2017).

    PubMed  PubMed Central  Google Scholar 

  21. Horgan, R. P. & Kenny, L. C. ‘Omic’technologies: genomics, transcriptomics, proteomics and metabolomics. Obstet. Gynaecol. 13, 189–195 (2011).

    Google Scholar 

  22. Bathe, O. & Farshidfar, F. From genotype to functional phenotype: unraveling the metabolomic features of colorectal cancer. Genes 5, 536–560 (2014).

    PubMed  PubMed Central  Google Scholar 

  23. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03727009 (2019).

  24. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT01511653 (2019).

  25. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT01574677 (2014).

  26. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02781272 (2018).

  27. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03585114 (2019).

  28. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02955173 (2017).

  29. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03091491 (2018).

  30. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03047616 (2018).

  31. von Minckwitz, G. et al. Trastuzumab emtansine for residual invasive HER2-positive breast cancer. N. Engl. J. Med. 380, 617–628 (2018).

    Google Scholar 

  32. Zhang, Y. L. et al. The prevalence of EGFR mutation in patients with non-small cell lung cancer: a systematic review and meta-analysis. Oncotarget 7, 78985–78993 (2016).

    PubMed  PubMed Central  Google Scholar 

  33. Roberts, L. D., Souza, A. L., Gerszten, R. E. & Clish, C. B. Targeted metabolomics. Curr. Protoc. Mol. Biol. 98, 30.2.1–30.2.24 (2012).

  34. Alonso, A., Marsal, S. & Julia, A. Analytical methods in untargeted metabolomics: state of the art in 2015. Front. Bioeng. Biotechnol. 3, 23 (2015). This paper provides an excellent introduction to the field of metabolomic biomarker research, from sample collection to data analysis, using either NMR spectroscopy or MS.

    PubMed  PubMed Central  Google Scholar 

  35. Shao, Y. et al. Development of urinary pseudotargeted LC-MS-based metabolomics method and its application in hepatocellular carcinoma biomarker discovery. J. Proteome Res. 14, 906–916 (2015).

    CAS  PubMed  Google Scholar 

  36. Moser, H. W., Moser, A. B. & Orr, J. C. Preliminary observations on the occurrence of cholesterol sulfate in man. Biochim. Biophys. Acta 116, 146–155 (1966).

    CAS  PubMed  Google Scholar 

  37. Kruk, J. et al. NMR techniques in metabolomic studies: a quick overview on examples of utilization. Appl. Magn. Reson. 48, 1–21 (2017).

    CAS  PubMed  Google Scholar 

  38. Klein, D. Organic Chemistry (John Wiley & Sons, 2012).

  39. Zerbe, O. & Jurt, S. Applied NMR Spectroscopy for Chemists and Life Scientists (Wiley-VCH, 2013).

  40. Beckonert, O. et al. Metabolic profiling, metabolomic and metabonomic procedures for NMR spectroscopy of urine, plasma, serum and tissue extracts. Nat. Protoc. 2, 2692–2703 (2007).

    CAS  PubMed  Google Scholar 

  41. Zhang, B., Xie, M., Bruschweiler-Li, L. & Bruschweiler, R. Nanoparticle-assisted metabolomics. Metabolites 8, 21 (2018).

    PubMed Central  Google Scholar 

  42. Boiteau, R. M. et al. Structure elucidation of unknown metabolites in metabolomics by combined NMR and MS/MS prediction. Metabolites 8, 8 (2018).

    PubMed Central  Google Scholar 

  43. Markley, J. L. et al. The future of NMR-based metabolomics. Curr. Opin. Biotechnol. 43, 34–40 (2017).

    CAS  PubMed  Google Scholar 

  44. Ramaswamy, V. et al. Development of a 13C-optimized 1.5-mm high temperature superconducting NMR probe. J. Magn. Reson. 235, 58–65 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Ramaswamy, V. et al. Development of a 1H-13C dual-optimized NMR probe based on double-tuned high temperature superconducting resonators. IEEE Trans. Appl. Supercond. 26, 1–5 (2016).

    Google Scholar 

  46. Clendinen, C. S., Pasquel, C., Ajredini, R. & Edison, A. S. 13C NMR metabolomics: INADEQUATE network analysis. Anal. Chem. 87, 5698–5706 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Keun, H. C. et al. Cryogenic probe 13C NMR spectroscopy of urine for metabonomic studies. Anal. Chem. 74, 4588–4593 (2002).

    CAS  PubMed  Google Scholar 

  48. Dalgliesh, C. E., Horning, E. C., Horning, M. G., Knox, K. L. & Yarger, K. A gas-liquid-chromatographic procedure for separating a wide range of metabolites occuring in urine or tissue extracts. Biochem. J. 101, 792–810 (1966).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Rittenberg, D. & Schoenheimer, R. Studies in protein metabolism VI. Hippuric acid formation studied with the aid of the nitrogen isotope. J. Biol. Chem. 127, 329–331 (1939).

    Google Scholar 

  50. Chan, E. C., Pasikanti, K. K. & Nicholson, J. K. Global urinary metabolic profiling procedures using gas chromatography-mass spectrometry. Nat. Protoc. 6, 1483–1499 (2011).

    CAS  PubMed  Google Scholar 

  51. Want, E. J. et al. Global metabolic profiling of animal and human tissues via UPLC-MS. Nat. Protoc. 8, 17–32 (2013).

    CAS  PubMed  Google Scholar 

  52. Mairinger, T., Causon, T. J. & Hann, S. The potential of ion mobility-mass spectrometry for non-targeted metabolomics. Curr. Opin. Chem. Biol. 42, 9–15 (2018).

    CAS  PubMed  Google Scholar 

  53. Paglia, G. et al. Ion mobility derived collision cross sections to support metabolomics applications. Anal. Chem. 86, 3985–3993 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Oh, H. B. & Moon, B. Radical-driven peptide backbone dissociation tandem mass spectrometry. Mass Spectrom. Rev. 34, 116–132 (2015).

    CAS  PubMed  Google Scholar 

  55. Mounicou, S., Szpunar, J. & Lobinski, R. Inductively-coupled plasma mass spectrometry in proteomics, metabolomics and metallomics studies. Eur. J. Mass Spectrom. (Chichester) 16, 243–253 (2010).

    CAS  Google Scholar 

  56. Wilson, J. M. G. & Jungner, G. Principles and Practice of Screening for Disease (World Health Organization, 1968).

  57. Morrissey, J. J., London, A. N., Luo, J. & Kharasch, E. D. Urinary biomarkers for the early diagnosis of kidney cancer. Mayo Clin. Proc. 85, 413–421 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Ganti, S. et al. Urinary acylcarnitines are altered in human kidney cancer. Int. J. Cancer 130, 2791–2800 (2012).

    CAS  PubMed  Google Scholar 

  59. Shea, M. W. A proposal for a targeted screening program for renal cancer. Front. Oncol. 3, 207 (2013).

    PubMed  PubMed Central  Google Scholar 

  60. Kim, K. et al. Urine metabolomics analysis for kidney cancer detection and biomarker discovery. Mol. Cell. Proteomics 8, 558–570 (2009). This article describes the importance of uniform urine sample collection time but suggests that the effect of mealtime before specimen collection does not affect findings.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Niziol, J. et al. Metabolomic study of human tissue and urine in clear cell renal carcinoma by LC-HRMS and PLS-DA. Anal. Bioanal. Chem. 410, 3859–3869 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Falegan, O. S. et al. Urine and serum metabolomics analyses may distinguish between stages of renal cell carcinoma. Metabolites 7, 6 (2017). This novel study combines both NMR and MS to improve differentiation between the urine of patients with renal cell carcinoma of different stages and individuals with benign conditions.

    PubMed Central  Google Scholar 

  63. National Cancer Institute. Bladder cancer symptoms, tests, prognosis, and stages (PDQ®)–patient version. NIH https://www.cancer.gov/types/bladder/patient/about-bladder-cancer-pdq (2018).

  64. American Cancer Society. Cancer facts & figures 2017. ACS https://www.cancer.org/Research/Cancer-Facts-Statistics/all-Cancer-Facts-Figures/Cancer-Facts-Figures-2017.Html (2017).

  65. Issaq, H. J. et al. Detection of bladder cancer in human urine by metabolomic profiling using high performance liquid chromatography/mass spectrometry. J. Urol. 179, 2422–2426 (2008).

    CAS  PubMed  Google Scholar 

  66. Pasikanti, K. K. et al. Urinary metabotyping of bladder cancer using two-dimensional gas chromatography time-of-flight mass spectrometry. J. Proteome Res. 12, 3865–3873 (2013).

    CAS  PubMed  Google Scholar 

  67. Pasikanti, K. K. et al. Noninvasive urinary metabonomic diagnosis of human bladder cancer. J. Proteome Res. 9, 2988–2995 (2010).

    CAS  PubMed  Google Scholar 

  68. Huang, Z. et al. Bladder cancer determination via two urinary metabolites: a biomarker pattern approach. Mol. Cell. Proteomics. https://doi.org/10.1074/mcp.M111.007922 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Wittmann, B. M. et al. Bladder cancer biomarker discovery using global metabolomic profiling of urine. PLOS ONE 9, e115870 (2014).

    PubMed  PubMed Central  Google Scholar 

  70. Srivastava, S. et al. Taurine - a possible fingerprint biomarker in non-muscle invasive bladder cancer: a pilot study by 1H NMR spectroscopy. Cancer Biomark. 6, 11–20 (2010).

    PubMed  Google Scholar 

  71. Cheng, X. et al. Metabolomics of non-muscle invasive bladder cancer: biomarkers for early detection of bladder cancer. Front. Oncol. 8, 494 (2018).

    PubMed  PubMed Central  Google Scholar 

  72. Shao, C. H. et al. Metabolite marker discovery for the detection of bladder cancer by comparative metabolomics. Oncotarget 8, 38802–38810 (2017).

    PubMed  PubMed Central  Google Scholar 

  73. Liu, X. et al. Investigation of the urinary metabolic variations and the application in bladder cancer biomarker discovery. Int. J. Cancer 143, 408–418 (2018).

    CAS  PubMed  Google Scholar 

  74. Jin, X. et al. Diagnosis of bladder cancer and prediction of survival by urinary metabolomics. Oncotarget 5, 1635–1645 (2014). This study demonstrates high sensitivities and specificities for bladder cancer and detailed identification and interpretation of disease-related metabolites.

    PubMed  PubMed Central  Google Scholar 

  75. Peng, J., Chen, Y. T., Chen, C. L. & Li, L. Development of a universal metabolome-standard method for long-term LC-MS metabolome profiling and its application for bladder cancer urine-metabolite-biomarker discovery. Anal. Chem. 86, 6540–6547 (2014).

    CAS  PubMed  Google Scholar 

  76. Putluri, N. et al. Metabolomic profiling reveals potential markers and bioprocesses altered in bladder cancer progression. Cancer Res. 71, 7376–7386 (2011). This comparison of two different MS modalities measuring the same sample set reveals different metabolomic patterns.

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Alberice, J. V. et al. Searching for urine biomarkers of bladder cancer recurrence using a liquid chromatography-mass spectrometry and capillary electrophoresis-mass spectrometry metabolomics approach. J. Chromatogr. A 1318, 163–170 (2013).

    CAS  PubMed  Google Scholar 

  78. Bryan, G. T. The role of urinary tryptophan metabolites in the etiology of bladder cancer. Am. J. Clin. Nutr. 24, 841–847 (1971).

    CAS  PubMed  Google Scholar 

  79. Rose, D. Aspects of tryptophan metabolism in health and disease: a review. J. Clin. Pathol. 25, 17 (1972).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Sreekumar, A. et al. Metabolomic profiles delineate potential role for sarcosine in prostate cancer progression. Nature 457, 910–914 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Wu, H. et al. GC/MS-based metabolomic approach to validate the role of urinary sarcosine and target biomarkers for human prostate cancer by microwave-assisted derivatization. Anal. Bioanal. Chem. 401, 635–646 (2011).

    CAS  PubMed  Google Scholar 

  82. Derezinski, P., Klupczynska, A., Sawicki, W., Palka, J. A. & Kokot, Z. J. Amino acid profiles of serum and urine in search for prostate cancer biomarkers: a pilot study. Int. J. Med. Sci. 14, 1–12 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Struck-Lewicka, W. et al. Urine metabolic fingerprinting using LC-MS and GC-MS reveals metabolite changes in prostate cancer: a pilot study. J. Pharm. Biomed. Anal. 111, 351–361 (2015).

    CAS  PubMed  Google Scholar 

  84. Gamagedara, S. et al. Validation study of urinary metabolites as potential biomarkers for prostate cancer detection. Bioanalysis 4, 1175–1183 (2012).

    CAS  PubMed  Google Scholar 

  85. Bales, J. R., Sadler, P. J., Nicholson, J. K. & Timbrell, J. A. Urinary excretion of acetaminophen and its metabolites as studied by proton NMR spectroscopy. Clin. Chem. 30, 1631–1636 (1984).

    CAS  PubMed  Google Scholar 

  86. Zaragoza, P. et al. Towards the potential use of (1)H NMR spectroscopy in urine samples for prostate cancer detection. Analyst 139, 3875–3878 (2014).

    CAS  PubMed  Google Scholar 

  87. Perez-Rambla, C. et al. Non-invasive urinary metabolomic profiling discriminates prostate cancer from benign prostatic hyperplasia. Metabolomics 13, 52 (2017).

    PubMed  PubMed Central  Google Scholar 

  88. Slupsky, C. M. et al. Urine metabolite analysis offers potential early diagnosis of ovarian and breast cancers. Clin. Cancer Res. 16, 5835–5841 (2010).

    CAS  PubMed  Google Scholar 

  89. Zhang, T. et al. Identification of potential biomarkers for ovarian cancer by urinary metabolomic profiling. J. Proteome Res. 12, 505–512 (2013).

    CAS  PubMed  Google Scholar 

  90. Woo, H. M. et al. Mass spectrometry based metabolomic approaches in urinary biomarker study of women’s cancers. Clin. Chim. Acta 400, 63–69 (2009). The study demonstrates that urinary metabolomic panels can distinguish not just cancer from benign conditions but also one type of cancer from another.

    CAS  PubMed  Google Scholar 

  91. Langer, R. D. et al. Transvaginal ultrasonography compared with endometrial biopsy for the detection of endometrial disease. Postmenopausal estrogen/progestin interventions trial. N. Engl. J. Med. 337, 1792–1798 (1997).

    CAS  PubMed  Google Scholar 

  92. Smith, R. A. et al. American Cancer Society guidelines for the early detection of cancer: update of early detection guidelines for prostate, colorectal, and endometrial cancers. Also: update 2001—testing for early lung cancer detection. CA Cancer J. Clin. 51, 38–75 (2001).

    CAS  PubMed  Google Scholar 

  93. Shao, X. et al. Screening and verifying endometrial carcinoma diagnostic biomarkers based on a urine metabolomic profiling study using UPLC-Q-TOF/MS. Clin. Chim. Acta 463, 200–206 (2016).

    CAS  PubMed  Google Scholar 

  94. Duk, J. M., Aalders, J. G., Fleuren, G. J. & de Bruijn, H. W. CA 125: a useful marker in endometrial carcinoma. Am. J. Obstet. Gynecol. 155, 1097–1102 (1986).

    CAS  PubMed  Google Scholar 

  95. Zhang, X. et al. Associations of self-reported sleep duration and snoring with colorectal cancer risk in men and women. Sleep 36, 681–688 (2013).

    PubMed  PubMed Central  Google Scholar 

  96. Prasad, V., Lenzer, J. & Newman, D. H. Why cancer screening has never been shown to “save lives”—and what we can do about it. BMJ 352, h6080 (2016).

    PubMed  Google Scholar 

  97. Frickenschmidt, A. et al. Metabonomics in cancer diagnosis: mass spectrometry-based profiling of urinary nucleosides from breast cancer patients. Biomarkers 13, 435–449 (2008).

    CAS  PubMed  Google Scholar 

  98. Cala, M., Aldana, J., Sanchez, J., Guio, J. & Meesters, R. J. W. Urinary metabolite and lipid alterations in Colombian Hispanic women with breast cancer: a pilot study. J. Pharm. Biomed. Anal. 152, 234–241 (2018).

    CAS  PubMed  Google Scholar 

  99. Chen, Y. et al. RRLC-MS/MS-based metabonomics combined with in-depth analysis of metabolic correlation network: finding potential biomarkers for breast cancer. Analyst 134, 2003–2011 (2009).

    CAS  PubMed  Google Scholar 

  100. Cho, S. H. et al. Direct determination of nucleosides in the urine of patients with breast cancer using column-switching liquid chromatography-tandem mass spectrometry. Biomed. Chromatogr. 20, 1229–1236 (2006). This article describes the novel development of a MS technique to quantify nucleosides in urine without interference, a problem experienced by other methods at the time.

    CAS  PubMed  Google Scholar 

  101. Chen, J. et al. Urinary metabolomics for discovering metabolic biomarkers of laryngeal cancer using UPLC-QTOF/MS. J. Pharm. Biomed. Anal. 167, 83–89 (2019).

    CAS  PubMed  Google Scholar 

  102. Beckham, T. H. et al. Targeting sphingolipid metabolism in head and neck cancer: rational therapeutic potentials. Expert Opin. Ther. Targets 14, 529–539 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Erben, V., Bhardwaj, M., Schrotz-King, P. & Brenner, H. Metabolomics biomarkers for detection of colorectal neoplasms: a systematic review. Cancers (Basel) 10, E246 (2018).

    Google Scholar 

  104. Weir, T. L. et al. Stool microbiome and metabolome differences between colorectal cancer patients and healthy adults. PLOS ONE 8, e70803 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Liang, Q., Wang, C. & Li, B. Metabolomic analysis using liquid chromatography/mass spectrometry for gastric cancer. Appl. Biochem. Biotechnol. 176, 2170–2184 (2015).

    CAS  PubMed  Google Scholar 

  106. Jung, J. et al. Noninvasive diagnosis and evaluation of curative surgery for gastric cancer by using NMR-based metabolomic profiling. Ann. Surg. Oncol. 21(Suppl. 4), S736–S742 (2014).

    PubMed  Google Scholar 

  107. Pasechnikov, V., Chukov, S., Fedorov, E., Kikuste, I. & Leja, M. Gastric cancer: prevention, screening and early diagnosis. World J. Gastroenterol. 20, 13842–13862 (2014).

    PubMed  PubMed Central  Google Scholar 

  108. Chen, J. L., Fan, J. & Lu, X. J. CE-MS based on moving reaction boundary method for urinary metabolomic analysis of gastric cancer patients. Electrophoresis 35, 1032–1039 (2014).

    CAS  PubMed  Google Scholar 

  109. Chan, A. W. et al. (1)H-NMR urinary metabolomic profiling for diagnosis of gastric cancer. Br. J. Cancer 114, 59–62 (2016).

    CAS  PubMed  Google Scholar 

  110. Duffy, M. J. et al. Use of faecal markers in screening for colorectal neoplasia: a European group on tumor markers position paper. Int. J. Cancer 128, 3–11 (2011).

    CAS  PubMed  Google Scholar 

  111. Gao, Y. et al. Evaluation of serum CEA, CA19-9, CA72-4, CA125 and ferritin as diagnostic markers and factors of clinical parameters for colorectal cancer. Sci. Rep. 8, 2732 (2018).

    PubMed  PubMed Central  Google Scholar 

  112. Ma, Y. L. et al. Ultra-high performance liquid chromatography-mass spectrometry for the metabolomic analysis of urine in colorectal cancer. Dig. Dis. Sci. 54, 2655–2662 (2009).

    CAS  PubMed  Google Scholar 

  113. Cheng, Y. et al. Distinct urinary metabolic profile of human colorectal cancer. J. Proteome Res. 11, 1354–1363 (2012).

    CAS  PubMed  Google Scholar 

  114. Wang, Z. et al. NMR-based metabolomic techniques identify potential urinary biomarkers for early colorectal cancer detection. Oncotarget 8, 105819–105831 (2017).

    PubMed  PubMed Central  Google Scholar 

  115. Davis, V. W., Schiller, D. E., Eurich, D., Bathe, O. F. & Sawyer, M. B. Pancreatic ductal adenocarcinoma is associated with a distinct urinary metabolomic signature. Ann. Surg. Oncol. 20 (Suppl. 3), 415–423 (2013). This paper shows the excellent performance of urinary metabolomics for the distinction of benign conditions versus pancreatic ductal adenocarcinoma, a cancer with a particularly poor outcome.

    PubMed  Google Scholar 

  116. Kinross, J. M., Drymousis, P., Jimenez, B. & Frilling, A. Metabonomic profiling: a novel approach in neuroendocrine neoplasias. Surgery 154, 1185–1192 (2013).

    PubMed  Google Scholar 

  117. Yang, X. et al. Diagnostic value of circulating chromogranin a for neuroendocrine tumors: a systematic review and meta-analysis. PLOS ONE 10, e0124884 (2015).

    PubMed  PubMed Central  Google Scholar 

  118. Siegel, R. L., Miller, K. D. & Jemal, A. Cancer statistics, 2018. CA Cancer J. Clin. 68, 7–30 (2018).

    PubMed  Google Scholar 

  119. Ji, M. et al. Mass screening for liver cancer: results from a demonstration screening project in Zhongshan City, China. Sci. Rep. 8, 12787 (2018).

    PubMed  PubMed Central  Google Scholar 

  120. World Cancer Research Fund. Liver cancer statistics: liver cancer is the sixth most common cancer worldwide. WCRF https://www.wcrf.org/dietandcancer/cancer-trends/liver-cancer-statistics (2018).

  121. Bray, F. et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 68, 394–424 (2018).

    PubMed  Google Scholar 

  122. Shariff, M. I. et al. Hepatocellular carcinoma: current trends in worldwide epidemiology, risk factors, diagnosis and therapeutics. Expert Rev. Gastroenterol. Hepatol. 3, 353–367 (2009).

    PubMed  Google Scholar 

  123. Akinyemiju, T. et al. The burden of primary liver cancer and underlying etiologies from 1990 to 2015 at the global, regional, and national level: results from the Global Burden of Disease Study 2015. JAMA Oncol. 3, 1683–1691 (2017).

    PubMed  PubMed Central  Google Scholar 

  124. Shariff, M. I. et al. Characterization of urinary biomarkers of hepatocellular carcinoma using magnetic resonance spectroscopy in a Nigerian population. J. Proteome Res. 9, 1096–1103 (2010).

    CAS  PubMed  Google Scholar 

  125. Cox, I. J. et al. Urinary nuclear magnetic resonance spectroscopy of a Bangladeshi cohort with hepatitis-B hepatocellular carcinoma: a biomarker corroboration study. World J. Gastroenterol. 22, 4191–4200 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Shariff, M. I. et al. Urinary metabolic biomarkers of hepatocellular carcinoma in an Egyptian population: a validation study. J. Proteome Res. 10, 1828–1836 (2011).

    CAS  PubMed  Google Scholar 

  127. Ladep, N. G. et al. Discovery and validation of urinary metabotypes for the diagnosis of hepatocellular carcinoma in West Africans. Hepatology 60, 1291–1301 (2014).

    CAS  PubMed  Google Scholar 

  128. Osman, D., Ali, O., Obada, M., El-Mezayen, H. & El-Said, H. Chromatographic determination of some biomarkers of liver cirrhosis and hepatocellular carcinoma in Egyptian patients. Biomed. Chromatogr. 31, e3893 (2017).

    Google Scholar 

  129. Liu, R. et al. Determination of polyamine metabolome in plasma and urine by ultrahigh performance liquid chromatography-tandem mass spectrometry method: application to identify potential markers for human hepatic cancer. Anal. Chim. Acta 791, 36–45 (2013).

    CAS  PubMed  Google Scholar 

  130. Dai, W. et al. Study of urinary steroid hormone disorders: difference between hepatocellular carcinoma in early stage and cirrhosis. Anal. Bioanal. Chem. 406, 4325–4335 (2014).

    CAS  PubMed  Google Scholar 

  131. Chen, T. et al. Serum and urine metabolite profiling reveals potential biomarkers of human hepatocellular carcinoma. Mol. Cell. Proteomics https://doi.org/10.1074/mcp.M110.004945 (2011).

    Google Scholar 

  132. Chen, J. et al. Metabonomics study of liver cancer based on ultra performance liquid chromatography coupled to mass spectrometry with HILIC and RPLC separations. Anal. Chim. Acta 650, 3–9 (2009).

    CAS  PubMed  Google Scholar 

  133. Wu, H. et al. Metabolomic profiling of human urine in hepatocellular carcinoma patients using gas chromatography/mass spectrometry. Anal. Chim. Acta 648, 98–104 (2009).

    CAS  PubMed  Google Scholar 

  134. Xu, H. et al. Polyamine metabolites profiling for characterization of lung and liver cancer using an LC-tandem MS method with multiple statistical data mining strategies: discovering potential cancer biomarkers in human plasma and urine. Molecules 21, E1040 (2016).

    PubMed  Google Scholar 

  135. Liang, Q., Liu, H., Wang, C. & Li, B. Phenotypic characterization analysis of human hepatocarcinoma by urine metabolomics approach. Sci. Rep. 6, 19763 (2016). This article shows the great potential of urinary metabolomics for cancer detection at an early stage and contains a thorough pathway analysis.

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Warburg, O., Posener, K. & Negelein, E. VIII. The metabolism of cancer cells [German]. Biochem. Z. 152, 129–169 (1924).

    Google Scholar 

  137. Lok, A. S. et al. Des-γ-carboxy prothrombin and α-fetoprotein as biomarkers for the early detection of hepatocellular carcinoma. Gastroenterology 138, 493–502 (2010).

    CAS  PubMed  Google Scholar 

  138. Tzartzeva, K. et al. Surveillance imaging and alpha fetoprotein for early detection of hepatocellular carcinoma in patients with cirrhosis: a meta-analysis. Gastroenterology 154, 1706–1718 (2018).

    CAS  PubMed  Google Scholar 

  139. Berger, E. et al. Can liver cancer be found early? ACS https://www.cancer.org/cancer/liver-cancer/detection-diagnosis-staging/detection.html (2016).

  140. Stewart, B. W. & Wild, C. P. (eds) World Cancer Report 2014 Vol. 3 (International Agency for Research on Cancer, 2017).

  141. Carrola, J. et al. Metabolic signatures of lung cancer in biofluids: NMR-based metabonomics of urine. J. Proteome Res. 10, 221–230 (2011).

    CAS  PubMed  Google Scholar 

  142. An, Z. et al. Integrated ionization approach for RRLC-MS/MS-based metabonomics: finding potential biomarkers for lung cancer. J. Proteome Res. 9, 4071–4081 (2010).

    CAS  PubMed  Google Scholar 

  143. Yang, Q. et al. Urinary metabonomic study of lung cancer by a fully automatic hyphenated hydrophilic interaction/RPLC-MS system. J. Sep. Sci. 33, 1495–1503 (2010).

    CAS  PubMed  Google Scholar 

  144. Zhou, S. et al. Asymmetric dimethylarginine and all-cause mortality: a systematic review and meta-analysis. Sci. Rep. 7, 44692 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Callejon-Leblic, B., Garcia-Barrera, T., Pereira-Vega, A. & Gomez-Ariza, J. L. Metabolomic study of serum, urine and bronchoalveolar lavage fluid based on gas chromatography mass spectrometry to delve into the pathology of lung cancer. J. Pharm. Biomed. Anal. 163, 122–129 (2019).

    CAS  PubMed  Google Scholar 

  146. Ilias, I., Sahdev, A., Reznek, R. H., Grossman, A. B. & Pacak, K. The optimal imaging of adrenal tumours: a comparison of different methods. Endocr. Relat. Cancer 14, 587–599 (2007).

    PubMed  Google Scholar 

  147. Arlt, W. et al. Urine steroid metabolomics as a biomarker tool for detecting malignancy in adrenal tumors. J. Clin. Endocrinol. Metab. 96, 3775–3784 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  148. Zhang, Z. et al. Serum and urinary metabonomic study of human osteosarcoma. J. Proteome Res. 9, 4861–4868 (2010).

    CAS  PubMed  Google Scholar 

  149. Pallister, T. et al. Hippurate as a metabolomic marker of gut microbiome diversity: modulation by diet and relationship to metabolic syndrome. Sci. Rep. 7, 13670 (2017).

    PubMed  PubMed Central  Google Scholar 

  150. Yang, Q. J. et al. Serum and urine metabolomics study reveals a distinct diagnostic model for cancer cachexia. J. Cachexia Sarcopenia Muscle 9, 71–85 (2017). This paper shows that metabolomic biomarker panels can be useful not just for identifying cancer but also for identifying the condition of cachexia, which is associated with malignancies.

    CAS  PubMed  PubMed Central  Google Scholar 

  151. Lodi, A. et al. Proton NMR-based metabolite analyses of archived serial paired serum and urine samples from myeloma patients at different stages of disease activity identifies acetylcarnitine as a novel marker of active disease. PLOS ONE 8, e56422 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  152. Shen, C. et al. Developing urinary metabolomic signatures as early bladder cancer diagnostic markers. OMICS 19, 1–11 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  153. Polanski, M. & Anderson, N. L. A list of candidate cancer biomarkers for targeted proteomics. Biomark. Insights 2006, 1–48 (2007).

    Google Scholar 

  154. Smolinska, A., Blanchet, L., Buydens, L. M. & Wijmenga, S. S. NMR and pattern recognition methods in metabolomics: from data acquisition to biomarker discovery: a review. Anal. Chim. Acta 750, 82–97 (2012).

    CAS  PubMed  Google Scholar 

  155. Settle, F. A. (ed.) Handbook of Instrumental Techniques for Analytical Chemistry (Prentice Hall, 1997).

  156. Gromski, P. S. et al. A tutorial review: metabolomics and partial least squares-discriminant analysis–a marriage of convenience or a shotgun wedding. Anal. Chim. Acta 879, 10–23 (2015).

    CAS  PubMed  Google Scholar 

  157. Capati, A., Ijare, O. B. & Bezabeh, T. Diagnostic applications of nuclear magnetic resonance-based urinary metabolomics. Magn. Reson. Insights 10, 1–12 (2017).

    Google Scholar 

  158. Trivedi, D. K. & Iles, R. K. Do not just do it, do it right: urinary metabolomics—establishing clinically relevant baselines. Biomed. Chromatogr. 28, 1491–1501 (2014).

    CAS  PubMed  Google Scholar 

  159. Emwas, A. H. et al. Standardizing the experimental conditions for using urine in NMR-based metabolomic studies with a particular focus on diagnostic studies: a review. Metabolomics 11, 872–894 (2015).

    CAS  PubMed  Google Scholar 

  160. de Hoffmann, E. in Kirk-Othmer Encyclopedia of Chemical Technology 4th edn (John Wiley & Sons, 2000).

  161. Castro-Perez, J., Plumb, R. & Granger, J. Maximizing chromatographic resolution of metabolites using ultra performance liquid chromatography (UPLC [TM]). Pharm. Discov. 4, 50–51 (2004).

    Google Scholar 

  162. Wilson, I. D. et al. HPLC-MS-based methods for the study of metabonomics. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 817, 67–76 (2005).

    CAS  PubMed  Google Scholar 

  163. Nassar, A. F., Wu, T., Nassar, S. F. & Wisnewski, A. V. UPLC-MS for metabolomics: a giant step forward in support of pharmaceutical research. Drug Discov. Today 22, 463–470 (2017).

    CAS  PubMed  Google Scholar 

  164. Yu, C. et al. Multi-channel microfluidic chip coupling with mass spectrometry for simultaneous electro-sprays and extraction. Sci. Rep. 7, 17389 (2017).

    PubMed  PubMed Central  Google Scholar 

  165. Turner, D. et al. Cost effectiveness of management strategies for urinary tract infections: results from randomised controlled trial. BMJ 340, c346 (2010).

    PubMed  PubMed Central  Google Scholar 

  166. Bernini, P. et al. Standard operating procedures for pre-analytical handling of blood and urine for metabolomic studies and biobanks. J. Biomol. NMR 49, 231–243 (2011).

    CAS  PubMed  Google Scholar 

  167. Liu, L., Mo, H., Wei, S. & Raftery, D. Quantitative analysis of urea in human urine and serum by 1H nuclear magnetic resonance. Analyst 137, 595–600 (2012).

    CAS  PubMed  Google Scholar 

  168. Giraudeau, P., Silvestre, V. & Akoka, S. Optimizing water suppression for quantitative NMR-based metabolomics: a tutorial review. Metabolomics 11, 1041–1055 (2015).

    CAS  Google Scholar 

  169. Hasim, A. et al. Revealing the metabonomic variation of EC using (1)H-NMR spectroscopy and its association with the clinicopathological characteristics. Mol. Biol. Rep. 39, 8955–8964 (2012).

    CAS  PubMed  Google Scholar 

  170. Hao, J. et al. Bayesian deconvolution and quantification of metabolites in complex 1D NMR spectra using BATMAN. Nat. Protoc. 9, 1416 (2014).

    CAS  PubMed  Google Scholar 

  171. Weljie, A. M., Newton, J., Mercier, P., Carlson, E. & Slupsky, C. M. Targeted profiling: quantitative analysis of 1 H NMR metabolomics data. Anal. Chem. 78, 4430–4442 (2006).

    CAS  PubMed  Google Scholar 

  172. Chemonx NMR Suite Version 8.4 (Chenomx Inc., Alberta, Canada).

  173. Sumner, L. W. et al. Proposed minimum reporting standards for chemical analysis Chemical Analysis Working Group (CAWG) Metabolomics Standards Initiative (MSI). Metabolomics 3, 211–221 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  174. Spicer, R. A., Salek, R. & Steinbeck, C. A decade after the metabolomics standards initiative it’s time for a revision. Sci. Data 4, 170138 (2017).

    PubMed  PubMed Central  Google Scholar 

  175. Protospatharius, T. On Urines (Biblioteca Universitaria Bologna, 15th c.).

  176. Nicholson, J. K. & Lindon, J. C. Systems biology: metabonomics. Nature 455, 1054–1056 (2008).

    CAS  PubMed  Google Scholar 

  177. Coryn, B. The Urine Doctor, holding a matula to examine urine [Print]. Harvard Art Museums https://www.harvardartmuseums.org/art/235931 (17th c.).

  178. Brownlee, C. Lab on a stick. ACS https://www.acs.org/content/dam/acsorg/education/resources/highschool/chemmatters/gc-lab-on-a-stick.pdf (2004).

  179. Guijas, C. et al. METLIN: a technology platform for identifying knowns and unknowns. Anal. Chem. 90, 3156–3164 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors kindly acknowledge J. A. Fordham for editorial assistance. A.H. gratefully acknowledges the German Academic Foundation Cusanuswerk, the German Academic Exchange Service and the Max Weber Programme of the State of Bavaria for financial support. Furthermore, A.H. thanks the Department of Diagnostic and Interventional Neuroradiology, University Hospital of Würzburg. S.S.D. gratefully acknowledges the German Academic Scholarship Foundation for financial support.

Review criteria

Representative papers were selected using a PubMed search with the terms “metabolomics” AND “biomarkers” AND “urine” AND “cancer”, which were combined with search strings for the different techniques. For mass spectrometry, those included “mass spectrometry” OR “gas chromatography-mass spectrometry” OR “gc ms” OR “liquid chromatography”. For NMR spectroscopy, the terms “Magnetic Resonance Spectroscopy” OR “Nuclear Magnetic Resonance Spectroscopy” were used. All terms were input with variations in notation and specifications regarding the type of search term MeSH Terms, TIAB and All Fields.

Author information

Authors and Affiliations

Authors

Contributions

S.S.D., A.H. and L.A.V. researched data for the article. L.L.C., S.S.D., A.H., L.A.V. and I.A.K. wrote the manuscript. All authors made substantial contributions to discussions of content and reviewed and edited the manuscript before submission.

Corresponding authors

Correspondence to Igor A. Kaltashov or Leo L. Cheng.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Glossary

Uroscopy

Medical examination of the urine in order to facilitate diagnosis of a disease or disorder. It is a non-laboratory examination that usually relies on examination of colour, cloudiness and precipitates.

Pseudotargeted approaches

Pseudotargeted approaches combine both untargeted and targeted mass spectrometry methods, thereby aiming to reduce disadvantages of either technique alone. A pseudotargeted metabolomics method contains nontargeted profiling, ion pair picking and multiple reaction monitoring measurement. Consequently, global metabolome information can be retrieved, even if some metabolites are not identified. At the same time, pseudotargeted approaches offer improved reproducibility, simplified data processing and a more expansive linear range than the traditional untargeted metabolomics methods.

Multiple reaction monitoring

(MRM). MRM is an extension of selected reaction monitoring (SRM), a popular tandem mass spectrometry (MS/MS) technique in which the instrument is set up to select the precursor ions at a single mass-to-charge ratio (m/z) value and transmit the product ions at a single m/z value. SRM enables a great degree of selectivity to be achieved and is typically used to detect a single metabolite in a complex mixture (assuming the fragmentation pattern of its molecular ion is known and a suitable fragment ion can be selected). MRM takes advantage of the ability of many modern mass spectrometers to perform multiple MS/MS experiments on a chromatographic timescale, thereby enabling multiple (chromatographically unresolved) metabolites to be identified on the basis of the unique precursor and/or fragment pair for each of them.

Dynamic nuclear polarization

(DNP). A method to hyperpolarize NMR-active nuclei such as 13C or 15N, thereby amplifying the signal. In DNP, the sample is polarized in the presence of microwave-irradiated free radicals. An alternative method, SABRE-RELAY (signal amplification by reversible exchange–relayed coherence transfer), can also be used. In SABRE, a latent singlet spin order of parahydrogen is switched on so that it can polarize a substrate. RELAY is an NMR pulse sequence.

Principal component analysis

(PCA). A popular unsupervised approach for deriving a low-dimensional set of features from a large set of variables. It is often used to identify clusters or outliers.

Linear discriminant analysis

(L-DA). A supervised approach for predicting a categorical response. L-DA is a popular approach when there are more than two response classes.

Leave-one-out cross-validation

A validation approach suitable for small data sets. The data set is repeatedly split into a training set containing all but one observation, and a validation set that contains only that observation and the test error is measured each time.

Partial least squares discriminant analysis

(PLS-DA). A supervised analysis to identify features that contribute most to variation or separation of groups, applicable for separation to several groups. OPLS-DA incorporates an orthogonal signal correction filter and is, therefore, useful for the separation of two groups.

AUROC

(Area under the receiver operating characteristic curve). A graphic for simultaneously displaying the true-positive rate and the false-positive rate of a test. An ideal curve is close to the top left corner; thus, the larger the area under the curve, the better the classifier.

Least absolute shrinkage and selection operator (LASSO) regularization

Also known as regression with L1 regularization. LASSO regulation relies upon a linear model but uses an alternative procedure to estimate the coefficients, making it less flexible and easier to interpret because the response variable will only be related to a small subset of the predictors. The remaining predictors are set to zero.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dinges, S.S., Hohm, A., Vandergrift, L.A. et al. Cancer metabolomic markers in urine: evidence, techniques and recommendations. Nat Rev Urol 16, 339–362 (2019). https://doi.org/10.1038/s41585-019-0185-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41585-019-0185-3

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer