Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Systemic sclerosis interstitial lung disease: unmet needs and potential solutions

Abstract

Systemic sclerosis (SSc), or scleroderma, is a rare, complex, systemic autoimmune disease of unknown aetiology, characterized by high morbidity and mortality often resulting from cardiopulmonary complications such as interstitial lung disease and pulmonary arterial hypertension. Despite substantial progress in unravelling the pathways involved in the pathogenesis of SSc and the increasing number of therapeutic targets tested in clinical trials, there is still no cure for this disease, although several proposed treatments might limit the involvement of specific organs, thereby slowing the natural history of the disease. A specific focus of recent research has been to address the plethora of unmet needs regarding the global management of SSc-related interstitial lung disease, including its pathogenesis, early diagnosis, risk stratification of patients, appropriate treatment regimens and monitoring of treatment response, as well as the definition of progression and predictors of progression and mortality. More refined stratification of patients on the basis of clinical features, molecular signatures, identification of subpopulations with distinct clinical trajectories and implementation of outcome measures for future clinical trials could also improve therapeutic management strategies, helping to avoid poor outcomes related to lung involvement.

Key points

  • Systemic sclerosis (SSc) is a rare systemic autoimmune disease characterized by high clinical heterogeneity, in which interstitial lung disease (ILD) is one of the main causes of morbidity and mortality.

  • Despite many advances in the understanding of pathogenetic mechanisms and clinical definition, SSc–ILD management is still associated with several unmet needs.

  • Discovery of new therapeutic targets and specific diagnostic and prognostic markers will help optimize the management of SSc–ILD.

  • Stratification of patients by clinical features and molecular signatures, identification of subpopulations with distinct clinical trajectories, and implementation of outcome measures in clinical trials can also improve SSc–ILD management.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Pathogenesis of SSc interstitial lung disease.

Similar content being viewed by others

References

  1. Volkmann, E. R., Andréasson, K. & Smith, V. Systemic sclerosis. Lancet 401, 304–318 (2023).

    Article  PubMed  Google Scholar 

  2. Denton, C. P., Wells, A. U. & Coghlan, J. G. Major lung complications of systemic sclerosis. Nat. Rev. Rheumatol. 14, 511–527 (2018).

    Article  PubMed  Google Scholar 

  3. Elhai, M. et al. Mapping and predicting mortality from systemic sclerosis. Ann. Rheum. Dis. 76, 1897–1905 (2017).

    Article  PubMed  Google Scholar 

  4. Perelas, A., Silver, R. M., Arrossi, A. V. & Highland, K. B. Systemic sclerosis-associated interstitial lung disease. Lancet Respir. Med. 8, 304–320 (2020).

    Article  CAS  PubMed  Google Scholar 

  5. Giacomelli, R. et al. Interstitial lung disease in systemic sclerosis: current and future treatment. Rheumatol. Int. 37, 853–863 (2017).

    Article  PubMed  Google Scholar 

  6. Wijsenbeek, M., Suzuki, A. & Maher, T. M. Interstitial lung diseases. Lancet 400, 769–786 (2022).

    Article  PubMed  Google Scholar 

  7. Cabral-Marques, O. & Riemekasten, G. Vascular hypothesis revisited: role of stimulating antibodies against angiotensin and endothelin receptors in the pathogenesis of systemic sclerosis. Autoimmun. Rev. 15, 690–694 (2016).

    Article  CAS  PubMed  Google Scholar 

  8. Di Benedetto, P. et al. Endothelial-to-mesenchymal transition in systemic sclerosis. Clin. Exp. Immunol. 205, 12–27 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Li, Z. & Jimenez, S. A. Protein kinase Cδ and c-Abl kinase are required for transforming growth factor β induction of endothelial-mesenchymal transition in vitro. Arthritis Rheum. 63, 2473–2483 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Wermuth, P. J., Li, Z., Mendoza, F. A. & Jimenez, S. A. Stimulation of transforming growth factor-β1-induced endothelial-to-mesenchymal transition and tissue fibrosis by endothelin-1 (ET-1): a novel profibrotic effect of ET-1. PLoS One 11, e0161988 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Ludwicka‐Bradley, A., Silver, R. M. & Bogatkevich, G. S. Coagulation and autoimmunity in scleroderma interstitial lung disease. Semin. Arthritis Rheum. 41, 212–222 (2011).

    Article  PubMed  Google Scholar 

  12. Dowson, C., Simpson, N., Duffy, L. & O’Reilly, S. Innate immunity in systemic sclerosis. Curr. Rheumatol. Rep. 19, 2 (2017).

    Article  PubMed  Google Scholar 

  13. Ryu, C. et al. Bioactive plasma mitochondrial DNA is associated with disease progression in scleroderma-associated interstitial lung disease. Arthritis Rheumatol. 72, 1905–1915 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Reyfman, P. A. et al. Single-cell transcriptomic analysis of human lung provides insights into the pathobiology of pulmonary fibrosis. Am. J. Respir. Crit. Care Med. 199, 1517–1536 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Renzoni, E. A., Poletti, V. & Mackintosh, J. A. Disease pathology in fibrotic interstitial lung disease: is it all about usual interstitial pneumonia? Lancet 398, 1437–1449 (2021).

    Article  CAS  PubMed  Google Scholar 

  16. Pechkovsky, D. V. et al. Alternatively activated alveolar macrophages in pulmonary fibrosis — mediator production and intracellular signal transduction. Clin. Immunol. 137, 89–101 (2010).

    Article  CAS  PubMed  Google Scholar 

  17. Trombetta, A. C. et al. A circulating cell population showing both M1 and M2 monocyte/macrophage surface markers characterizes systemic sclerosis patients with lung involvement. Respir. Res. 19, 186 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Valenzi, E. et al. Disparate interferon signaling and shared aberrant basaloid cells in single-cell profiling of idiopathic pulmonary fibrosis and systemic sclerosis-associated interstitial lung disease. Front. Immunol. 12, 595811 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Liossis, S. C. & Staveri, C. The role of B cells in scleroderma lung disease pathogenesis. Front. Med. 9, 936182 (2022).

    Article  Google Scholar 

  20. Aravena, O. et al. TIM-1 defines a human regulatory B cell population that is altered in frequency and function in systemic sclerosis patients. Arthritis Res. Ther. 19, 8 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Higashioka, K. et al. Generation of a novel CD30+ B cell subset producing GM-CSF and its possible link to the pathogenesis of systemic sclerosis. Clin. Exp. Immunol. 201, 233–243 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. François, A. et al. B lymphocytes and B-cell activating factor promote collagen and profibrotic markers expression by dermal fibroblasts in systemic sclerosis. Arthritis Res. Ther. 15, R168 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Dumoitier, N. et al. Scleroderma peripheral B lymphocytes secrete Interleukin-6 and transforming growth factor β and activate fibroblasts. Arthritis Rheumatol. 69, 1078–1089 (2017).

    Article  CAS  PubMed  Google Scholar 

  24. Fava, A. et al. Frequency of circulating topoisomerase-I-specific CD4 T cells predicts presence and progression of interstitial lung disease in scleroderma. Arthritis Res. Ther. 18, 99 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Luzina, I. G. et al. Occurrence of an activated, profibrotic pattern of gene expression in lung CD8+ T cells from scleroderma patients. Arthritis Rheum. 48, 2262–2274 (2003).

    Article  CAS  PubMed  Google Scholar 

  26. Ramahi, A., Altorok, N. & Kahaleh, B. Epigenetics and systemic sclerosis: an answer to disease onset and evolution? Eur. J. Rheumatol. 7, S147–S156 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Orvain, C., Assassi, S., Avouac, J. & Allanore, Y. Systemic sclerosis pathogenesis: contribution of recent advances in genetics. Curr. Opin. Rheumatol. 32, 505–514 (2020).

    Article  CAS  PubMed  Google Scholar 

  28. Feghali-Bostwick, C., Medsger, T. A. Jr & Wright, T. M. Analysis of systemic sclerosis in twins reveals low concordance for disease and high concordance for the presence of antinuclear antibodies. Arthritis Rheum. 48, 1956–1963 (2003).

    Article  PubMed  Google Scholar 

  29. Ramos, P. S. et al. Integrative analysis of DNA methylation in discordant twins unveils distinct architectures of systemic sclerosis subsets. Clin. Epigenetics. 11, 58 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Rubio-Rivas, M., Moreno, R. & Corbella, X. Occupational and environmental scleroderma. Systematic review and meta-analysis. Clin. Rheumatol. 36, 569–582 (2017).

    Article  PubMed  Google Scholar 

  31. Boesch, M. et al. Transcriptomic profiling reveals disease-specific characteristics of epithelial cells in idiopathic pulmonary fibrosis. Respir. Res. 21, 165 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. DeMizio, D. J. & Bernstein, E. J. Detection and classification of systemic sclerosis-related interstitial lung disease: a review. Curr. Opin. Rheumatol. 31, 553–560 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. van den Hoogen, F. et al. 2013 Classification criteria for systemic sclerosis: an American College of Rheumatology/European League Against Rheumatism collaborative initiative. Arthritis Rheum. 65, 2737–2747 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Hoffmann-Vold, A. M. et al. Tracking impact of interstitial lung disease in systemic sclerosis in a complete nationwide cohort. Am. J. Respir. Crit. Care Med. 200, 1258–1266 (2019).

    Article  PubMed  Google Scholar 

  35. Hoffmann-Vold, A. M. et al. The need for a holistic approach for SSc-ILD — achievements and ambiguity in a devastating disease. Respir. Res. 21, 197 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Bernstein, E. J. et al. Performance characteristics of pulmonary function tests for the detection of interstitial lung disease in adults with early diffuse cutaneous systemic sclerosis. Arthritis Rheumatol. 72, 1892–1896 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Frauenfelder, T. et al. Screening for interstitial lung disease in systemic sclerosis: performance of high-resolution CT with limited number of slices: a prospective study. Ann. Rheum. Dis. 73, 2069–2073 (2014).

    Article  PubMed  Google Scholar 

  38. Kowal-Bielecka, O. et al. Update of EULAR recommendations for the treatment of systemic sclerosis. Ann. Rheum. Dis. 76, 1327–1339 (2017).

    Article  PubMed  Google Scholar 

  39. Hoffmann-Vold, A. M. et al. The identification and management of interstitial lung disease in systemic sclerosis: evidence-based European consensus statements. Lancet Rheumatol. 2, e71–e83 (2020).

    Article  Google Scholar 

  40. Rahaghi, F. F. et al. Expert consensus on the management of systemic sclerosis-associated interstitial lung disease. Respir. Res. 24, 6 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Bernstein, E. J. et al. Computed tomography of the chest to screen for interstitial lung disease in patients with systemic sclerosis at expert scleroderma centers in the United States. ACR Open Rheumatol. 4, 596–602 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Roofeh, D., Jaafar, S., Vummidi, D. & Khanna, D. Management of systemic sclerosis associated interstitial lung disease. Curr. Opin. Rheumatol. 31, 241–249 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Khanna, D. et al. Connective tissue disease-associated interstitial lung diseases (CTD-ILD): report from OMERACT CTD-ILD working group. J. Rheumatol. 42, 2168–2171 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Bernstein, E. J., Khanna, D. & Lederer, D. J. Screening high-resolution computed tomography of the chest to detect interstitial lung disease in systemic sclerosis: a global survey of rheumatologists. Arthritis Rheumatol. 70, 971–972 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Bruni, C. et al. Developing a screening tool for the detection of interstitial lung disease in systemic sclerosis: the ILD-RISC risk score. Arthritis Rheumatol. 74, 1526 (2022).

    Google Scholar 

  46. Gutierrez, M. et al. Ultrasound in the assessment of interstitial lung disease in systemic sclerosis: a systematic literature review by the OMERACT Ultrasound Group. J. Rheumatol. 47, 991–1000 (2019).

    Article  PubMed  Google Scholar 

  47. Hassan, R. I. et al. Lung ultrasound as a screening method for interstitial lung disease in patients with systemic sclerosis. J. Clin. Rheumatol. 25, 304–307 (2019).

    Article  PubMed  Google Scholar 

  48. Gargani, L. et al. Lung ultrasound B-lines in systemic sclerosis: cut-off values and methodological indications for interstitial lung disease screening. Rheumatology 61, SI56–SI64 (2022).

    Article  PubMed  Google Scholar 

  49. Gigante, A. et al. Lung ultrasound in systemic sclerosis: correlation with high-resolution computed tomography, pulmonary function tests and clinical variables of disease. Intern. Emerg. Med. 11, 213–217 (2016).

    Article  PubMed  Google Scholar 

  50. Makol, A. et al. Recent innovations in the screening and diagnosis of systemic sclerosis-associated interstitial lung disease. Expert Rev. Clin. Immunol. 19, 613–626 (2023).

    Article  CAS  PubMed  Google Scholar 

  51. Radić, M. et al. Pulmonary ultrasonography in systemic sclerosis-induced interstitial lung disease — a systematic review and meta-analysis. Diagnostics 13, 1429 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Gomes Guerra, M. et al. The role of lung ultrasound in systemic sclerosis: a systematic review. J. Clin. Rheumatol. 29, e32–e39 (2023).

    Article  PubMed  Google Scholar 

  53. Barskova, T. et al. Lung ultrasound for the screening of interstitial lung disease in very early systemic sclerosis. Ann. Rheum. Dis. 72, 390–395 (2013).

    Article  PubMed  Google Scholar 

  54. Gargani, L. et al. Prognostic value of lung ultrasound B-lines in systemic sclerosis. Chest 158, 1515–1525 (2020).

    Article  CAS  PubMed  Google Scholar 

  55. Gargani, L. et al. Lung magnetic resonance imaging in systemic sclerosis: a new promising approach to evaluate pulmonary involvement and progression. Clin. Rheumatol. 40, 1903–1912 (2021).

    Article  PubMed  Google Scholar 

  56. Goh, N. S. L. et al. Interstitial lung disease in systemic sclerosis: a simple staging system. Am. J. Respir. Crit. Care Med. 177, 1248–1254 (2008).

    Article  PubMed  Google Scholar 

  57. Ferrazza, A. M. et al. Assessment of interstitial lung disease in systemic sclerosis using the quantitative CT algorithm CALIPER. Clin. Rheumatol. 39, 1537–1542 (2020).

    Article  PubMed  Google Scholar 

  58. Carvalho, A. R. S. et al. Automatic quantification of interstitial lung disease from chest computed tomography in systemic sclerosis. Front. Med. 7, 577739 (2020).

    Article  Google Scholar 

  59. Clukers, J. et al. Interstitial lung disease in systemic sclerosis quantification of disease classification and progression with high-resolution computed tomography: an observational study. J. Scleroderma Relat. Disord. 6, 154–164 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Distler, O. et al. Nintedanib for systemic sclerosis-associated interstitial lung disease. N. Engl. J. Med. 380, 2518–2528 (2019).

    Article  CAS  PubMed  Google Scholar 

  61. Denton, C. P. et al. Extent of fibrosis and lung function decline in patients with systemic sclerosis and interstitial lung disease: data from the SENSCIS trial. Rheumatology 62, 1870–1876 (2023).

    Article  PubMed  Google Scholar 

  62. Hoffmann-Vold, A. M. et al. Progressive interstitial lung disease in patients with systemic sclerosis-associated interstitial lung disease in the EUSTAR database. Ann. Rheum. Dis. 80, 219–227 (2021).

    Article  CAS  PubMed  Google Scholar 

  63. Raghu, G. et al. Idiopathic pulmonary fibrosis (an update) and progressive pulmonary fibrosis in adults: an official ATS/ERS/JRS/ALAT clinical practice guideline. Am. J. Respir. Crit. Care Med. 205, e18–e47 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Winstone, T. A. et al. Predictors of mortality and progression in scleroderma-associated interstitial lung disease: a systematic review. Chest 146, 422–436 (2014).

    Article  PubMed  Google Scholar 

  65. Assassi, S. et al. Predictors of interstitial lung disease in early systemic sclerosis: a prospective longitudinal study of the GENISOS cohort. Arthritis Res. Ther. 12, R166 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Plastiras, S. C. et al. Scleroderma lung: initial forced vital capacity as predictor of pulmonary function decline. Arthritis Rheum. 55, 598–602 (2006).

    Article  PubMed  Google Scholar 

  67. Volkmann, E. R. et al. Association of symptoms of gastroesophageal reflux, esophageal dilation, and progression of systemic sclerosis-related interstitial lung disease. Arthritis Care Res. 75, 1690–1697 (2023).

    Article  CAS  Google Scholar 

  68. Man, A. et al. Changes in forced vital capacity over time in systemic sclerosis: application of group-based trajectory modelling. Rheumatology 54, 1464–1471 (2015).

    Article  PubMed  Google Scholar 

  69. Volkmann, E. R. et al. Dyspnoea and cough in patients with systemic sclerosis-associated interstitial lung disease in the SENSCIS trial. Rheumatology 61, 4397–4408 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Khanna, D. et al. Systemic sclerosis-associated interstitial lung disease: how to incorporate two food and drug administration-approved therapies in clinical practice. Arthritis Rheumatol. 74, 13–27 (2022).

    Article  CAS  PubMed  Google Scholar 

  71. Hoa, S., Bernatsky, S., Steele, R. J., Baron, M. & Hudson, M. Canadian Scleroderma Research Group. Association between immunosuppressive therapy and course of mild interstitial lung disease in systemic sclerosis. Rheumatology 59, 1108–1117 (2020).

    Article  CAS  PubMed  Google Scholar 

  72. Hoa, S. et al. Association between immunosuppressive therapy and incident risk of interstitial lung disease in systemic sclerosis. Chest 160, 2158–2162 (2021).

    Article  PubMed  Google Scholar 

  73. Hoa, S., Baron, M. & Hudson, M. Screening and management of subclinical interstitial lung disease in systemic sclerosis: an international survey. Rheumatology 61, 3401–3407 (2022).

    Article  CAS  PubMed  Google Scholar 

  74. Roofeh, D. et al. Tocilizumab prevents progression of early systemic sclerosis-associated interstitial lung disease. Arthritis Rheumatol. 73, 1301–1310 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Al-Sheikh, H., Ahmad, Z. & Johnson, S. R. Ethnic variations in systemic sclerosis disease manifestations, internal organ involvement, and mortality. J. Rheumatol. 46, 1103–1108 (2019).

    Article  PubMed  Google Scholar 

  76. Lescoat, A. et al. Systemic sclerosis-associated interstitial lung disease in the EUSTAR database: analysis by region. Rheumatology 62, 2178–2188 (2023).

    Article  CAS  PubMed  Google Scholar 

  77. Giacomelli, R. et al. Guidelines for biomarkers in autoimmune rheumatic diseases — evidence based analysis. Autoimmun. Rev. 18, 93–106 (2019).

    Article  CAS  PubMed  Google Scholar 

  78. Cole, A. & Denton, C. P. Biomarkers in systemic sclerosis associated interstitial lung disease (SSc-ILD). Curr. Treat. Options Rheum. 8, 152–170 (2022).

    Article  Google Scholar 

  79. Distler, O. et al. Predictors of progression in systemic sclerosis patients with interstitial lung disease. Eur. Respir. J. 55, 1902026 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Nihtyanova, S. I. et al. Using autoantibodies and cutaneous subset to develop outcome-based disease classification in systemic sclerosis. Arthritis Rheumatol. 72, 465–476 (2020).

    Article  CAS  PubMed  Google Scholar 

  81. Ishikawa, N., Hattori, N., Yokoyama, A. & Kohno, N. Utility of KL-6/MUC1 in the clinical management of interstitial lung diseases. Respir. Investig. 50, 3–13 (2012).

    Article  PubMed  Google Scholar 

  82. Tashkin, D. P. et al. Cyclophosphamide versus placebo in scleroderma lung disease. N. Engl. J. Med. 354, 2655–2666 (2006).

    Article  CAS  PubMed  Google Scholar 

  83. Tashkin, D. P. et al. Mycophenolate mofetil versus oral cyclophosphamide in scleroderma-related interstitial lung disease (SLS 2): a randomised controlled, double-blind, parallel group trial. Lancet Respir. Med. 4, 708–719 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Goldin, J. G. et al. Longitudinal changes in quantitative interstitial lung disease on computed tomography after immunosuppression in the Scleroderma Lung Study II. Ann. Am. Thorac. Soc. 15, 1286–1295 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  85. Volkmann, E. R. et al. Treatment with mycophenolate and cyclophosphamide leads to clinically meaningful improvements in patient-reported outcomes in scleroderma lung disease: results of Scleroderma Lung Study II. ACR Open Rheumatol. 2, 362–370 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  86. Hoyles, R. K. et al. A multicenter, prospective, randomized, double-blind, placebo-controlled trial of corticosteroids and intravenous cyclophosphamide followed by oral azathioprine for the treatment of pulmonary fibrosis in scleroderma. Arthritis Rheum. 54, 3962–3970 (2006).

    Article  CAS  PubMed  Google Scholar 

  87. Khanna, D. et al. Safety and efficacy of subcutaneous tocilizumab in systemic sclerosis: results from the open-label period of a phase II randomised controlled trial (faSScinate). Ann. Rheum. Dis. 77, 212–220 (2018).

    Article  CAS  PubMed  Google Scholar 

  88. Maher, T. M. et al. RECITAL Investigators. Rituximab versus intravenous cyclophosphamide in patients with connective tissue disease-associated interstitial lung disease in the UK (RECITAL): a double-blind, double-dummy, randomised, controlled, phase 2b trial. Lancet Respir. Med. 11, 45–54 (2023).

    Article  CAS  PubMed  Google Scholar 

  89. Borrirukwisitsak, S., Tantayakom, P. & Katchamart, W. Efficacy and safety of rituximab on lung and skin involvement in systemic sclerosis: a systematic review and metaanalysis. Clin. Rheumatol. 40, 2779–2789 (2021).

    Article  PubMed  Google Scholar 

  90. Acharya, N. et al. Efficacy and safety of pirfenidone in systemic sclerosis-related interstitial lung disease— a randomised controlled trial. Rheumatol. Int. 40, 703–710 (2020).

    Article  CAS  PubMed  Google Scholar 

  91. Khanna, D. et al. Combination therapy of mycophenolate mofetil and pirfenidone vs. mycophenolate alone: results from the Scleroderma Lung Study III [abstract]. Arthritis Rheumatol. 74, 1045–1047 (2022).

    Google Scholar 

  92. Burt, R. K. et al. Autologous non-myeloablative haemopoietic stem-cell transplantation compared with pulse cyclophosphamide once per month for systemic sclerosis (ASSIST): an open-label, randomised phase 2 trial. Lancet 378, 498–506 (2011).

    Article  CAS  PubMed  Google Scholar 

  93. van Laar, J. M. et al. Autologous hematopoietic stem cell transplantation vs intravenous pulse cyclophosphamide in diffuse cutaneous systemic sclerosis: a randomized clinical trial. JAMA 311, 2490–2498 (2014).

    Article  PubMed  Google Scholar 

  94. Sullivan, K. M. et al. Myeloablative autologous stem-cell transplantation for severe scleroderma. N. Engl. J. Med. 378, 35–47 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  95. Crespo, M. M. et al. Lung transplantation in patients with scleroderma compared with pulmonary fibrosis: short and long-term outcomes in a single institution. Ann. Am. Thorac. Soc. 13, 784–792 (2016).

    Article  PubMed  Google Scholar 

  96. Volkmann, E. R. Natural history of systemic sclerosis-related interstitial lung disease: how to identify a progressive fibrosing phenotype. J. Scleroderma Relat. Disord. 5, 31–40 (2020).

    Article  PubMed  Google Scholar 

  97. Campochiaro, C. et al. Open questions on the management of targeted therapies for the treatment of systemic sclerosis-interstitial lung disease: results of a EUSTAR survey based on a systemic literature review. Ther. Adv. Musculoskelet. Dis. 14, 1759720X221116408 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  98. Allanore, Y. et al. SENSCIS-ON trial investigators. Continued treatment with nintedanib in patients with systemic sclerosis-associated interstitial lung disease: data from SENSCIS-ON. Ann. Rheum. Dis. 81, 1722–1729 (2022).

    Article  CAS  PubMed  Google Scholar 

  99. Volkmann, E. R. et al. Changes in plasma CXCL4 levels are associated with improvements in lung function in patients receiving immunosuppressive therapy for systemic sclerosis-related interstitial lung disease. Arthritis Res. Ther. 18, 305 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  100. Assassi, S. et al. Predictive significance of serum interferon-inducible protein score for response to treatment in systemic sclerosis-related interstitial lung disease. Arthritis Rheumatol. 73, 1005–1013 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Assassi, S. et al. Peripheral blood gene expression profiling shows predictive significance for response to mycophenolate in systemic sclerosis-related interstitial lung disease. Ann. Rheum. Dis. 81, 854–860 (2022).

    Article  CAS  PubMed  Google Scholar 

  102. Wu, W. et al. Progressive skin fibrosis is associated with a decline in lung function and worse survival in patients with diffuse cutaneous systemic sclerosis in the European Scleroderma Trials and Research (EUSTAR) cohort. Ann. Rheum. Dis. 78, 648–656 (2019).

    Article  CAS  PubMed  Google Scholar 

  103. George, P. M. et al. Progressive fibrosing interstitial lung disease: clinical uncertainties, consensus recommendations, and research priorities. Lancet Respir. Med. 8, 925–934 (2020).

    Article  PubMed  Google Scholar 

  104. Goh, N. S. et al. Short-term pulmonary function trends are predictive of mortality in interstitial lung disease associated with systemic sclerosis. Arthritis Rheumatol. 69, 1670–1678 (2017).

    Article  CAS  PubMed  Google Scholar 

  105. Nagy, T. et al. Clinical predictors of lung-function decline in systemic-sclerosis-associated interstitial lung disease patients with normal spirometry. Biomedicines 10, 2129 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Jandali, B. et al. The effect of anti-Scl-70 antibody determination method on its predictive significance for interstitial lung disease progression in systemic sclerosis. ACR Open Rheumatol. 4, 345–351 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  107. Assassi, S. et al. GENISOS Study Group. Predictors of interstitial lung disease in early systemic sclerosis: a prospective longitudinal study of the GENISOS cohort. Arthritis Res. Ther. 12, R166 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  108. Wu, W. et al. Prediction of progression of interstitial lung disease in patients with systemic sclerosis: the SPAR model. Ann. Rheum. Dis. 77, 1326–1332 (2018).

    Article  CAS  PubMed  Google Scholar 

  109. Bonella, F. et al. The Gender-Age-Physiology (GAP) index enhanced with KL-6 serum level for predicting disease progression in interstitial lung diseases (ILD). Eur. Resp. J. 56, 801 (2020).

    Google Scholar 

  110. Ledoult, E. et al. 18F-FDG positron emission tomography scanning in systemic sclerosis-associated interstitial lung disease: a pilot study. Arthritis Res. Ther. 23, 76 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Peelen, D. M. et al. The quantitative assessment of interstitial lung disease with positron emission tomography scanning in systemic sclerosis patients. Rheumatology 59, 1407–1415 (2020).

    Article  PubMed  Google Scholar 

  112. Hoffmann-Vold, A. M. et al. EUSTAR collaborators. Cohort enrichment strategies for progressive interstitial lung disease in systemic sclerosis from European scleroderma trials and research. Chest 163, 586–598 (2023).

    Article  PubMed  Google Scholar 

  113. Volkmann, E. R. et al. Development of a composite outcome measure for systemic sclerosis related interstitial lung disease. Rheumatology 5, 154 (2015).

    PubMed  Google Scholar 

  114. Becker, M. O. et al. Development and validation of a patient-reported outcome measure for systemic sclerosis: the EULAR Systemic Sclerosis Impact of Disease (ScleroID) questionnaire. Ann. Rheum. Dis. 81, 507–515 (2022).

    Article  PubMed  Google Scholar 

  115. Penke, L. R. K., Speth, J., Wettlaufer, S., Draijer, C. & Peters-Golden, M. Bortezomib inhibits lung fibrosis and fibroblast activation without proteasome inhibition. Am. J. Respir. Cell Mol. Biol. 66, 23–37 (2022).

    Article  CAS  PubMed  Google Scholar 

  116. Mutlu, G. M. et al. Proteasomal inhibition after injury prevents fibrosis by modulating TGF-β1 signalling. Thorax 67, 139–146 (2012).

    Article  PubMed  Google Scholar 

  117. Bellamri, N. et al. Effects of ruxolitinib on fibrosis in preclinical models of systemic sclerosis. Int. Immunopharmacol. 116, 109723 (2023).

    Article  CAS  PubMed  Google Scholar 

  118. Kolb, M., Crestani, B. & Maher, T. M. Phosphodiesterase 4B inhibition: a potential novel strategy for treating pulmonary fibrosis. Eur. Respir. Rev. 32, 220206 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  119. Gordon, J. K. et al. Belimumab for the treatment of early diffuse systemic sclerosis: results of a randomized, double-blind, placebo-controlled, pilot trial. Arthritis Rheumatol. 70, 308–316 (2018).

    Article  CAS  PubMed  Google Scholar 

  120. Brkic, Z. et al. The interferon type I signature is present in systemic sclerosis before overt fibrosis and might contribute to its pathogenesis through high BAFF gene expression and high collagen synthesis. Ann. Rheum. Dis. 75, 1567–1573 (2016).

    Article  CAS  PubMed  Google Scholar 

  121. Kafaja, S. et al. pDCs in lung and skin fibrosis in a bleomycin-induced model and patients with systemic sclerosis. JCI Insight 3, e98380 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  122. van Bon, L. et al. Proteome-wide analysis and CXCL4 as a biomarker in systemic sclerosis. N. Engl. J. Med. 370, 433–443 (2014).

    Article  PubMed  Google Scholar 

  123. Ross, R. L. et al. Targeting human plasmacytoid dendritic cells through BDCA2 prevents skin inflammation and fibrosis in a novel xenotransplant mouse model of scleroderma. Ann. Rheum. Dis. 80, 920–929 (2021).

    Article  CAS  PubMed  Google Scholar 

  124. West, A. P. & Shadel, G. S. Mitochondrial DNA in innate immune responses and inflammatory pathology. Nat. Rev. Immunol. 17, 363–375 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Wu, M. & Assassi, S. Dysregulation of type 1 interferon signaling in systemic sclerosis: a promising therapeutic target? Curr. Treat. Opt. Rheumatol. 7, 349–360 (2021).

    Article  Google Scholar 

  126. Goldberg, A. et al. Dose-escalation of human anti-interferon-α receptor monoclonal antibody MEDI-546 in subjects with systemic sclerosis: a phase 1, multicenter, open label study. Arthritis Res. Ther. 16, R57 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  127. Goh, N. S. et al. Increased epithelial permeability in pulmonary fibrosis in relation to disease progression. Eur. Respir. J. 38, 184–190 (2011).

    Article  CAS  PubMed  Google Scholar 

  128. Bennett, D. et al. Elevated level of galectin-1 in bronchoalveolar lavage of patients with idiopathic pulmonary fibrosis. Respir. Physiol. Neurobiol. 273, 103323 (2020).

    Article  CAS  PubMed  Google Scholar 

  129. Galecto. Galecto Announces Topline Results from Phase 2b GALACTIC-1 trial of GB0139 for the Treatment of Idiopathic Pulmonary Fibrosis https://ir.galecto.com/news-releases/news-release-details/galecto-announces-topline-results-phase-2b-galactic-1-trial (2023).

  130. Bergmann, C. et al. Treatment of a patient with severe systemic sclerosis (SSc) using CD19-targeted CAR T cells. Ann. Rheum. Dis. 82, 1117–1120 (2023).

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors researched data for the article. All authors contributed substantially to the discussion of content. V.L., F.D.G., R.G. and F.C. wrote the article. V.L., F.D.G., R.G. and F.C. reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Vasiliki Liakouli.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Rheumatology thanks Masataka Kuwana, Elizabeth Volkmann and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liakouli, V., Ciancio, A., Del Galdo, F. et al. Systemic sclerosis interstitial lung disease: unmet needs and potential solutions. Nat Rev Rheumatol 20, 21–32 (2024). https://doi.org/10.1038/s41584-023-01044-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41584-023-01044-x

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing