Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Treatment of systemic juvenile idiopathic arthritis

Abstract

Systemic juvenile idiopathic arthritis (sJIA) is an inflammatory disease with hallmarks of severe systemic inflammation, which can be accompanied by arthritis. Contemporary scientific insights set this paediatric disorder on a continuum with its counterpart, adult-onset Still disease (AOSD). Patients with sJIA are prone to complications, including life-threatening hyperinflammation (macrophage activation syndrome (sJIA-MAS)) and sJIA-associated lung disease (sJIA-LD). Meanwhile, the treatment arsenal in sJIA has expanded markedly. State-of-the-art therapeutic approaches include biologic agents that target the IL-1 and IL-6 pathways. Beyond these, a range of novel agents are on the horizon, some of them already being used on a compassionate use basis, including JAK inhibitors and biologic agents that target IL-18, IFNγ, or IL-1β and IL-18 simultaneously. However, sJIA, sJIA-MAS and sJIA-LD still pose challenging conundrums to rheumatologists treating paediatric and adult patients worldwide. Although national and international consensus treatment plans exist for the treatment of ‘classic’ sJIA, the treatment approaches for early sJIA without arthritis, and for refractory or complicated sJIA, are not well defined. Therefore, in this Review we outline current approaches for the treatment of sJIA and provide an outlook on knowledge gaps.

Key points

  • Treatment of systemic juvenile idiopathic arthritis (sJIA) has evolved markedly over the past two decades, and most patients can be effectively treated using drugs that target the IL-1 or the IL-6 pathways.

  • Early diagnosis is very important so that effective, targeted therapy can be started as soon as possible, which might positively influence the long-term disease course (window of opportunity).

  • Many patients do not have arthritis at disease onset but nevertheless might benefit substantially from targeted therapies, thus preventing, rather than treating, arthritis.

  • Treat-to-target is an attractive strategy in sJIA, fusing both individualization and standardization of treatment.

  • Novel biomarkers, including calgranulins, IL-18 and CXCL9, might enable early diagnosis, prompt treatment and prediction of complications.

  • There is a substantial gap in knowledge and effective treatment options for patients with complicated sJIA, including patients with recurrent macrophage activation syndrome, sJIA-associated lung disease, and chronic, destructive arthritis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Concepts of sJIA and their relationship to therapeutic strategies.
Fig. 2: sJIA disease phenotypes over time.
Fig. 3: Treatment algorithm for sJIA.
Fig. 4: Biomarkers to support treatment decisions including withdrawal.

Similar content being viewed by others

References

  1. Martini, A. et al. Juvenile idiopathic arthritis. Nat. Rev. Dis. Prim. 8, 5 (2022).

    Article  PubMed  Google Scholar 

  2. Petty, R. E. et al. International League of Associations for Rheumatology classification of juvenile idiopathic arthritis: second revision, Edmonton, 2001. J. Rheumatol. 31, 390–392 (2004).

    PubMed  Google Scholar 

  3. Spiegel, L. R. et al. Early predictors of poor functional outcome in systemic-onset juvenile rheumatoid arthritis: a multicenter cohort study. Arthritis Rheum. 43, 2402–2409 (2000).

    Article  CAS  PubMed  Google Scholar 

  4. Nigrovic, P. A. et al. Biological classification of childhood arthritis: roadmap to a molecular nomenclature. Nat. Rev. Rheumatol. 17, 257–269 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Kessel, C., Hedrich, C. M. & Foell, D. Innately adaptive or truly autoimmune: is there something unique about systemic juvenile idiopathic arthritis? Arthritis Rheumatol. 72, 210–219 (2020).

    Article  PubMed  Google Scholar 

  6. Kessel, C. et al. Proinflammatory cytokine environments can drive interleukin-17 overexpression by γ/δ T cells in systemic juvenile idiopathic arthritis. Arthritis Rheumatol. 69, 1480–1494 (2017).

    Article  CAS  PubMed  Google Scholar 

  7. Henderson, L. A. et al. Th17 reprogramming of T cells in systemic juvenile idiopathic arthritis. JCI Insight 5, e132508 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Kuehn, J. et al. Aberrant naive CD4-positive T cell differentiation in systemic juvenile idiopathic arthritis committed to B cell help. Arthritis Rheumatol. 75, 826–841 (2023).

    Article  CAS  PubMed  Google Scholar 

  9. Vastert, S. J. et al. Effectiveness of first-line treatment with recombinant interleukin-1 receptor antagonist in steroid-naive patients with new-onset systemic juvenile idiopathic arthritis: results of a prospective cohort study. Arthritis Rheumatol. 66, 1034–1043 (2014).

    Article  CAS  PubMed  Google Scholar 

  10. Hinze, C. H. et al. Practice and consensus-based strategies in diagnosing and managing systemic juvenile idiopathic arthritis in Germany. Pediatr. Rheumatol. Online J. 16, 7 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  11. DeWitt, E. M. et al. Consensus treatment plans for new-onset systemic juvenile idiopathic arthritis. Arthritis Care Res. 64, 1001–1010 (2012).

    CAS  Google Scholar 

  12. Martini, A. et al. Toward new classification criteria for juvenile idiopathic arthritis: first steps, Pediatric Rheumatology International Trials Organization International Consensus. J. Rheumatol. 46, 190–197 (2019).

    Article  PubMed  Google Scholar 

  13. Sengler, C. et al. The majority of newly diagnosed patients with juvenile idiopathic arthritis reach an inactive disease state within the first year of specialised care: data from a German inception cohort. RMD Open 1, e000074 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Guzman, J. et al. The outcomes of juvenile idiopathic arthritis in children managed with contemporary treatments: results from the ReACCh-Out cohort. Ann. Rheum. Dis. 74, 1854–1860 (2015).

    Article  CAS  PubMed  Google Scholar 

  15. Yasin, S. & Schulert, G. S. Systemic juvenile idiopathic arthritis and macrophage activation syndrome: update on pathogenesis and treatment. Curr. Opin. Rheumatol. 30, 514–520 (2018).

    Article  CAS  PubMed  Google Scholar 

  16. Adebajo, A. O. & Hall, M. A. The use of intravenous pulsed methylprednisolone in the treatment of systemic-onset juvenile chronic arthritis. Br. J. Rheumatol. 37, 1240–1242 (1998).

    Article  CAS  PubMed  Google Scholar 

  17. De Benedetti, F. et al. Randomized trial of tocilizumab in systemic juvenile idiopathic arthritis. N. Engl. J. Med. 367, 2385–2395 (2012).

    Article  PubMed  Google Scholar 

  18. Ruperto, N. et al. Two randomized trials of canakinumab in systemic juvenile idiopathic arthritis. N. Engl. J. Med. 367, 2396–2406 (2012).

    Article  CAS  PubMed  Google Scholar 

  19. Ter Haar, N. M. et al. Treatment to target using recombinant interleukin-1 receptor antagonist as first-line monotherapy in new-onset systemic juvenile idiopathic arthritis: results from a five-year follow-up study. Arthritis Rheumatol. 71, 1163–1173 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Ruperto, N. et al. Canakinumab in patients with systemic juvenile idiopathic arthritis and active systemic features: results from the 5-year long-term extension of the phase III pivotal trials. Ann. Rheum. Dis. 77, 1710–1719 (2018).

    Article  CAS  PubMed  Google Scholar 

  21. Klotsche, J. et al. Outcome and trends in treatment of systemic juvenile idiopathic arthritis in the German National Pediatric Rheumatologic Database, 2000-2013. Arthritis Rheumatol. 68, 3023–3034 (2016).

    Article  CAS  PubMed  Google Scholar 

  22. Pardeo, M. et al. Early treatment and IL1RN single-nucleotide polymorphisms affect response to anakinra in systemic juvenile idiopathic arthritis. Arthritis Rheumatol. 73, 1053–1061 (2021).

    Article  CAS  PubMed  Google Scholar 

  23. Quartier, P. et al. A multicentre, randomised, double-blind, placebo-controlled trial with the interleukin-1 receptor antagonist anakinra in patients with systemic-onset juvenile idiopathic arthritis (ANAJIS trial). Ann. Rheum. Dis. 70, 747–754 (2011).

    Article  CAS  PubMed  Google Scholar 

  24. Ilowite, N. T. et al. Randomized, double-blind, placebo-controlled trial of the efficacy and safety of rilonacept in the treatment of systemic juvenile idiopathic arthritis. Arthritis Rheumatol. 66, 2570–2579 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Onel, K. B. et al. 2021 American College of Rheumatology guideline for the treatment of juvenile idiopathic arthritis: therapeutic approaches for oligoarthritis, temporomandibular joint arthritis, and systemic juvenile idiopathic arthritis. Arthritis Rheumatol. 74, 553–569 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Peterson, R. G., Xiao, R., Katcoff, H., Fisher, B. T. & Weiss, P. F. Effect of first-line biologic initiation on glucocorticoid exposure in children hospitalized with new-onset systemic juvenile idiopathic arthritis: emulation of a pragmatic trial using observational data. Pediatr. Rheumatol. Online J. 19, 109 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Beukelman, T. et al. First-line options for systemic juvenile idiopathic arthritis treatment: an observational study of Childhood Arthritis and Rheumatology Research Alliance Consensus Treatment Plans. Pediatr. Rheumatol. Online J. 20, 113 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Brunner, H. I. et al. Subcutaneous golimumab for children with active polyarticular-course juvenile idiopathic arthritis: results of a multicentre, double-blind, randomised-withdrawal trial. Ann. Rheum. Dis. 77, 21–29 (2018).

    Article  CAS  PubMed  Google Scholar 

  29. Giannini, E. H. et al. Methotrexate in resistant juvenile rheumatoid arthritis. Results of the U.S.A.-U.S.S.R. double-blind, placebo-controlled trial. The Pediatric Rheumatology Collaborative Study Group and The Cooperative Children’s Study Group. N. Engl. J. Med. 326, 1043–1049 (1992).

    Article  CAS  PubMed  Google Scholar 

  30. Lovell, D. J. et al. Etanercept in children with polyarticular juvenile rheumatoid arthritis. Pediatric Rheumatology Collaborative Study Group. N. Engl. J. Med. 342, 763–769 (2000).

    Article  CAS  PubMed  Google Scholar 

  31. Lovell, D. J. et al. Adalimumab with or without methotrexate in juvenile rheumatoid arthritis. N. Engl. J. Med. 359, 810–820 (2008).

    Article  CAS  PubMed  Google Scholar 

  32. Silverman, E. et al. Leflunomide or methotrexate for juvenile rheumatoid arthritis. N. Engl. J. Med. 352, 1655–1666 (2005).

    Article  CAS  PubMed  Google Scholar 

  33. Ruperto, N. et al. Abatacept in children with juvenile idiopathic arthritis: a randomised, double-blind, placebo-controlled withdrawal trial. Lancet 372, 383–391 (2008).

    Article  CAS  PubMed  Google Scholar 

  34. Woo, P. et al. Randomized, placebo-controlled, crossover trial of low-dose oral methotrexate in children with extended oligoarticular or systemic arthritis. Arthritis Rheum. 43, 1849–1857 (2000).

    Article  CAS  PubMed  Google Scholar 

  35. Silverman, E. D. et al. Intravenous immunoglobulin in the treatment of systemic juvenile rheumatoid arthritis: a randomized placebo controlled trial. Pediatric Rheumatology Collaborative Study Group. J. Rheumatol. 21, 2353–2358 (1994).

    CAS  PubMed  Google Scholar 

  36. Lehman, T. J. et al. Thalidomide for severe systemic onset juvenile rheumatoid arthritis: a multicenter study. J. Pediatr. 145, 856–857 (2004).

    Article  CAS  PubMed  Google Scholar 

  37. Maksimov, A. A., Shaĭkov, A. V., Speranskiĭ, A. I. & Solov’ev, S. K. Pulse therapy with methylprednisolone and cyclophosphamide in systemic juvenile rheumatoid arthritis: the results of an open, parallel, controlled, randomized, 12-month study [Russian]. Ter. Arkh. 64, 47–51 (1992).

    CAS  PubMed  Google Scholar 

  38. Ruperto, N. et al. Cyclosporine A in juvenile idiopathic arthritis. Results of the PRCSG/PRINTO phase IV post marketing surveillance study. Clin. Exp. Rheumatol. 24, 599–605 (2006).

    CAS  PubMed  Google Scholar 

  39. Oommen, P. T. et al. Update of evidence- and consensus-based guidelines for the treatment of juvenile idiopathic arthritis (JIA) by the German Society of Pediatric and Juvenile Rheumatic Diseases (GKJR): new perspectives on interdisciplinary care. Clin. Immunol. 245, 109143 (2022).

    Article  CAS  PubMed  Google Scholar 

  40. Ringold, S. et al. 2013 update of the 2011 American College of Rheumatology recommendations for the treatment of juvenile idiopathic arthritis: recommendations for the medical therapy of children with systemic juvenile idiopathic arthritis and tuberculosis screening among children receiving biologic medications. Arthritis Care Res. 65, 1551–1563 (2013).

    Article  Google Scholar 

  41. Calabro, J. J. & Marchesano, J. M. Fever associated with juvenile rheumatoid arthritis. N. Engl. J. Med. 276, 11–18 (1967).

    Article  CAS  PubMed  Google Scholar 

  42. Park, C. et al. MRP8/14 serum levels as diagnostic markers for systemic juvenile idiopathic arthritis in children with prolonged fever. Rheumatology 61, 3082–3092 (2022).

    Article  CAS  PubMed  Google Scholar 

  43. Shimizu, M., Nakagishi, Y. & Yachie, A. Distinct subsets of patients with systemic juvenile idiopathic arthritis based on their cytokine profiles. Cytokine 61, 345–348 (2013).

    Article  CAS  PubMed  Google Scholar 

  44. Wittkowski, H. et al. S100A12 is a novel molecular marker differentiating systemic-onset juvenile idiopathic arthritis from other causes of fever of unknown origin. Arthritis Rheum. 58, 3924–3931 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Frosch, M. et al. The myeloid-related proteins 8 and 14 complex, a novel ligand of toll-like receptor 4, and interleukin-1β form a positive feedback mechanism in systemic-onset juvenile idiopathic arthritis. Arthritis Rheum. 60, 883–891 (2009).

    Article  CAS  PubMed  Google Scholar 

  46. Nigrovic, P. A. Review: is there a window of opportunity for treatment of systemic juvenile idiopathic arthritis? Arthritis Rheumatol. 66, 1405–1413 (2014).

    Article  CAS  PubMed  Google Scholar 

  47. Fordham, N. J. et al. What is the diagnostic yield of bone marrow aspiration to exclude leukaemia prior to systemic treatment in juvenile idiopathic arthritis? Br. J. Haematol. 199, 447–451 (2022).

    Article  PubMed  Google Scholar 

  48. Tamashiro, M. S. et al. Discrimination of acute lymphoblastic leukemia from systemic-onset juvenile idiopathic arthritis at disease onset. Clinics 66, 1665–1669 (2011).

    PubMed  PubMed Central  Google Scholar 

  49. Kimura, Y. et al. Pulmonary hypertension and other potentially fatal pulmonary complications in systemic juvenile idiopathic arthritis. Arthritis Care Res. 65, 745–752 (2013).

    Article  CAS  Google Scholar 

  50. Saper, V. E. et al. Emergent high fatality lung disease in systemic juvenile arthritis. Ann. Rheum. Dis. 78, 1722–1731 (2019).

    Article  CAS  PubMed  Google Scholar 

  51. Schulert, G. S. et al. Systemic juvenile idiopathic arthritis-associated lung disease: characterization and risk factors. Arthritis Rheumatol. 71, 1943–1954 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Binstadt, B. A. & Nigrovic, P. A. The conundrum of lung disease and drug hypersensitivity-like reactions in systemic juvenile idiopathic arthritis. Arthritis Rheumatol. 74, 1122–1131 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Saper, V. E. et al. Severe delayed hypersensitivity reactions to IL-1 and IL-6 inhibitors link to common HLA-DRB1*15 alleles. Ann. Rheum. Dis. 81, 406–415 (2022).

    Article  CAS  PubMed  Google Scholar 

  54. Chen, G. et al. Identification of distinct inflammatory programs and biomarkers in systemic juvenile idiopathic arthritis and related lung disease by serum proteome analysis. Arthritis Rheumatol. 74, 1271–1283 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Behrens, E. M. UnDRESSing systemic juvenile idiopathic arthritis lung disease. Arthritis Care Res. 75, 2033–2035 (2023).

    Article  Google Scholar 

  56. Lerman, A. M. et al. HLA-DRB1*15 and eosinophilia are common among patients with systemic juvenile idiopathic arthritis. Arthritis Care Res. 75, 2082–2087 (2023).

    Article  CAS  Google Scholar 

  57. Wobma, H. et al. Incidence and risk factors for eosinophilia and lung disease in biologic-exposed children with systemic juvenile idiopathic arthritis. Arthritis Care Res. 75, 2063–2072 (2023).

    Article  CAS  Google Scholar 

  58. Erkens, R. G. A. et al. Recombinant interleukin-1 receptor antagonist is an effective first-line treatment strategy in new-onset systemic juvenile idiopathic arthritis, irrespective of HLA-DRB1 background and IL1RN variants. Arthritis Rheumatol. https://doi.org/10.1002/art.42656 (2023).

    Article  PubMed  Google Scholar 

  59. Ambler, W. G., Nanda, K., Onel, K. B. & Shenoi, S. Refractory systemic onset juvenile idiopathic arthritis: current challenges and future perspectives. Ann. Med. 54, 1839–1850 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Erkens, R., Esteban, Y., Towe, C., Schulert, G. & Vastert, S. Pathogenesis and treatment of refractory disease courses in systemic juvenile idiopathic arthritis: refractory arthritis, recurrent macrophage activation syndrome and chronic lung disease. Rheum. Dis. Clin. North Am. 47, 585–606 (2021).

    Article  PubMed  Google Scholar 

  61. Schulert, G. S. & Kessel, C. Molecular pathways in the pathogenesis of systemic juvenile idiopathic arthritis. Rheum. Dis. Clin. North Am. https://doi.org/10.1016/j.rdc.2023.06.007 (2023).

  62. Canna, S. W. et al. Proceedings from the 2nd Next Gen Therapies for Systemic Juvenile Idiopathic Arthritis and Macrophage Activation Syndrome symposium held on October 3-4, 2019. Pediatr. Rheumatol. Online J. 18 (Suppl. 1), 53 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Jain, A., Song, R., Wakeland, E. K. & Pasare, C. T cell-intrinsic IL-1R signaling licenses effector cytokine production by memory CD4 T cells. Nat. Commun. 9, 3185 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Lee, M. & Isaacs, J. The novel use of combined IL-1 and IL-6 inhibition in a patient with severe, aggressive, erosive, systemic-onset juvenile idiopathic arthritis. Eur. J. Rheumatol. 4, 68–69 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Record, J. L., Beukelman, T. & Cron, R. Q. Combination therapy of abatacept and anakinra in children with refractory systemic juvenile idiopathic arthritis: a retrospective case series. J. Rheumatol. 38, 180–181 (2011).

    Article  PubMed  Google Scholar 

  66. Yasin, S. et al. IL-18 as therapeutic target in a patient with resistant systemic juvenile idiopathic arthritis and recurrent macrophage activation syndrome. Rheumatology 59, 442–445 (2020).

    Article  PubMed  Google Scholar 

  67. Alveyn, E. & Rutherford, A. Combination anakinra and tocilizumab to treat refractory macrophage activation syndrome triggered by adult-onset Still’s disease [abstract OP0194]. Ann. Rheum. Dis. 81, 128–129 (2022).

    Article  Google Scholar 

  68. Rood, J. E. et al. Improvement of refractory systemic juvenile idiopathic arthritis-associated lung disease with single-agent blockade of IL-1β and IL-18. J. Clin. Immunol. 43, 101–108 (2023).

    Article  CAS  PubMed  Google Scholar 

  69. McInnes, I. B. et al. Comparison of baricitinib, upadacitinib, and tofacitinib mediated regulation of cytokine signaling in human leukocyte subpopulations. Arthritis Res. Ther. 21, 183 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Tanaka, Y., Luo, Y., O’Shea, J. J. & Nakayamada, S. Janus kinase-targeting therapies in rheumatology: a mechanisms-based approach. Nat. Rev. Rheumatol. 18, 133–145 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Verweyen, E. L. & Schulert, G. S. Interfering with interferons: targeting the JAK-STAT pathway in complications of systemic juvenile idiopathic arthritis (SJIA). Rheumatology 61, 926–935 (2022).

    Article  CAS  PubMed  Google Scholar 

  72. Verweyen, E. et al. Synergistic signaling of TLR and IFNα/β facilitates escape of IL-18 expression from endotoxin tolerance. Am. J. Respir. Crit. Care Med. 201, 526–539 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Bader-Meunier, B. et al. Effectiveness and safety of ruxolitinib for the treatment of refractory systemic idiopathic juvenile arthritis like associated with interstitial lung disease: a case report. Ann. Rheum. Dis. 81, e20 (2022).

    Article  PubMed  Google Scholar 

  74. US National Library of Medicine. ClinicalTrials.gov https://classic.clinicaltrials.gov/ct2/show/NCT03000439 (2023).

  75. US National Library of Medicine. ClinicalTrials.gov https://classic.clinicaltrials.gov/ct2/show/NCT04088396 (2023).

  76. Zhu, Q. & Kanneganti, T. D. Cutting edge: distinct regulatory mechanisms control proinflammatory cytokines IL-18 and IL-1β. J. Immunol. 198, 4210–4215 (2017).

    Article  CAS  PubMed  Google Scholar 

  77. Huang, Z. et al. mTORC1 links pathology in experimental models of Still’s disease and macrophage activation syndrome. Nat. Commun. 13, 6915 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Concha, S., Rey-Jurado, E., Poli, M. C., Hoyos-Bachiloglu, R. & Borzutzky, A. Refractory systemic juvenile idiopathic arthritis successfully treated with rapamycin. Rheumatology 60, e250–e251 (2021).

    Article  PubMed  Google Scholar 

  79. Alexeeva, E. I. et al. Efficacy in patients with severe refractory juvenile idiopathic arthritis. Clin. Rheumatol. 30, 1163–1172 (2011).

    Article  PubMed  Google Scholar 

  80. Kasher-Meron, M., Uziel, Y. & Amital, H. Successful treatment with B-cell depleting therapy for refractory systemic onset juvenile idiopathic arthritis: a case report. Rheumatology 48, 445–446 (2009).

    Article  PubMed  Google Scholar 

  81. Narvaez, J. et al. Rituximab therapy for refractory systemic-onset juvenile idiopathic arthritis. Ann. Rheum. Dis. 68, 607–608 (2009).

    Article  CAS  PubMed  Google Scholar 

  82. Zhu, Y. P. et al. Immune response to intravenous immunoglobulin in patients with Kawasaki disease and MIS-C. J. Clin. Invest. 131, e147076 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Brinkman, D. M. et al. Autologous stem cell transplantation in children with severe progressive systemic or polyarticular juvenile idiopathic arthritis: long-term follow-up of a prospective clinical trial. Arthritis Rheum. 56, 2410–2421 (2007).

    Article  CAS  PubMed  Google Scholar 

  84. Chellapandian, D. & Milojevic, D. Case report: Emapalumab for active disease control prior to hematopoietic stem cell transplantation in refractory systemic juvenile idiopathic arthritis complicated by macrophage activation syndrome. Front. Pediatr. 11, 1123104 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  85. Silva, J. M. F. et al. Allogeneic hematopoietic stem cell transplantation for severe, refractory juvenile idiopathic arthritis. Blood Adv. 2, 777–786 (2018).

    Article  CAS  Google Scholar 

  86. Morelle, G. et al. Sustained remission after haploidentical bone marrow transplantation in a child with refractory systemic juvenile idiopathic arthritis. Pediatr. Rheumatol. Online J. 19, 27 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  87. Consolaro, A. et al. Phenotypic variability and disparities in treatment and outcomes of childhood arthritis throughout the world: an observational cohort study. Lancet Child. Adolesc. Health 3, 255–263 (2019).

    Article  PubMed  Google Scholar 

  88. Sathe, K. & Khubchandani, R. P. Thalidomide for systemic onset juvenile idiopathic arthritis. Indian Pediatr. 50, 237–239 (2013).

    Article  CAS  PubMed  Google Scholar 

  89. Garcia-Carrasco, M., Fuentes-Alexandro, S., Escarcega, R. O., Rojas-Rodriguez, J. & Escobar, L. E. Efficacy of thalidomide in systemic onset juvenile rheumatoid arthritis. Joint Bone Spine 74, 500–503 (2007).

    Article  PubMed  Google Scholar 

  90. Lehman, T. J., Striegel, K. H. & Onel, K. B. Thalidomide therapy for recalcitrant systemic onset juvenile rheumatoid arthritis. J. Pediatr. 140, 125–127 (2002).

    Article  PubMed  Google Scholar 

  91. Paravar, T. & Lee, D. J. Thalidomide: mechanisms of action. Int. Rev. Immunol. 27, 111–135 (2008).

    Article  CAS  PubMed  Google Scholar 

  92. Ito, T., Ando, H. & Handa, H. Teratogenic effects of thalidomide: molecular mechanisms. Cell Mol. Life Sci. 68, 1569–1579 (2011).

    Article  CAS  PubMed  Google Scholar 

  93. Pal, P., Giri, P. P. & Sinha, R. Cyclosporine in resistant systemic arthritis – a cheaper alternative to biologics. Indian J. Pediatr. 86, 590–594 (2019).

    Article  PubMed  Google Scholar 

  94. Tanaka, H. et al. Treatment of difficult cases of systemic-onset juvenile idiopathic arthritis with tacrolimus. Eur. J. Pediatr. 166, 1053–1055 (2007).

    Article  CAS  PubMed  Google Scholar 

  95. Wang, D., Chen, X. & Li, Z. Treatment of patients with systemic-onset juvenile idiopathic arthritis with tacrolimus. Exp. Ther. Med. 17, 2305–2309 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Gohar, F., Kessel, C., Lavric, M., Holzinger, D. & Foell, D. Review of biomarkers in systemic juvenile idiopathic arthritis: helpful tools or just playing tricks? Arthritis Res. Ther. 18, 163 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  97. Gohar, F. et al. Molecular signature characterisation of different inflammatory phenotypes of systemic juvenile idiopathic arthritis. Ann. Rheum. Dis. 78, 1107–1113 (2019).

    Article  CAS  PubMed  Google Scholar 

  98. Kessel, C. et al. Definition and validation of serum biomarkers for optimal differentiation of hyperferritinaemic cytokine storm conditions in children: a retrospective cohort study. Lancet Rheumatol. 3, e563–e573 (2021).

    Article  CAS  Google Scholar 

  99. Bracaglia, C. et al. Elevated circulating levels of interferon-γ and interferon-γ-induced chemokines characterise patients with macrophage activation syndrome complicating systemic juvenile idiopathic arthritis. Ann. Rheum. Dis. 76, 166–172 (2017).

    Article  CAS  PubMed  Google Scholar 

  100. Hinze, T. et al. A dysregulated interleukin-18-interferon-γ-CXCL9 axis impacts treatment response to canakinumab in systemic juvenile idiopathic arthritis. Rheumatology 60, 5165–5174 (2021).

    Article  CAS  PubMed  Google Scholar 

  101. Holzinger, D. et al. The Toll-like receptor 4 agonist MRP8/14 protein complex is a sensitive indicator for disease activity and predicts relapses in systemic-onset juvenile idiopathic arthritis. Ann. Rheum. Dis. 71, 974–980 (2012).

    Article  CAS  PubMed  Google Scholar 

  102. Foell, D. et al. Methotrexate withdrawal at 6 vs 12 months in juvenile idiopathic arthritis in remission: a randomized clinical trial. J. Am. Med. Assoc. 303, 1266–1273 (2010).

    Article  CAS  Google Scholar 

  103. Gerss, J. et al. Prevention of disease flares by risk-adapted stratification of therapy withdrawal in juvenile idiopathic arthritis: results from the PREVENT-JIA trial. Ann. Rheum. Dis. 81, 990–997 (2022).

    Article  PubMed  Google Scholar 

  104. Ombrello, M. J. et al. HLA-DRB1*11 and variants of the MHC class II locus are strong risk factors for systemic juvenile idiopathic arthritis. Proc. Natl Acad. Sci. USA 112, 15970–15975 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Arthur, V. L. et al. IL1RN variation influences both disease susceptibility and response to recombinant human interleukin-1 receptor antagonist therapy in systemic juvenile idiopathic arthritis. Arthritis Rheumatol. 70, 1319–1330 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Hinze, C. et al. Impact of IL1RN variants on response to interleukin-1 blocking therapy in systemic juvenile idiopathic arthritis. Arthritis Rheumatol. 72, 499–505 (2020).

    Article  CAS  PubMed  Google Scholar 

  107. Palucka, A. K., Blanck, J. P., Bennett, L., Pascual, V. & Banchereau, J. Cross-regulation of TNF and IFN-α in autoimmune diseases. Proc. Natl Acad. Sci. USA 102, 3372–3377 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Ter Haar, N. M. et al. Reversal of sepsis-like features of neutrophils by interleukin-1 blockade in patients with systemic-onset juvenile idiopathic arthritis. Arthritis Rheumatol. 70, 943–956 (2018).

    Article  PubMed  Google Scholar 

  109. Van Nieuwenhove, E. et al. Machine learning identifies an immunological pattern associated with multiple juvenile idiopathic arthritis subtypes. Ann. Rheum. Dis. 78, 617–628 (2019).

    Article  PubMed  Google Scholar 

  110. Leek, A. et al. The SHARE recommendations on diagnosis and treatment of systemic JIA [abstract]. Arthritis Rheumatol. 72 (Suppl. 10), 1148 (2020).

    Google Scholar 

  111. Hinze, C. et al. Characteristics and disease course of patients with systemic juvenile idiopathic arthritis without arthritis in the German AID-NET cohort [abstract O02]. Pediatr. Rheumatol. Online J. 20 (Suppl. 2), 75 (2022).

    Google Scholar 

  112. Huang, Z. et al. Type I interferon signature and cycling lymphocytes in macrophage activation syndrome. J. Clin. Invest. https://doi.org/10.1172/JCI165616 (2023).

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to all aspects of the manuscript.

Corresponding author

Correspondence to Dirk Foell.

Ethics declarations

Competing interests

C.H.H. has received travel support from Pfizer. D.F. has received speaker fees/honoraria from Chugai-Roche, Novartis and Swedish Orphan Biovitrum (SOBI), as well as research support from Novartis, Pfizer and SOBI, and the German Research Foundation (DFG, grant number FO 354/14-1). C.K. has received consulting fees from Novartis and SOBI, research support from Novartis, and support from the German Research Foundation (grant number KE 2026 1/3).

Peer review

Peer review information

Nature Reviews Rheumatology thanks Daniel Lovell, Bryce Binstadt and Sebastiaan Vastert for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hinze, C.H., Foell, D. & Kessel, C. Treatment of systemic juvenile idiopathic arthritis. Nat Rev Rheumatol 19, 778–789 (2023). https://doi.org/10.1038/s41584-023-01042-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41584-023-01042-z

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing