Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Immune mechanisms of depression in rheumatoid arthritis

Abstract

Depression is a common and disabling comorbidity in rheumatoid arthritis that not only decreases the likelihood of remission and treatment adherence but also increases the risk of disability and mortality in patients with rheumatoid arthritis. Compelling data that link immune mechanisms to major depressive disorder indicate possible common mechanisms that drive the pathology of the two conditions. Preclinical evidence suggests that pro-inflammatory cytokines, which are prevalent in rheumatoid arthritis, have various effects on monoaminergic neurotransmission, neurotrophic factors and measures of synaptic plasticity. Neuroimaging studies provide insight into the consequences of inflammation on the brain (for example, on neural connectivity), and clinical trial data highlight the beneficial effects of immune modulation on comorbid depression. Major depressive disorder occurs more frequently in patients with rheumatoid arthritis than in the general population, and major depressive disorder also increases the risk of a future diagnosis of rheumatoid arthritis, further highlighting the link between rheumatoid arthritis and major depressive disorder. This Review focuses on interactions between peripheral and central immunobiological mechanisms in the context of both rheumatoid arthritis and major depressive disorder. Understanding these mechanisms will provide a basis for future therapeutic development, not least in depression.

Key points

  • Rheumatoid arthritis (RA) and depression have overlapping features, including similar implicated immuno-mechanistic pathways.

  • Crosstalk between the peripheral immune response and central nervous system provides compelling evidence of a role for immune-mediated inflammation in the pathophysiology of depression, including in RA.

  • Pro-inflammatory molecules can signal to the brain through humoral routes (via the blood–brain barrier and circumventricular organs) and neural routes (via vagal nerve and dorsal root ganglia afferent signalling).

  • Neuroimmune communication in the brain involves the production of inflammatory proteins by both recruited myeloid cells from the periphery and resident microglial cells and can result in activation of glial cells.

  • The peripheral immune system could modulate neurological processes through various mechanisms, including through modulation of the glutamatergic and serotonergic systems, the kynurenine pathway, inflammasome activation and neuroplasticity.

  • Determining the mechanisms that link immune-mediated disorders such as RA with depression should aid in the identification of molecular targets and development of targeted therapy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Immunobiology of rheumatoid arthritis.
Fig. 2: Effects of anti-inflammatory and immunomodulatory drugs on depression.
Fig. 3: Peripheral immune signals to the brain: neural and humoral routes.
Fig. 4: Viscerosensory hub transmission following cytokine-mediated afferent signalling.
Fig. 5: The glutamatergic and serotonergic systems.
Fig. 6: The kynurenine pathway and key metabolites in inflammatory conditions.

Similar content being viewed by others

References

  1. Weyand, C. M. & Goronzy, J. J. The immunology of rheumatoid arthritis. Nat. Immunol. 22, 10–18 (2021).

    Article  CAS  PubMed  Google Scholar 

  2. Felger, J. C. & Lotrich, F. E. Inflammatory cytokines in depression: neurobiological mechanisms and therapeutic implications. Neuroscience 246, 199–229 (2013).

    Article  CAS  PubMed  Google Scholar 

  3. Köhler, O. et al. Effect of anti-inflammatory treatment on depression, depressive symptoms, and adverse effects: a systematic review and meta-analysis of randomized clinical trials. JAMA Psychiatry 71, 1381–1391 (2014).

    Article  PubMed  Google Scholar 

  4. Malhi, G. S. & Mann, J. J. Depression. Lancet 392, 2299–2312 (2018).

    Article  PubMed  Google Scholar 

  5. Otte, C. et al. Major depressive disorder. Nat. Rev. Dis. Prim. 2, 16065 (2016).

    Article  PubMed  Google Scholar 

  6. Schramm, E., Klein, D. N., Elsaesser, M., Furukawa, T. A. & Domschke, K. Review of dysthymia and persistent depressive disorder: history, correlates, and clinical implications. Lancet Psychiatry 7, 801–812 (2020).

    Article  PubMed  Google Scholar 

  7. Pezzato, S. et al. Depression is associated with increased disease activity and higher disability in a large Italian cohort of patients with rheumatoid arthritis. Adv. Rheumatol. 61, 57 (2021).

    Article  PubMed  Google Scholar 

  8. Rathbun, A. M., Reed, G. W. & Harrold, L. R. The temporal relationship between depression and rheumatoid arthritis disease activity, treatment persistence and response: a systematic review. Rheumatology 52, 1785–1794 (2013).

    Article  PubMed  Google Scholar 

  9. Matcham, F., Rayner, L., Steer, S. & Hotopf, M. The prevalence of depression in rheumatoid arthritis: a systematic review and meta-analysis. Rheumatology 52, 2136–2148 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Sparks, J. A. et al. Depression and subsequent risk for incident rheumatoid arthritis among women. Arthritis Care Res. 73, 78–89 (2021).

    Article  CAS  Google Scholar 

  11. Drevets, W. C., Wittenberg, G. M., Bullmore, E. T. & Manji, H. K. Immune targets for therapeutic development in depression: towards precision medicine. Nat. Rev. Drug. Discov. 21, 224–244 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Leighton, S. P. et al. Chemokines in depression in health and in inflammatory illness: a systematic review and meta-analysis. Mol. Psychiatry 23, 48–58 (2018).

    Article  CAS  PubMed  Google Scholar 

  13. Matcham, F. et al. The relationship between depression and biologic treatment response in rheumatoid arthritis: an analysis of the British Society for Rheumatology Biologics Register. Rheumatology 57, 835–843 (2018).

    Article  PubMed  Google Scholar 

  14. Bullmore, E. The art of medicine: inflamed depression. Lancet 392, 1189–1190 (2018).

    Article  PubMed  Google Scholar 

  15. Beurel, E., Toups, M. & Nemeroff, C. B. The bidirectional relationship of depression and inflammation: double trouble. Neuron 107, 234–256 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Nerurkar, L., Siebert, S., McInnes, I. B. & Cavanagh, J. Rheumatoid arthritis and depression: an inflammatory perspective. Lancet Psychiatry 6, 164–173 (2019).

    Article  PubMed  Google Scholar 

  17. McInnes, I. B. & Schett, G. The pathogenesis of rheumatoid arthritis. N. Engl. J. Med. 365, 2205–2219 (2011).

    Article  CAS  PubMed  Google Scholar 

  18. Jaffe, D. H., Rive, B. & Denee, T. R. The humanistic and economic burden of treatment-resistant depression in Europe: a cross-sectional study. BMC Psychiatry 19, 247 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Chiu, W. C., Su, Y. P., Su, K. P. & Chen, P. C. Recurrence of depressive disorders after interferon-induced depression. Transl. Psychiatry 7, e1026 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Eyre, H. A. et al. A meta-analysis of chemokines in major depression. Prog. Neuropsychopharmacol. Biol. Psychiatry 68, 1–8 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Chamberlain, S. R. et al. Treatment-resistant depression and peripheral C-reactive protein. Br. J. Psychiatry 214, 11–19 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Schett, G., McInnes, I. B. & Neurath, M. F. Reframing immune-mediated inflammatory diseases through signature cytokine hubs. N. Engl. J. Med. 385, 628–639 (2021).

    Article  CAS  PubMed  Google Scholar 

  23. Wray, N. R. et al. Genome-wide association analyses identify 44 risk variants and refine the genetic architecture of major depression. Nat. Genet. 50, 668–681 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Levey, D. F. et al. Bi-ancestral depression GWAS in the Million Veteran Program and meta-analysis in >1.2 million individuals highlight new therapeutic directions. Nat. Neurosci. 24, 954–963 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Tylee, D. S. et al. Genetic correlations among psychiatric and immune-related phenotypes based on genome-wide association data. Am. J. Med. Genet. Part. B: Neuropsychiatr. Genet. 177, 641–657 (2018).

    Article  Google Scholar 

  26. Tartter, M., Hammen, C., Bower, J. E., Brennan, P. A. & Cole, S. Effects of chronic interpersonal stress exposure on depressive symptoms are moderated by genetic variation at IL6 and IL1β in youth. Brain Behav. Immun. 46, 104–111 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Miller, A. H. & Raison, C. L. The role of inflammation in depression: from evolutionary imperative to modern treatment target. Nat. Rev. Immunol. 16, 22–34 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Baumeister, D., Akhtar, R., Ciufolini, S., Pariante, C. M. & Mondelli, V. Childhood trauma and adulthood inflammation: a meta-analysis of peripheral C-reactive protein, interleukin-6 and tumour necrosis factor-α. Mol. Psychiatry 21, 642–649 (2016).

    Article  CAS  PubMed  Google Scholar 

  29. Danese, A., Pariante, C. M., Caspi, A., Taylor, A. & Poulton, R. Childhood maltreatment predicts adult inflammation in a life-course study. Proc. Natl Acad. Sci. USA 104, 1319–1324 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Khandaker, G. M., Pearson, R. M., Zammit, S., Lewis, G. & Jones, P. B. Association of serum interleukin 6 and C-reactive protein in childhood with depression and psychosis in young adult life: a population-based longitudinal study. JAMA Psychiatry 71, 1121–1128 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Kinne, R. W., Stuhlmüller, B. & Burmester, G. R. Cells of the synovium in rheumatoid arthritis. Macrophages. Arthritis Res. Ther. 9, 224 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Gracie, J. A. et al. A proinflammatory role for IL-18 in rheumatoid arthritis. J. Clin. Investig. 104, 1393–1401 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Koo, J. W. & Duman, R. S. Evidence for IL-1 receptor blockade as a therapeutic strategy for the treatment of depression. Curr. Opin. Investig. Drugs 10, 664 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Drago, A., Crisafulli, C., Calabrò, M. & Serretti, A. Enrichment pathway analysis. The inflammatory genetic background in bipolar disorder. J. Affect. Disord. 179, 88–94 (2015).

    Article  PubMed  Google Scholar 

  35. Alcocer-Gómez, E. et al. NLRP3 inflammasome is activated in mononuclear blood cells from patients with major depressive disorder. Brain Behav. Immun. 36, 111–117 (2014).

    Article  PubMed  Google Scholar 

  36. Maslanik, T. et al. Commensal bacteria and MAMPs are necessary for stress-induced increases in IL-1β and IL-18 but not IL-6, IL-10 or MCP-1. PLoS One 7, e50636 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Więdłocha, M. et al. Effect of antidepressant treatment on peripheral inflammation markers — a meta-analysis. Prog. Neuropsychopharmacol. Biol. Psychiatry 80, 217–226 (2018).

    Article  PubMed  Google Scholar 

  38. Nakahara, H. et al. Anti-interleukin‐6 receptor antibody therapy reduces vascular endothelial growth factor production in rheumatoid arthritis. Arthritis Rheum. 48, 1521–1529 (2003).

    Article  CAS  PubMed  Google Scholar 

  39. Pearle, A. D. et al. Elevated high-sensitivity C-reactive protein levels are associated with local inflammatory findings in patients with osteoarthritis. Osteoarthr. Cartil. 15, 516–523 (2007).

    Article  CAS  Google Scholar 

  40. Fujimoto, M. et al. Interleukin‐6 blockade suppresses autoimmune arthritis in mice by the inhibition of inflammatory Th17 responses. Arthritis Rheum. 58, 3710–3719 (2008).

    Article  CAS  PubMed  Google Scholar 

  41. Hodes, G. E., Ménard, C. & Russo, S. J. Integrating Interleukin-6 into depression diagnosis and treatment. Neurobiol. Stress 4, 15–22 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Yoshimura, R. et al. Higher plasma interleukin-6 (IL-6) level is associated with SSRI- or SNRI-refractory depression. Prog. Neuropsychopharmacol. Biol. Psychiatry 33, 722–726 (2009).

    Article  CAS  PubMed  Google Scholar 

  43. Behrens, F. et al. Characterisation of depressive symptoms in rheumatoid arthritis patients treated with tocilizumab during routine daily care. Clin. Exp, Rheumatol. 40, 551–559 (2022).

    Article  PubMed  Google Scholar 

  44. Probert, L. TNF and its receptors in the CNS: the essential, the desirable and the deleterious effects. Neuroscience 302, 2–22 (2015).

    Article  CAS  PubMed  Google Scholar 

  45. Osimo, E. F. et al. Inflammatory markers in depression: a meta-analysis of mean differences and variability in 5,166 patients and 5,083 controls. Brain Behav. Immun. 87, 901–909 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Abbott, R. et al. Tumour necrosis factor-α inhibitor therapy in chronic physical illness: a systematic review and meta-analysis of the effect on depression and anxiety. J. Psychosom. Res. 79, 175–184 (2015).

    Article  PubMed  Google Scholar 

  47. Raison, C. L. et al. A randomized controlled trial of the tumor necrosis factor antagonist infliximab for treatment-resistant depression: the role of baseline inflammatory biomarkers. JAMA Psychiatry 70, 31–41 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Eller, T., Vasar, V., Shlik, J. & Maron, E. Pro-inflammatory cytokines and treatment response to escitaloprsam in major depressive disorder. Prog. Neuropsychopharmacol. Biol. Psychiatry 32, 445–450 (2008).

    Article  CAS  PubMed  Google Scholar 

  49. Dantzer, R., Konsman, J. P., Bluthé, R. M. & Kelley, K. W. Neural and humoral pathways of communication from the immune system to the brain: parallel or convergent? Auton. Neurosci. 85, 60–65 (2000).

    Article  CAS  PubMed  Google Scholar 

  50. Udit, S., Blake, K. & Chiu, I. M. Somatosensory and autonomic neuronal regulation of the immune response. Nat. Rev. Neurosci. 23, 157–171 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Bonaz, B., Sinniger, V. & Pellissier, S. The vagus nerve in the neuro-immune axis: implications in the pathology of the gastrointestinal tract. Front. Immunol. 8, 1452 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Boadas-Vaello, P. et al. Neuroplasticity of ascending and descending pathways after somatosensory system injury: reviewing knowledge to identify neuropathic pain therapeutic targets. Spinal Cord 54, 330–340 (2016).

    Article  CAS  PubMed  Google Scholar 

  53. Brydon, L., Harrison, N. A., Walker, C., Steptoe, A. & Critchley, H. D. Peripheral inflammation is associated with altered substantia nigra activity and psychomotor slowing in humans. Biol. Psychiatry 63, 1022–1029 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Blank, T. et al. Brain endothelial- and epithelial-specific interferon receptor chain 1 drives virus-induced sickness behavior and cognitive impairment. Immunity 44, 901–912 (2016).

    Article  CAS  PubMed  Google Scholar 

  55. Critchley, H. D. & Harrison, N. A. Visceral influences on brain and behavior. Neuron 77, 624–638 (2013).

    Article  CAS  PubMed  Google Scholar 

  56. Harrison, N. A. et al. Quantitative magnetization transfer imaging as a biomarker for effects of systemic inflammation on the brain. Biol. Psychiatry 78, 49–57 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Strike, P. C. & Steptoe, A. Psychosocial factors in the development of coronary artery disease. Prog. Cardiovasc. Dis. 46, 337–347 (2004).

    Article  PubMed  Google Scholar 

  58. Tsao, N., Hsu, H. P., Ww, C. M., Liu, C. C. & Lei, H. Y. Tumour necrosis factor-α causes an increase in blood-brain barrier permeability during sepsis. J. Med. Microbiol. 50, 812–821 (2001).

    Article  CAS  PubMed  Google Scholar 

  59. Howerton, A. R. et al. Sex differences in corticotropin-releasing factor receptor-1 action within the dorsal raphe nucleus in stress responsivity. Biol. Psychiatry 75, 873–883 (2014).

    Article  CAS  PubMed  Google Scholar 

  60. D’Mello, C., Le, T. & Swain, M. G. Cerebral microglia recruit monocytes into the brain in response to tumor necrosis factorα signaling during peripheral organ inflammation. J. Neurosci. 29, 2089–2102 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Garré, J. M., Silva, H. M., Lafaille, J. J. & Yang, G. CX3CR1+ monocytes modulate learning and learning-dependent dendritic spine remodeling via TNF-α. Nat. Med. 23, 714–722 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Vichaya, E. G. et al. Microglia depletion fails to abrogate inflammation-induced sickness in mice and rats. J. Neuroinflammation 17, 172 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Hanlon, M. M. et al. Rheumatoid arthritis macrophages are primed for inflammation and display bioenergetic and functional alterations. Rheumatology 62, 2611–2620 (2023).

    Article  PubMed  Google Scholar 

  64. Haubruck, P., Pinto, M. M., Moradi, B., Little, C. B. & Gentek, R. Monocytes, macrophages, and their potential niches in synovial joints–therapeutic targets in post-traumatic osteoarthritis? Front. Immunol. 12, 763702 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Süß, P. et al. Chronic peripheral inflammation causes a region-specific myeloid response in the central nervous system. Cell Rep. 30, 4082–4095 (2020).

    Article  PubMed  Google Scholar 

  66. Badimon, A. et al. Negative feedback control of neuronal activity by microglia. Nature 586, 417–423 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Cugurra, A. et al. Skull and vertebral bone marrow are myeloid cell reservoirs for the meninges and CNS parenchyma. Science 373, eabf7844 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Herisson, F. et al. Direct vascular channels connect skull bone marrow and the brain surface enabling myeloid cell migration. Nat. Neurosci. 21, 1209–1217 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. De Biase, L. M. et al. Local cues establish and maintain region-specific phenotypes of basal ganglia microglia. Neuron 95, 341–356 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Masuda, T., Sankowski, R., Staszewski, O. & Prinz, M. Microglia heterogeneity in the single-cell era. Cell Rep. 30, 1271–1281 (2020).

    Article  CAS  PubMed  Google Scholar 

  71. Beazley-Long, N. et al. VEGFR2 promotes central endothelial activation and the spread of pain in inflammatory arthritis. Brain Behav. Immun. 74, 49–67 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Lopes, F. et al. Brain TNF drives post-inflammation depression-like behavior and persistent pain in experimental arthritis. Brain Behav. Immun. 89, 224–232 (2020).

    Article  CAS  PubMed  Google Scholar 

  73. Sağ, S. et al. Central nervous system involvement in rheumatoid arthritis: possible role of chronic inflammation and TNF blocker therapy. Acta Neurol. Belg. 120, 25–31 (2020).

    Article  PubMed  Google Scholar 

  74. Yin, H., Liu, N., Sigdel, K. R. & Duan, L. Role of NLRP3 inflammasome in rheumatoid arthritis. Front. Immunol. 13, 931690 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Li, S. et al. Microglial NLRP3 inflammasome activates neurotoxic astrocytes in depression-like mice. Cell Rep. 41, 111532 (2022).

    Article  CAS  PubMed  Google Scholar 

  76. Song, Y., Zhou, Y. & Zhou, X. The role of mitophagy in innate immune responses triggered by mitochondrial stress. Cell Commun. Signal. 18, 186 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  77. Wang, D. et al. P2X7 receptor mediates NLRP3 inflammasome activation in depression and diabetes. Cell Biosci. 10, 28 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  78. Bhattacharya, A., Derecki, N. C., Lovenberg, T. W. & Drevets, W. C. Role of neuro-immunological factors in the pathophysiology of mood disorders. Psychopharmacology 233, 1623–1636 (2016).

    Article  CAS  PubMed  Google Scholar 

  79. Zhang, H., Ding, L., Shen, T. & Peng, D. HMGB1 involved in stress-induced depression and its neuroinflammatory priming role: a systematic review. Gen. Psychiatr. 32, e100084 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Paugh, S. W. et al. NALP3 inflammasome upregulation and CASP1 cleavage of the glucocorticoid receptor cause glucocorticoid resistance in leukemia cells. Nat. Genet. 47, 607–614 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Van Deventer, H. W. et al. The inflammasome component NLRP3 impairs antitumor vaccine by enhancing the accumulation of tumor-associated myeloid-derived suppressor cells. Cancer Res. 70, 10161-9 (2010).

    PubMed  Google Scholar 

  82. Reis, H. J. et al. Neuro-transmitters in the central nervous system & their implication in learning and memory processes. Curr. Med. Chem. 16, 796–840 (2009).

    Article  CAS  PubMed  Google Scholar 

  83. Haroon, E. & Miller, A H. Inflammation effects on brain glutamate in depression: mechanistic considerations and treatment implications. Curr. Top. Behav. Neurosci. 31, 173–198 (2017).

    Article  PubMed  Google Scholar 

  84. Haroon, E., Miller, A. H. & Sanacora, G. Inflammation, glutamate, and glia: a trio of trouble in mood disorders. Neuropsychopharmacology 42, 193–215 (2017).

    Article  CAS  PubMed  Google Scholar 

  85. Clark, I. A. & Vissel, B. Excess cerebral TNF causing glutamate excitotoxicity rationalizes treatment of neurodegenerative diseases and neurogenic pain by anti-TNF agents. J. Neuroinflammation 13, 236 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  86. Massart, R., Mongeau, R. & Lanfumey, L. Beyond the monoaminergic hypothesis: neuroplasticity and epigenetic changes in a transgenic mouse model of depression. Philos. Trans. R. Soc. Lond. B Biol. Sci. 367, 2485–2494 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Descarries, L., Riad, M. & Parent, M. Ultrastructure of the serotonin innervation in the mammalian central nervous system. Handb. Behav. Neurosci. 21, 65–101 (2010).

    Article  Google Scholar 

  88. Savitz, J. B. & Drevets, W. C. Neuroreceptor imaging in depression. Neurobiol. Dis. 52, 49–65 (2013).

    Article  CAS  PubMed  Google Scholar 

  89. Couch, Y. et al. Microglial activation, increased TNF and SERT expression in the prefrontal cortex define stress-altered behaviour in mice susceptible to anhedonia. Brain Behav. Immun. 29, 136–146 (2013).

    Article  CAS  PubMed  Google Scholar 

  90. Malynn, S., Campos-Torres, A., Moynagh, P. & Haase, J. The pro-inflammatory cytokine TNF-α regulates the activity and expression of the serotonin transporter (SERT) in astrocytes. Neurochem. Res. 38, 694–704 (2013).

    Article  CAS  PubMed  Google Scholar 

  91. Krishnadas, R. et al. Circulating tumour necrosis factor is highly correlated with brainstem serotonin transporter availability in humans. Brain Behav. Immun. 51, 29–38 (2016).

    Article  CAS  PubMed  Google Scholar 

  92. Ogbechi, J. et al. IDO activation, inflammation and musculoskeletal disease. Exp. Gerontol. 131, 110820 (2020).

    Article  CAS  PubMed  Google Scholar 

  93. Criado, G., Šimelyte, E., Inglis, J. J., Essex, D. & Williams, R. O. Indoleamine 2, 3 dioxygenase–mediated tryptophan catabolism regulates accumulation of Th1/Th17 cells in the joint in collagen‐induced arthritis. Arthritis Rheum. 60, 1342–1351 (2009).

    Article  PubMed  Google Scholar 

  94. Merlo, L. M. et al. IDO2 is a critical mediator of autoantibody production and inflammatory pathogenesis in a mouse model of autoimmune arthritis. J. Immunol. 192, 2082–2090 (2014).

    Article  CAS  PubMed  Google Scholar 

  95. Marszalek-Grabska, M. et al. Kynurenine emerges from the shadows – current knowledge on its fate and function. Pharmacol. Ther. 225, 107845 (2021).

    Article  CAS  PubMed  Google Scholar 

  96. Chen, X. et al. Kynurenines increase MRS metabolites in basal ganglia and decrease resting-state connectivity in frontostriatal reward circuitry in depression. Transl. Psychiatry 11, 456 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Steiner, J. et al. Severe depression is associated with increased microglial quinolinic acid in subregions of the anterior cingulate gyrus: evidence for an immune-modulated glutamatergic neurotransmission? J. Neuroinflammation 8, 94 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Wirth, T. et al. The sympathetic nervous system modulates CD4+ Foxp3+ regulatory T cells via noradrenaline-dependent apoptosis in a murine model of lymphoproliferative disease. Brain Behav. Immun. 38, 100–110 (2014).

    Article  CAS  PubMed  Google Scholar 

  99. Kawasaki, H. et al. A tryptophan metabolite, kynurenine, promotes mast cell activation through aryl hydrocarbon receptor. Allergy 69, 445–452 (2014).

    Article  CAS  PubMed  Google Scholar 

  100. Castrén, E. & Rantamäki, T. The role of BDNF and its receptors in depression and antidepressant drug action: reactivation of developmental plasticity. Dev. Neurobiol. 70, 289–297 (2010).

    Article  PubMed  Google Scholar 

  101. Vetencourt, J. F. et al. The antidepressant fluoxetine restores plasticity in the adult visual cortex. Science 320, 385–388 (2008).

    Article  Google Scholar 

  102. Luan, S., Zhou, B., Wu, Q., Wan, H. & Li, H. Brain-derived neurotrophic factor blood levels after electroconvulsive therapy in patients with major depressive disorder: a systematic review and meta-analysis. Asian J. Psychiatry 51, 101983 (2020).

    Article  Google Scholar 

  103. Pedard, M. et al. A reconciling hypothesis centred on brain-derived neurotrophic factor to explain neuropsychiatric manifestations in rheumatoid arthritis. Rheumatology 60, 1608–1619 (2021).

    Article  CAS  PubMed  Google Scholar 

  104. Liu, B., Liu, J., Wang, M., Zhang, Y. & Li, L. From serotonin to neuroplasticity: evolvement of theories for major depressive disorder. Front. Cell. Neurosci. 11, 305 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. McKinnon, M. C., Yucel, K., Nazarov, A. & MacQueen, G. M. A meta-analysis examining clinical predictors of hippocampal volume in patients with major depressive disorder. J. Psychiatry Neurosci. 34, 41–54 (2009).

    PubMed  PubMed Central  Google Scholar 

  106. Liu, J., Gu, Y., Guo, M. & Ji, X. Neuroprotective effects and mechanisms of ischemic/hypoxic preconditioning on neurological diseases. CNS Neurosci. Ther. 27, 869–882 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Andersson, K. M. et al. Inflammation in the hippocampus affects IGF1 receptor signaling and contributes to neurological sequelae in rheumatoid arthritis. Proc. Natl Acad. Sci. USA 115, E12063–E12072 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Pedard, M., Demougeot, C., Prati, C. & Marie, C. Brain-derived neurotrophic factor in adjuvant-induced arthritis in rats. Relationship with inflammation and endothelial dysfunction. Prog. Neuropsychopharmacol. Biol. Psychiatry 82, 249–254 (2018).

    Article  CAS  PubMed  Google Scholar 

  109. Lai, N. S. et al. Increased serum levels of brain-derived neurotrophic factor contribute to inflammatory responses in patients with rheumatoid arthritis. Int. J. Mol. Sci. 22, 1841 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Ravi, M., Miller, A. H. & Michopoulos, V. The immunology of stress and the impact of inflammation on the brain and behaviour. BJPsych Adv. 27, 158–165 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  111. Forbes, E. E. et al. Altered striatal activation predicting real-world positive affect in adolescent major depressive disorder. Am. J. Psychiatry 166, 64–73 (2009).

    Article  PubMed  Google Scholar 

  112. Keedwell, P. A., Andrew, C., Williams, S. C., Brammer, M. J. & Phillips, M. L. The neural correlates of anhedonia in major depressive disorder. Biol. Psychiatry 58, 843–853 (2005).

    Article  PubMed  Google Scholar 

  113. Monje, M. L., Toda, H. & Palmer, T. D. Inflammatory blockade restores adult hippocampal neurogenesis. Science 302, 1760–1765 (2003).

    Article  CAS  PubMed  Google Scholar 

  114. Matsushita, T. et al. Sustained microglial activation in the area postrema of collagen-induced arthritis mice. Arthritis Res. Ther. 23, 273 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Lang, S. C. et al. Neurodegeneration enhances the development of arthritis. J. Immunol. 198, 2394–2402 (2017).

    Article  CAS  PubMed  Google Scholar 

  116. Rusznák, K. et al. Experimental arthritis inhibits adult hippocampal neurogenesis in mice. Cells 11, 791 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  117. Süß, P. et al. Hippocampal structure and function are maintained despite severe innate peripheral inflammation. Brain Behav. Immun. 49, 156–170 (2015).

    Article  PubMed  Google Scholar 

  118. Sochocka, M., Diniz, B. S. & Leszek, J. Inflammatory response in the CNS: friend or foe? Mol. Neurobiol. 54, 8071–8089 (2017).

    Article  CAS  PubMed  Google Scholar 

  119. Koren, T. et al. Insular cortex neurons encode and retrieve specific immune responses. Cell 184, 5902–5915 (2021).

    Article  CAS  PubMed  Google Scholar 

  120. Ben-Shaanan, T. L. et al. Modulation of anti-tumor immunity by the brain’s reward system. Nat. Commun. 9, 2723 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  121. Pastrnak, M., Simkova, E. & Novak, T. Insula activity in resting-state differentiates bipolar from unipolar depression: a systematic review and meta-analysis. Sci. Rep. 11, 16930 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Hu, P., Lu, Y., Pan, B. X. & Zhang, W. H. New insights into the pivotal role of the amygdala in inflammation-related depression and anxiety disorder. Int. J. Mol. Sci. 23, 11076 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Nazir, S., Farooq, R. K., Nasir, S., Hanif, R. & Javed, A. Therapeutic effect of thymoquinone on behavioural response to UCMS and neuroinflammation in hippocampus and amygdala in BALB/c mice model. Psychopharmacology 239, 47–58 (2022).

    Article  CAS  PubMed  Google Scholar 

  124. Yang, T. T. et al. Adolescents with major depression demonstrate increased amygdala activation. J. Am. Acad. Child. Adolesc. Psychiatry 49, 42–51 (2010).

    PubMed  PubMed Central  Google Scholar 

  125. Hamilton, J. P. & Gotlib, I. H. Neural substrates of increased memory sensitivity for negative stimuli in major depression. Biol. Psychiatry 63, 1155–1162 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  126. Davies, K. A. et al. Interferon and anti-TNF therapies differentially modulate amygdala reactivity which predicts associated bidirectional changes in depressive symptoms. Mol. Psychiatry 26, 5150–5160 (2021).

    Article  CAS  PubMed  Google Scholar 

  127. Cox, J. G., de Groot, M., Kempton, M. J., Williams, S. C. & Cole, J. H. Comparison of volumetric brain analysis in subjects with rheumatoid arthritis and ulcerative colitis. Preprint at medRxiv https://doi.org/10.1101/2023.03.08.23286980 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  128. Sunzini, F., Schrepf, A., Clauw, D. J. & Basu, N. The biology of pain: through the rheumatology lens. Arthritis Rheumatol. 75, 650–660 (2023).

    Article  PubMed  Google Scholar 

  129. Peek, A. L. et al. Brain GABA and glutamate levels across pain conditions: a systematic literature review and meta-analysis of 1H-MRS studies using the MRS-Q quality assessment tool. Neuroimage 210, 116532 (2020).

    Article  CAS  PubMed  Google Scholar 

  130. Yang, Z. et al. Understanding complex functional wiring patterns in major depressive disorder through brain functional connectome. Transl. Psychiatry 11, 526 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Kraynak, T. E., Marsland, A. L., Wager, T. D. & Gianaros, P. J. Functional neuroanatomy of peripheral inflammatory physiology: a meta-analysis of human neuroimaging studies. Neurosci. Biobehav. Rev. 94, 76–92 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  132. Koolschijn, P. C., van Haren, N. E., Lensvelt‐Mulders, G. J., Hulshoff Pol, H. E. & Kahn, R. S. Brain volume abnormalities in major depressive disorder: a meta‐analysis of magnetic resonance imaging studies. Hum. Brain Mapp. 30, 3719–3735 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  133. Harrison, N. A. et al. Inflammation causes mood changes through alterations in subgenual cingulate activity and mesolimbic connectivity. Biol. Psychiatry 66, 407–414 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  134. Haroon, E. et al. IFN-alpha-induced cortical and subcortical glutamate changes assessed by magnetic resonance spectroscopy. Neuropsychopharmacology 39, 1777–1785 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Basu, N. et al. Functional and structural magnetic resonance imaging correlates of fatigue in patients with rheumatoid arthritis. Rheumatology 58, 1822–1830 (2019).

    Article  PubMed  Google Scholar 

  136. Kitzbichler, M. G. et al. Peripheral inflammation is associated with micro-structural and functional connectivity changes in depression-related brain networks. Mol. Psychiatry 26, 7346–7354 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  137. Sheline, Y. I. et al. The default mode network and self-referential processes in depression. Proc. Natl Acad. Sci. USA 106, 1942–1947 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Hess, A. et al. Blockade of TNF-α rapidly inhibits pain responses in the central nervous system. Proc. Natl Acad. Sci. USA 108, 3731–3736 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Goldsmith, D. R., Rapaport, M. H. & Miller, B. J. A meta-analysis of blood cytokine network alterations in psychiatric patients: comparisons between schizophrenia, bipolar disorder and depression. Mol. Psychiatry 21, 1696–1709 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Dowlati, Y. et al. A meta-analysis of cytokines in major depression. Biol. Psychiatry 67, 446–457 (2010).

    Article  CAS  PubMed  Google Scholar 

  141. Strawbridge, R. et al. Inflammation and clinical response to treatment in depression: a meta-analysis. Eur. Neuropsychopharmacol. 25, 1532–1543 (2015).

    Article  CAS  PubMed  Google Scholar 

  142. Mac Giollabhui, N., Ng, T. H., Ellman, L. M. & Alloy, L. B. The longitudinal associations of inflammatory biomarkers and depression revisited: systematic review, meta-analysis, and meta-regression. Mol. Psychiatry 26, 3302–3314 (2021).

    Article  Google Scholar 

  143. Valkanova, V., Ebmeier, K. P. & Allan, C. L. CRP, IL-6 and depression: a systematic review and meta-analysis of longitudinal studies. J. Affect. Disord. 150, 736–744 (2013).

    Article  CAS  PubMed  Google Scholar 

  144. Köhler, C. A. et al. Peripheral cytokine and chemokine alterations in depression: a meta-analysis of 82 studies. Acta Psychiatr. Scand. 135, 373–387 (2017).

    Article  PubMed  Google Scholar 

  145. Martínez-Cengotitabengoa, M. et al. Peripheral inflammatory parameters in late-life depression: a systematic review. Int. J. Mol. Sci. 17, 2022 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  146. Liu, Y., Ho, R. C. & Mak, A. Interleukin (IL)-6, tumour necrosis factor alpha (TNF-α) and soluble interleukin-2 receptors (sIL-2R) are elevated in patients with major depressive disorder: a meta-analysis and meta-regression. J. Affect. Disord. 139, 230–239 (2012).

    Article  CAS  PubMed  Google Scholar 

  147. Haapakoski, R., Mathieu, J., Ebmeier, K. P., Alenius, H. & Kivimäki, M. Cumulative meta-analysis of interleukins 6 and 1β, tumour necrosis factor α and C-reactive protein in patients with major depressive disorder. Brain Behav. Immun. 49, 206–215 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Hiles, S. A., Baker, A. L., de Malmanche, T. & Attia, J. A meta-analysis of differences in IL-6 and IL-10 between people with and without depression: exploring the causes of heterogeneity. Brain Behav. Immun. 26, 1180–1188 (2012).

    Article  CAS  PubMed  Google Scholar 

  149. Wittenberg, G. M. et al. Effects of immunomodulatory drugs on depressive symptoms: a mega-analysis of randomized, placebo-controlled clinical trials in inflammatory disorders. Mol. Psychiatry 25, 1275–1285 (2020).

    Article  CAS  PubMed  Google Scholar 

  150. Matcham, F. et al. The impact of targeted rheumatoid arthritis pharmacologic treatment on mental health: a systematic review and network meta‐analysis. Arthritis Rheumatol. 70, 1377–1391 (2018).

    Article  PubMed  Google Scholar 

  151. Kappelmann, N., Lewis, G., Dantzer, R., Jones, P. B. & Khandaker, G. M. Antidepressant activity of anti-cytokine treatment: a systematic review and meta-analysis of clinical trials of chronic inflammatory conditions. Mol. Psychiatry 23, 335–343 (2018).

    Article  CAS  PubMed  Google Scholar 

  152. Köhler‐Forsberg O, N. et al. Efficacy of anti‐inflammatory treatment on major depressive disorder or depressive symptoms: meta‐analysis of clinical trials. Acta Psychiatr. Scand. 139, 404–419 (2019).

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors researched data for the article. J.C., J.B., N.B. and J.C.M.S. wrote the article and reviewed and/or edited the manuscript before submission. J.C. and J.B. contributed substantially to discussion of the content.

Corresponding author

Correspondence to Jonathan Cavanagh.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Rheumatology thanks Carmine Pariante, James Galloway and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brock, J., Basu, N., Schlachetzki, J.C.M. et al. Immune mechanisms of depression in rheumatoid arthritis. Nat Rev Rheumatol 19, 790–804 (2023). https://doi.org/10.1038/s41584-023-01037-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41584-023-01037-w

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing