Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Epidemiology of the idiopathic inflammatory myopathies

Abstract

The idiopathic inflammatory myopathies (IIMs) are a heterogeneous group of systemic autoimmune diseases that affect the skeletal muscles and can also involve the skin, joints, lungs and heart. The epidemiology of IIM is obscured by changing classification criteria and the inherent shortcomings of case identification using healthcare record diagnostic coding. The incidence of IIM is estimated to range from 0.2 to 2 per 100,000 person-years, with prevalence from 2 to 25 per 100,000 people. Although the effects of age and gender on incidence are known, there is only sparse understanding of ethnic differences, particularly in indigenous populations. The incidence of IIM has reportedly increased in the twenty-first century, but whether this is a genuine increase is not yet known. Understanding of the genetic risk factors for different IIM subtypes has advanced considerably. Infections, medications, malignancy and geography are also commonly identified risk factors. Potentially, the COVID-19 pandemic has altered IIM incidence, although evidence of this occurrence is limited to case reports and small case series. Consideration of the current understanding of the epidemiology of IIM can highlight important areas of interest for future research into these rare diseases.

Key points

  • The idiopathic inflammatory myopathies (IIMs) are a heterogeneous group of rare, systemic autoimmune conditions with an incidence of 0.2–2 per 100,000 person-years, and a prevalence of 2–25 per 100,000 people.

  • Changing classification criteria, biases in patient identification and heterogeneity within the group of IIMs affect the ascertainment of incidence and prevalence.

  • The incidence and prevalence of IIM varies with age and gender, and between geographical regions, but is still unreported in many areas, particularly in South America, Africa and Asia.

  • Further research is needed in non-white cohorts of IIM to better understand phenotypic, serological and genetic characteristics of ethnically diverse groups.

  • Although mortality from IIM has improved with earlier diagnosis and treatment, substantial morbidity remains in association with malignancy, cardiovascular events, lung disease and infections, resulting in considerable healthcare costs.

  • Understanding is growing of the unique genetic risk factors and gene–environment risk interactions in IIM, and of the influence of infections, medications (including statins and immune-checkpoint inhibitors), malignancy and geography.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Incidence of rheumatic diseases.
Fig. 2: Changing criteria of the idiopathic inflammatory myopathies.
Fig. 3: Incidence and prevalence of adult dermatomyositis and sporadic inclusion-body myositis.

Similar content being viewed by others

References

  1. Oldroyd, A. G. S. et al. British Society for Rheumatology guideline on management of paediatric, adolescent and adult patients with idiopathic inflammatory myopathy. Rheumatology 61, 1760–1768 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Chinoy, H. & Lilleker, J. B. Pitfalls in the diagnosis of myositis. Best. Pract. Res. Clin. Rheumatol. 34, 101486 (2020).

    Article  PubMed  Google Scholar 

  3. Lundberg, I. E. et al. Idiopathic inflammatory myopathies. Nat. Rev. Dis. Prim. 7, 86 (2021).

    Article  PubMed  Google Scholar 

  4. Barsotti, S. & Lundberg, I. E. Myositis an evolving spectrum of disease. Immunol. Med. 41, 46–54 (2018).

    Article  PubMed  Google Scholar 

  5. Namsrai, T. et al. Diagnostic delay of myositis: an integrated systematic review. Orphanet J. Rare Dis. 17, 420 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Mammen, A. L. Which nonautoimmune myopathies are most frequently misdiagnosed as myositis? Curr. Opin. Rheumatol. 29, 618–622 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Bernatsky, S., Linehan, T. & Hanly, J. G. The accuracy of administrative data diagnoses of systemic autoimmune rheumatic diseases. J. Rheumatol. 38, 1612–1616 (2011).

    Article  PubMed  Google Scholar 

  8. Tanno, L. K. et al. Global implementation of the world health organization’s International Classification of Diseases (ICD)-11: the allergic and hypersensitivity conditions model. Allergy 75, 2206–2218 (2020).

    Article  PubMed  Google Scholar 

  9. Bohan, A. & Peter, J. B. Polymyositis and dermatomyositis (first of two parts). N. Engl. J. Med. 292, 344–347 (1975).

    Article  CAS  PubMed  Google Scholar 

  10. Bohan, A. & Peter, J. B. Polymyositis and dermatomyositis (second of two parts). N. Engl. J. Med. 292, 403–407 (1975).

    Article  CAS  PubMed  Google Scholar 

  11. Carpenter, S., Karpati, G., Heller, I. & Eisen, A. Inclusion body myositis: a distinct variety of idiopathic inflammatory myopathy. Neurology 28, 8–17 (1978).

    Article  CAS  PubMed  Google Scholar 

  12. Griggs, R. C. et al. Inclusion body myositis and myopathies. Ann. Neurol. 38, 705–713 (1995).

    Article  CAS  PubMed  Google Scholar 

  13. Hoogendijk, J. E. et al. 119th ENMC international workshop: trial design in adult idiopathic inflammatory myopathies, with the exception of inclusion body myositis, 10–12 October 2003, Naarden, The Netherlands. Neuromuscul. Disord. 14, 337–345 (2004).

    Article  PubMed  Google Scholar 

  14. Day, J., Otto, S., Cash, K. & Limaye, V. Clinical and histological features of immune-mediated necrotising myopathy: a multi-centre South Australian cohort study. Neuromuscul. Disord. 30, 186–199 (2020).

    Article  PubMed  Google Scholar 

  15. Allenbach, Y., Benveniste, O., Stenzel, W. & Boyer, O. Immune-mediated necrotizing myopathy: clinical features and pathogenesis. Nat. Rev. Rheumatol. 16, 689–701 (2020).

    Article  CAS  PubMed  Google Scholar 

  16. Allenbach, Y. et al. High risk of cancer in autoimmune necrotizing myopathies: usefulness of myositis specific antibody. Brain 139, 2131–2135 (2016).

    Article  PubMed  Google Scholar 

  17. Kassardjian, C. D., Lennon, V. A., Alfugham, N. B., Mahler, M. & Milone, M. Clinical features and treatment outcomes of necrotizing autoimmune myopathy. JAMA Neurol. 72, 996–1003 (2015).

    Article  PubMed  Google Scholar 

  18. Ma, X., Xu, L., Ji, S., Li, Y. & Bu, B. The clinicopathological distinction between seropositive and seronegative immune-mediated necrotizing myopathy in China. Front. Neurol. 12, 670784 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Allenbach, Y., Mammen, A. L., Benveniste, O. & Stenzel, W. & Immune-Mediated Necrotizing Myopathies Working Group. 224th ENMC International Workshop:: clinico-sero-pathological classification of immune-mediated necrotizing myopathies Zandvoort, The Netherlands, 14–16 October 2016. Neuromuscul. Disord. 28, 87–99 (2018).

    Article  PubMed  Google Scholar 

  20. Bernstein, R. M. et al. Anti-Jo-1 antibody: a marker for myositis with interstitial lung disease. Br. Med. J. 289, 151–152 (1984).

    Article  CAS  Google Scholar 

  21. Tieu, J., Lundberg, I. E. & Limaye, V. Idiopathic inflammatory myositis. Best. Pract. Res. Clin. Rheumatol. 30, 149–168 (2016).

    Article  PubMed  Google Scholar 

  22. Opinc, A. H. & Makowska, J. S. Antisynthetase syndrome — much more than just a myopathy. Semin. Arthritis Rheum. 51, 72–83 (2021).

    Article  CAS  PubMed  Google Scholar 

  23. Huang, K. & Aggarwal, R. Antisynthetase syndrome: a distinct disease spectrum. J. Scleroderma Relat. Disord. 5, 178–191 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Uruha, A. et al. Diagnostic potential of sarcoplasmic myxovirus resistance protein A expression in subsets of dermatomyositis. Neuropathol. Appl. Neurobiol. 45, 513–522 (2019).

    Article  CAS  PubMed  Google Scholar 

  25. Aouizerate, J. et al. Myofiber HLA-DR expression is a distinctive biomarker for antisynthetase-associated myopathy. Acta Neuropathol. Commun. 2, 154 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Dalakas, M. C. Complement in autoimmune inflammatory myopathies, the role of myositis-associated antibodies, COVID-19 associations, and muscle amyloid deposits. Expert. Rev. Clin. Immunol. 18, 413–423 (2022).

    Article  CAS  PubMed  Google Scholar 

  27. Aguila, L. A. et al. Overlap syndromes of idiopathic inflammatory myopathies with systemic lupus erythematosus, systemic sclerosis or rheumatoid arthritis. Lupus 22, 136 (2013).

    Google Scholar 

  28. Keck, A. D., Jaeger, V. K. & Walker, U. A. Myositis in systemic sclerosis, lupus erythematosus and Sjogren’s syndrome. Aktuelle Rheumatol. 42, 310–315 (2017).

    Article  Google Scholar 

  29. Paik, J. J. Myopathy in scleroderma and in other connective tissue diseases. Curr. Opin. Rheumatol. 28, 631–635 (2016).

    Article  CAS  PubMed  Google Scholar 

  30. Leclair, V., Notarnicola, A., Vencovsky, J. & Lundberg, I. E. Polymyositis: does it really exist as a distinct clinical subset? Curr. Opin. Rheumatol. 33, 537–543 (2021).

    Article  CAS  PubMed  Google Scholar 

  31. Betteridge, Z. et al. Frequency, mutual exclusivity and clinical associations of myositis autoantibodies in a combined European cohort of idiopathic inflammatory myopathy patients. J. Autoimmun. 101, 48–55 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Hodgkinson, L. M., Wu, T. T. & Fiorentino, D. F. Dermatomyositis autoantibodies: how can we maximize utility? Ann. Transl. Med. 9, 433 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Chen, Z. et al. Distinct profiles of myositis-specific autoantibodies in Chinese and Japanese patients with polymyositis/dermatomyositis. Clin. Rheumatol. 34, 1627–1631 (2015).

    Article  PubMed  Google Scholar 

  34. McHugh, N. J. & Tansley, S. L. Autoantibodies in myositis. Nat. Rev. Rheumatol. 14, 290–302 (2018).

    Article  CAS  PubMed  Google Scholar 

  35. Benveniste, O. & Hilton-Jones, D. International workshop on inclusion body myositis held at the institute of myology, Paris, on 29 May 2009. Neuromuscul. Disord. 20, 414–421 (2010).

    Article  PubMed  Google Scholar 

  36. Dalakas, M. C. & Hohlfeld, R. Polymyositis and dermatomyositis. Lancet 362, 971–982 (2003).

    Article  CAS  PubMed  Google Scholar 

  37. Hilton-Jones, D. & Brady, S. Diagnostic criteria for inclusion body myositis. J. Intern. Med. 280, 52–62 (2016).

    Article  CAS  PubMed  Google Scholar 

  38. Lloyd, T. E. et al. Evaluation and construction of diagnostic criteria for inclusion body myositis. Neurology 83, 426–433 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Mammen, A. L., Allenbach, Y., Stenzel, W., Benveniste, O. & ENMC 239th Workshop Study Group. 239th ENMC international workshop: classification of dermatomyositis, Amsterdam, the Netherlands, 14–16 December 2018. Neuromuscul. Disord. 30, 70–92 (2020).

    Article  PubMed  Google Scholar 

  40. Rose, M. R. & Group, E. I. W. 188th ENMC international workshop: inclusion body myositis, 2–4 December 2011, Naarden, The Netherlands. Neuromuscul. Disord. 23, 1044–1055 (2013).

    Article  CAS  PubMed  Google Scholar 

  41. Tanimoto, K. et al. Classification criteria for polymyositis and dermatomyositis. J. Rheumatol. 22, 668–674 (1995).

    CAS  PubMed  Google Scholar 

  42. Targoff, I. N., Miller, F. W., Medsger, T. A. Jr. & Oddis, C. V. Classification criteria for the idiopathic inflammatory myopathies. Curr. Opin. Rheumatol. 9, 527–535 (1997).

    Article  CAS  PubMed  Google Scholar 

  43. Karasawa, R. & Jarvis, J. N. Using the tools of proteomics to understand the pathogenesis of idiopathic inflammatory myopathies. Curr. Opin. Rheumatol. 31, 617–622 (2019).

    Article  CAS  PubMed  Google Scholar 

  44. Lamb, J. A. The genetics of autoimmune myositis. Front. Immunol. 13, 886290 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Tanboon, J., Uruha, A., Stenzel, W. & Nishino, I. Where are we moving in the classification of idiopathic inflammatory myopathies? Curr. Opin. Neurol. 33, 590–603 (2020).

    Article  CAS  PubMed  Google Scholar 

  46. Lundberg, I. E. et al. European League Against Rheumatism/American College of Rheumatology classification criteria for adult and juvenile idiopathic inflammatory myopathies and their major subgroups. Arthritis Rheumatol. 69, 2271–2282 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Hervier, B. & Uzunhan, Y. Inflammatory myopathy-related interstitial lung disease: from pathophysiology to treatment. Front. Med. 6, 326 (2019).

    Article  Google Scholar 

  48. Luu, Q., Day, J., Hall, A., Limaye, V. & Major, G. External validation and evaluation of adding MRI or extended myositis antibody panel to the 2017 EULAR/ACR myositis classification criteria. ACR Open Rheumatol. 1, 462–468 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Lundberg, I. E. & Svensson, J. Registries in idiopathic inflammatory myopathies. Curr. Opin. Rheumatol. 25, 729–734 (2013).

    Article  PubMed  Google Scholar 

  50. Meyer, A. et al. Incidence and prevalence of inflammatory myopathies: a systematic review. Rheumatology 54, 50–63 (2014).

    Article  PubMed  Google Scholar 

  51. Anagnostopoulos, I. et al. The prevalence of rheumatic diseases in central Greece: a population survey. BMC Musculoskelet. Disord. 11, 98 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Julian-Santiago, F., Garcia-Garcia, C., Garcia-Olivera, I., Goycochea-Robles, M. V. & Pelaez-Ballestas, I. Epidemiology of rheumatic diseases in Mixtec and Chontal indigenous communities in Mexico: a cross-sectional community-based study. Clin. Rheumatol. 35, 35–42 (2016).

    Article  PubMed  Google Scholar 

  53. Tolentino, D. S., de Oliveira, C. M. & de Assis, E. M. Population-based study of 24 autoimmune diseases carried out in a Brazilian microregion. J. Epidemiol. Glob. Health 9, 243–251 (2019).

    Article  Google Scholar 

  54. Eaton, W. W., Rose, N. R., Kalaydjian, A., Pedersen, M. G. & Mortensen, P. B. Epidemiology of autoimmune diseases in Denmark. J. Autoimmun. 29, 1–9 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Pawlitzki, M. et al. Myositis in Germany: epidemiological insights over 15 years from 2005 to 2019. Neurol. Res. Pract. 4, 62 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Cho, S. K. et al. Incidence and prevalence of idiopathic inflammatory myopathies in Korea: a nationwide population-based study. J. Korean Med. Sci. 34, e55 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Furst, D. E., Amato, A. A., Iorga, S. R., Gajria, K. & Fernandes, A. W. Epidemiology of adult idiopathic inflammatory myopathies in a U.S. managed care plan. Muscle Nerve 45, 676–683 (2012).

    Article  PubMed  Google Scholar 

  58. Smoyer-Tomic, K. E., Amato, A. A. & Fernandes, A. W. Incidence and prevalence of idiopathic inflammatory myopathies among commercially insured, Medicare supplemental insured, and Medicaid enrolled populations: an administrative claims analysis. BMC Musculoskelet. Disord. 13, 103 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Bolender, C. M. et al. Incidence of dermatomyositis in a nationwide cohort study of US veterans. JAMA Dermatol. 158, 1321–1323 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Essouma, M., Noubiap, J. J., Singwe-Ngandeu, M. & Hachulla, E. Epidemiology of idiopathic inflammatory myopathies in Africa: a contemporary systematic review. J. Clin. Rheumatol. 28, E552–E562 (2022).

    Article  PubMed  Google Scholar 

  61. Limaye, V. et al. The epidemiology of dermatomyositis in South Australia. APLAR J. Rheumatol. 10, 94–100 (2007).

    Article  Google Scholar 

  62. Ostrovršnik, J. et al. The incidence of idiopathic inflammatory myopathies in the adult Slovenian population. Clin. Rheumatol. 38, 279–283 (2019).

    Article  PubMed  Google Scholar 

  63. Parker, M. J. S. et al. Increasing incidence of adult idiopathic inflammatory myopathies in the City of Salford, UK: a 10-year epidemiological study. Rheumatol. Adv. Pract. 2, rky035 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Patrick, M., Buchbinder, R., Jolley, D., Dennett, X. & Buchanan, R. Incidence of inflammatory myopathies in Victoria, Australia, and evidence of spatial clustering. J. Rheumatol. 26, 1094–1100 (1999).

    CAS  PubMed  Google Scholar 

  65. See, L. C., Kuo, C. F., Chou, I. J., Chiou, M. J. & Yu, K. H. Sex- and age-specific incidence of autoimmune rheumatic diseases in the Chinese population: a Taiwan population-based study. Semin. Arthritis Rheumatism 43, 381–386 (2013).

    Article  PubMed  Google Scholar 

  66. Yu, K. H., See, L. C., Kuo, C. F., Chou, I. J. & Chou, M. J. Prevalence and incidence in patients with autoimmune rheumatic diseases: a nationwide population-based study in Taiwan. Arthritis Care Res. 65, 244–250 (2013).

    Article  Google Scholar 

  67. Tan, J. A. et al. Incidence and prevalence of idiopathic inflammatory myopathies in South Australia: a 30-year epidemiologic study of histology-proven cases. Int. J. Rheum. Dis. 16, 331–338 (2013).

    Article  PubMed  Google Scholar 

  68. Medsger, T. A. Jr, Dawson, W. N. Jr & Masi, A. T. The epidemiology of polymyositis. Am. J. Med. 48, 715–723 (1970).

    Article  PubMed  Google Scholar 

  69. Benbassat, J., Geffel, D. & Zlotnick, A. Epidemiology of polymyositis-dermatomyositis in Israel, 1960–76. Isr. J. Med. Sci. 16, 197–200 (1980).

    CAS  PubMed  Google Scholar 

  70. Svensson, J., Arkema, E. V., Lundberg, I. E. & Holmqvist, M. Incidence and prevalence of idiopathic inflammatory myopathies in Sweden: a nationwide population-based study. Rheumatology 56, 802–810 (2017).

    Article  PubMed  Google Scholar 

  71. Kuo, C. F. et al. Incidence, cancer risk and mortality of dermatomyositis and polymyositis in Taiwan: a nationwide population study. Br. J. Dermatol. 165, 1273–1279 (2011).

    Article  PubMed  Google Scholar 

  72. Kronzer, V. L. et al. Incidence, prevalence, and mortality of dermatomyositis: a population-based cohort study. Arthritis Care Res. 75, 348–355 (2023).

    Article  CAS  Google Scholar 

  73. Carey, I. M. et al. Prevalence and incidence of neuromuscular conditions in the UK between 2000 and 2019: a retrospective study using primary care data. PLoS One 16, e0261983 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Badrising, U. A. et al. Epidemiology of inclusion body myositis in the Netherlands: a nationwide study. Neurology 55, 1385–1387 (2000).

    Article  CAS  PubMed  Google Scholar 

  75. Dobloug, G. C. et al. High prevalence of inclusion body myositis in Norway; a population-based clinical epidemiology study. Eur. J. Neurol. 22, 672–e641 (2015).

    Article  CAS  PubMed  Google Scholar 

  76. Felice, K. J. & North, W. A. Inclusion body myositis in Connecticut: observations in 35 patients during an 8-year period. Medicine 80, 320–327 (2001).

    Article  CAS  PubMed  Google Scholar 

  77. Lefter, S., Hardiman, O. & Ryan, A. M. A population-based epidemiologic study of adult neuromuscular disease in the Republic of Ireland. Neurology 88, 304–313 (2017).

    Article  PubMed  Google Scholar 

  78. Lindgren, U., Pullerits, R., Lindberg, C. & Oldfors, A. Epidemiology, survival, and clinical characteristics of inclusion body myositis. Ann. Neurol. 92, 201–212 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  79. Phillips, B. A., Zilko, P. J. & Mastaglia, F. L. Prevalence of sporadic inclusion body myositis in Western Australia. Muscle Nerve 23, 970–972 (2000).

    Article  CAS  PubMed  Google Scholar 

  80. Serdaroglu Oflazer, P., Deymeer, F. & Parman, Y. Sporadic-inclusion body myositis (s-IBM) is not so prevalent in Istanbul/Turkey: a muscle biopsy based survey. Acta Myol. 30, 34–36 (2011).

    PubMed  PubMed Central  Google Scholar 

  81. Shelly, S. et al. Epidemiology and natural history of inclusion body myositis: a 40-year population-based study. Neurology 96, e2653–e2661 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Balakrishnan, A., Aggarwal, R., Agarwal, V. & Gupta, L. Inclusion body myositis in the rheumatology clinic. Int. J. Rheum. Dis. 23, 1126–1135 (2020).

    Article  PubMed  Google Scholar 

  83. Wilson, F. C., Ytterberg, S. R., St Sauver, J. L. & Reed, A. M. Epidemiology of sporadic inclusion body myositis and polymyositis in Olmsted County, Minnesota. J. Rheumatol. 35, 445–447 (2008).

    PubMed  Google Scholar 

  84. Arkachaisri, T. et al. Paediatric rheumatology clinic population in Southeast Asia: are we different? Rheumatology 56, 390–398 (2017).

    PubMed  Google Scholar 

  85. Barber, M. R. W. et al. Global epidemiology of systemic lupus erythematosus. Nat. Rev. Rheumatol. 17, 515–532 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  86. Al-Sheikh, H., Ahmad, Z. & Johnson, S. R. Ethnic variations in systemic sclerosis disease manifestations, internal organ involvement, and mortality. J. Rheumatol. 46, 1103–1108 (2019).

    Article  PubMed  Google Scholar 

  87. Mendez, E. P. et al. US incidence of juvenile dermatomyositis, 1995–1998: results from the National Institute of Arthritis and Musculoskeletal and Skin Diseases Registry. Arthritis Care Res. 49, 300–305 (2003).

    Article  Google Scholar 

  88. Concannon, A. & Han, D. Y. Incidence, severity and clinical manifestations of juvenile dermatomyositis among Maori and Pacific Island compared to European children. J. Paediatrics Child. Health 57, 1881–1885 (2021).

    Article  Google Scholar 

  89. Day, J. & Limaye, V. Over-representation of statin-associated necrotising myopathy in patients of Aboriginal and Torres Strait Islander heritage. Intern. Med. J. 48, 749–751 (2018).

    Article  PubMed  Google Scholar 

  90. Woolley, M., Stebbings, S. & Highton, J. Statin-associated immune-mediated necrotising myopathy: a New Zealand case series showing possible overrepresentation in Pacific Islanders. Intern. Med. J. 48, 32–36 (2018).

    Article  CAS  PubMed  Google Scholar 

  91. Close, R. M. et al. Potential implications of six American Indian patients with myopathy, statin exposure and anti-HMGCR antibodies. Rheumatology 60, 692–698 (2021).

    Article  PubMed  Google Scholar 

  92. Mammen, A. L. Statin-associated autoimmune myopathy. N. Engl. J. Med. 374, 664–669 (2016).

    Article  CAS  PubMed  Google Scholar 

  93. Woolley, M. C. & Stebbings, S. Author reply. Intern. Med. J. 48, 751–752 (2018).

    Article  PubMed  Google Scholar 

  94. Izmirly, P. M. et al. Prevalence of systemic lupus erythematosus in the United States: estimates from a meta-analysis of the Centers for Disease Control and Prevention National Lupus registries. Arthritis Rheumatol. 73, 991–996 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  95. Ly, E., Thein, H. & Lam Po Tang, M. Retrospective review of lupus nephritis in a New Zealand multi-ethnic cohort. Lupus 26, 893–897 (2017).

    Article  CAS  PubMed  Google Scholar 

  96. Nigam, A. et al. Lupus nephritis in indigenous Australians: a single-centre study. Intern. Med. J. 50, 830–837 (2020).

    Article  CAS  PubMed  Google Scholar 

  97. Gracey, M. Why closing the Aboriginal health gap is so elusive. Intern. Med. J. 44, 1141–1143 (2014).

    Article  CAS  PubMed  Google Scholar 

  98. Stoneman, J. & Taylor, S. J. Improving access to medicines in urban, regional and rural Aboriginal communities — is expansion of Section 100 the answer? Rural. Remote. Health 7, 738 (2007).

    CAS  PubMed  Google Scholar 

  99. Thurber, K. A. & Bell, K. J. Socio-economic disadvantage and cardiovascular risk factors in young Aboriginal and Torres Strait Islander Australians. Med. J. Aust. 211, 259–260 (2019).

    Article  PubMed  Google Scholar 

  100. Ohta, A., Nagai, M., Nishina, M., Tomimitsu, H. & Kohsaka, H. Prevalence and incidence of polymyositis and dermatomyositis in Japan. Mod. Rheumatol. 24, 477–480 (2014).

    Article  PubMed  Google Scholar 

  101. Gerami, P., Walling, H. W., Lewis, J., Doughty, L. & Sontheimer, R. D. A systematic review of juvenile-onset clinically amyopathic dermatomyositis. Br. J. Dermatol. 157, 637–644 (2007).

    Article  CAS  PubMed  Google Scholar 

  102. Bendewald, M. J., Wetter, D. A., Li, X. & Davis, M. D. Incidence of dermatomyositis and clinically amyopathic dermatomyositis: a population-based study in Olmsted County, Minnesota. Arch. Dermatol. 146, 26–30 (2010).

    Article  PubMed  Google Scholar 

  103. Greenfield, J. et al. A comparison of health-related quality of life (HRQoL) across four systemic autoimmune rheumatic diseases (SARDs). PLoS One 12, e0189840 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  104. van de Vlekkert, J., Hoogendijk, J. E. & de Visser, M. Long-term follow-up of 62 patients with myositis. J. Neurol. 261, 992–998 (2014).

    Article  PubMed  Google Scholar 

  105. Namsrai, T. et al. Diagnostic delay of myositis: protocol for an integrated systematic review. BMJ Open 12, e060312 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  106. Gong, J. et al. Nowcasting and forecasting the care needs of the older population in China: analysis of data from the China Health and Retirement Longitudinal Study (CHARLS). Lancet Public Health 7, e1005–e1013 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  107. van Onna, M. & Boonen, A. Challenges in the management of older patients with inflammatory rheumatic diseases. Nat. Rev. Rheumatol. 18, 326–334 (2022).

    Article  PubMed  Google Scholar 

  108. Bernatsky, S. et al. Healthcare costs of inflammatory myopathies. J. Rheumatol. 38, 885–888 (2011).

    Article  PubMed  Google Scholar 

  109. Furst, D. E., Amato, A. A., Iorga, S. R., Bancroft, T. & Fernandes, A. W. Medical costs and health-care resource use in patients with inflammatory myopathies in an insured population. Muscle Nerve 46, 496–505 (2012).

    Article  PubMed  Google Scholar 

  110. Leclair, V. et al. Distribution and trajectory of direct and indirect costs of idiopathic inflammatory myopathies. Semin. Arthritis Rheum. 51, 983–988 (2021).

    Article  CAS  PubMed  Google Scholar 

  111. Regardt, M., Welin Henriksson, E., Sandqvist, J., Lundberg, I. E. & Schult, M. L. Work ability in patients with polymyositis and dermatomyositis: an explorative and descriptive study. Work 53, 265–277 (2015).

    Article  PubMed  Google Scholar 

  112. Xu, A., Sun, C., Metcalf, R. & Limaye, V. Health-related quality of life and work impairment in idiopathic inflammatory myopathies in South Australia. Int. J. Rheum. Dis. 24, 809–814 (2021).

    Article  PubMed  Google Scholar 

  113. Christopher-Stine, L. et al. Patient-reported dermatomyositis and polymyositis flare symptoms are associated with disability, productivity loss, and health care resource use. J. Manag. Care Spec. Pharm. 26, 1424–1433 (2020).

    PubMed  Google Scholar 

  114. Riddoch, D. & Morgan-Hughes, J. A. Prognosis in adult polymyositis. J. Neurol. Sci. 26, 71–80 (1975).

    Article  CAS  PubMed  Google Scholar 

  115. Bronner, I. M. et al. Long-term outcome in polymyositis and dermatomyositis. Ann. Rheum. Dis. 65, 1456–1461 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Dobloug, G. C., Svensson, J., Lundberg, I. E. & Holmqvist, M. Mortality in idiopathic inflammatory myopathy: results from a Swedish nationwide population-based cohort study. Ann. Rheum. Dis. 77, 40–47 (2018).

    Article  PubMed  Google Scholar 

  117. Sultan, S. M., Ioannou, Y., Moss, K. & Isenberg, D. A. Outcome in patients with idiopathic inflammatory myositis: morbidity and mortality. Rheumatology 41, 22–26 (2002).

    Article  CAS  PubMed  Google Scholar 

  118. Marie, I. et al. Polymyositis and dermatomyositis: short term and longterm outcome, and predictive factors of prognosis. J. Rheumatol. 28, 2230–2237 (2001).

    CAS  PubMed  Google Scholar 

  119. Amaral Silva, M., Cogollo, E. & Isenberg, D. A. Why do patients with myositis die? A retrospective analysis of a single-centre cohort. Clin. Exp. Rheumatol. 34, 820–826 (2016).

    PubMed  Google Scholar 

  120. Hocevar, A. et al. Survival of patients with idiopathic inflammatory myopathies in Slovenia. Front. Med. 8, 801078 (2021).

    Article  Google Scholar 

  121. Limaye, V., Hakendorf, P., Woodman, R. J., Blumbergs, P. & Roberts-Thomson, P. Mortality and its predominant causes in a large cohort of patients with biopsy-determined inflammatory myositis. Intern. Med. J. 42, 191–198 (2012).

    Article  CAS  PubMed  Google Scholar 

  122. Nuno-Nuno, L. et al. Mortality and prognostic factors in idiopathic inflammatory myositis: a retrospective analysis of a large multicenter cohort of Spain. Rheumatol. Int. 37, 1853–1861 (2017).

    Article  PubMed  Google Scholar 

  123. Danieli, M. G. et al. Impact of treatment on survival in polymyositis and dermatomyositis. A single-centre long-term follow-up study. Autoimmun. Rev. 13, 1048–1054 (2014).

    Article  PubMed  Google Scholar 

  124. DeVere, R. & Bradley, W. G. Polymyositis: its presentation, morbidity and mortality. Brain 98, 637–666 (1975).

    Article  CAS  PubMed  Google Scholar 

  125. Medsger, T. A. Jr., Robinson, H. & Masi, A. T. Factors affecting survivorship in polymyositis. A life-table study of 124 patients. Arthritis Rheum. 14, 249–258 (1971).

    Article  PubMed  Google Scholar 

  126. Cobo-Ibanez, T. et al. Long-term pulmonary outcomes and mortality in idiopathic inflammatory myopathies associated with interstitial lung disease. Clin. Rheumatol. 38, 803–815 (2019).

    Article  PubMed  Google Scholar 

  127. Schiopu, E., Phillips, K., MacDonald, P. M., Crofford, L. J. & Somers, E. C. Predictors of survival in a cohort of patients with polymyositis and dermatomyositis: effect of corticosteroids, methotrexate and azathioprine. Arthritis Res. Ther. 14, R22 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Torres, C. et al. Survival, mortality and causes of death in inflammatory myopathies. Autoimmunity 39, 205–215 (2006).

    Article  PubMed  Google Scholar 

  129. Danko, K., Ponyi, A., Constantin, T., Borgulya, G. & Szegedi, G. Long-term survival of patients with idiopathic inflammatory myopathies according to clinical features: a longitudinal study of 162 cases. Medicine 83, 35–42 (2004).

    Article  PubMed  Google Scholar 

  130. Johnson, C. et al. Assessment of mortality in autoimmune myositis with and without associated interstitial lung disease. Lung 194, 733–737 (2016).

    Article  CAS  PubMed  Google Scholar 

  131. Aggarwal, R. et al. Patients with non-Jo-1 anti-tRNA-synthetase autoantibodies have worse survival than Jo-1 positive patients. Ann. Rheum. Dis. 73, 227–232 (2014).

    Article  PubMed  Google Scholar 

  132. Rojas-Serrano, J. et al. Prognostic factors in a cohort of antisynthetase syndrome (ASS): serologic profile is associated with mortality in patients with interstitial lung disease (ILD). Clin. Rheumatol. 34, 1563–1569 (2015).

    Article  PubMed  Google Scholar 

  133. Gasparotto, M. et al. Pulmonary involvement in antisynthetase syndrome. Curr. Opin. Rheumatol. 31, 603–610 (2019).

    Article  CAS  PubMed  Google Scholar 

  134. Marie, I. et al. Comparison of long-term outcome between anti-Jo1- and anti-PL7/PL12 positive patients with antisynthetase syndrome. Autoimmun. Rev. 11, 739–745 (2012).

    Article  CAS  PubMed  Google Scholar 

  135. Nombel, A., Fabien, N. & Coutant, F. Dermatomyositis with anti-MDA5 antibodies: bioclinical features, pathogenesis and emerging therapies. Front. Immunol. 12, 773352 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. So, J. et al. Predictors of rapidly progressive interstitial lung disease and mortality in patients with autoantibodies against melanoma differentiation-associated protein 5 dermatomyositis. Rheumatology 61, 4437–4444 (2022).

    Article  CAS  PubMed  Google Scholar 

  137. Niu, Q. et al. A new predictive model for the prognosis of MDA5+ DM-ILD. Front. Med. 9, 908365 (2022).

    Article  Google Scholar 

  138. Yang, Q. et al. Initial predictors for short-term prognosis in anti-melanoma differentiation-associated protein-5 positive patients. Orphanet J. Rare Dis. 16, 58 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  139. Zhou, J. et al. Evaluation of prognostic factors in anti-MDA5 antibody-positive patients in Chongqing, China: a retrospective study. Int. J. Gen. Med. 14, 4775–4781 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  140. Tsuji, H. et al. Multicenter prospective study of the efficacy and safety of combined immunosuppressive therapy with high-dose glucocorticoid, tacrolimus, and cyclophosphamide in interstitial lung diseases accompanied by anti-melanoma differentiation-associated gene 5-positive dermatomyositis. Arthritis Rheumatol. 72, 488–498 (2020).

    Article  CAS  PubMed  Google Scholar 

  141. Che, W. I. et al. Familial aggregation and heritability: a nationwide family-based study of idiopathic inflammatory myopathies. Ann. Rheum. Dis. 80, 1461–1466 (2021).

    Article  PubMed  Google Scholar 

  142. Che, W. I. et al. Familial autoimmunity in patients with idiopathic inflammatory myopathies. J. Intern. Med. 293, 200–211 (2023).

    Article  CAS  PubMed  Google Scholar 

  143. Rothwell, S. et al. Genome-wide imputation identifies novel associations and localises signals in idiopathic inflammatory myopathies. Arthritis Rheumatol. https://doi.org/10.1002/art.42434 (2022).

  144. Rothwell, S., Chinoy, H. & Lamb, J. A. Genetics of idiopathic inflammatory myopathies: insights into disease pathogenesis. Curr. Opin. Rheumatol. 31, 611–616 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Rothwell, S. et al. Dense genotyping of immune-related loci in idiopathic inflammatory myopathies confirms HLA alleles as the strongest genetic risk factor and suggests different genetic background for major clinical subgroups. Ann. Rheum. Dis. 75, 1558–1566 (2016).

    Article  CAS  PubMed  Google Scholar 

  146. Gambino, C. M., Aiello, A., Accardi, G., Caruso, C. & Candore, G. Autoimmune diseases and 8.1 ancestral haplotype: an update. HLA 92, 137–143 (2018).

    Article  CAS  PubMed  Google Scholar 

  147. Rothwell, S. et al. Immune-array analysis in sporadic inclusion body myositis reveals HLA-DRB1 amino acid heterogeneity across the myositis spectrum. Arthritis Rheumatol. 69, 1090–1099 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Rothwell, S. et al. Focused HLA analysis in Caucasians with myositis identifies significant associations with autoantibody subgroups. Ann. Rheum. Dis. 78, 996–1002 (2019).

    Article  CAS  PubMed  Google Scholar 

  149. Oldroyd, A. G. S. et al. A systematic review and meta-analysis to inform cancer screening guidelines in idiopathic inflammatory myopathies. Rheumatology 60, 2615–2628 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Kwiatkowska, D. & Reich, A. The significance of autoantibodies in juvenile dermatomyositis. Biomed. Res. Int. 2021, 5513544 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  151. Basharat, P. et al. Statin-induced anti-HMGCR-associated myopathy. J. Am. Coll. Cardiol. 68, 234–235 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  152. Gonzalez-Galarza, F. F. et al. Allele frequency net database (AFND) 2020 update: gold-standard data classification, open access genotype data and new query tools. Nucleic Acids Res. 48, D783–D788 (2020).

    CAS  PubMed  Google Scholar 

  153. Limaye, V. et al. Clinical and genetic associations of autoantibodies to 3-hydroxy-3-methyl-glutaryl-coenzyme a reductase in patients with immune-mediated myositis and necrotizing myopathy. Muscle Nerve 52, 196–203 (2015).

    Article  CAS  PubMed  Google Scholar 

  154. Rothwell, S. et al. Identification of novel associations and localization of signals in idiopathic inflammatory myopathies using genome-wide imputation. Arthritis Rheumatol. 75, 1021–1027 (2022).

    Article  Google Scholar 

  155. SEARCH Collaborative Group et al. SLCO1B1 variants and statin-induced myopathy — a genomewide study. N. Engl. J. Med. 359, 789–799 (2008).

    Article  Google Scholar 

  156. Carr, D. F. et al. Genomewide association study of statin-induced myopathy in patients recruited using the UK clinical practice research datalink. Clin. Pharmacol. Ther. 106, 1353–1361 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Chinoy, H. et al. Interaction of HLA-DRB1*03 and smoking for the development of anti-Jo-1 antibodies in adult idiopathic inflammatory myopathies: a European-wide case study. Ann. Rheum. Dis. 71, 961–965 (2012).

    Article  CAS  PubMed  Google Scholar 

  158. Schiffenbauer, A. et al. The effect of cigarette smoking on the clinical and serological phenotypes of polymyositis and dermatomyositis. Semin. Arthritis Rheum. 48, 504–512 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Linn-Rasker, S. P. et al. Smoking is a risk factor for anti-CCP antibodies only in rheumatoid arthritis patients who carry HLA-DRB1 shared epitope alleles. Ann. Rheum. Dis. 65, 366–371 (2006).

    Article  CAS  PubMed  Google Scholar 

  160. Mammen, A. L. et al. Increased frequency of DRB1*11:01 in anti-hydroxymethylglutaryl-coenzyme A reductase-associated autoimmune myopathy. Arthritis Care Res. 64, 1233–1237 (2012).

    Article  CAS  Google Scholar 

  161. O’Hanlon, T. P. et al. HLA polymorphisms in African Americans with idiopathic inflammatory myopathy: allelic profiles distinguish patients with different clinical phenotypes and myositis autoantibodies. Arthritis Rheum. 54, 3670–3681 (2006).

    Article  PubMed  Google Scholar 

  162. Furuya, T. et al. Immunogenetic features in 120 Japanese patients with idiopathic inflammatory myopathy. J. Rheumatol. 31, 1768–1774 (2004).

    CAS  PubMed  Google Scholar 

  163. Kang, E. H. et al. Novel susceptibility alleles in HLA region for myositis and myositis specific autoantibodies in Korean patients. Semin. Arthritis Rheum. 49, 283–287 (2019).

    Article  CAS  PubMed  Google Scholar 

  164. Guo, L. et al. WDFY4 polymorphisms in Chinese patients with anti-MDA5 dermatomyositis is associated with rapid progressive interstitial lung disease. Rheumatology 62, 2320–2324 (2023).

    Article  CAS  PubMed  Google Scholar 

  165. Kochi, Y. et al. Splicing variant of WDFY4 augments MDA5 signalling and the risk of clinically amyopathic dermatomyositis. Ann. Rheum. Dis. 77, 602–611 (2018).

    Article  CAS  PubMed  Google Scholar 

  166. Chan, S. H. et al. Analysis of clinically relevant variants from ancestrally diverse Asian genomes. Nat. Commun. 13, 6694 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Lee, M. H. et al. A meta-analysis of clinical manifestations in Asian systemic lupus erythematous: the effects of ancestry, ethnicity and gender. Semin. Arthritis Rheum. 52, 151932 (2022).

    Article  CAS  PubMed  Google Scholar 

  168. Ng, S. A. & Low, A. H. L. Systemic sclerosis in Asians: are there racial differences? J. Scleroderma Relat. Disord. 7, 98–109 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  169. Crum-Cianflone, N. F. Bacterial, fungal, parasitic, and viral myositis. Clin. Microbiol. Rev. 21, 473–494 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  170. Movahedi, N. & Ziaee, V. COVID-19 and myositis; true dermatomyositis or prolonged post viral myositis? Pediatr. Rheumatol. Online J. 19, 86 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  171. Saud, A., Naveen, R., Aggarwal, R. & Gupta, L. COVID-19 and myositis: what we know so far. Curr. Rheumatol. Rep. 23, 63 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Kharouf, F. et al. Increased rates of idiopathic inflammatory myopathies during the COVID-19 pandemic: a single-centre experience. Clin. Exp. Rheumatol. 41, 316–321 (2023).

    PubMed  Google Scholar 

  173. Allenbach, Y. et al. Different phenotypes in dermatomyositis associated with anti-MDA5 antibody: study of 121 cases. Neurology 95, e70–e78 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  174. Mehta, P., Machado, P. M. & Gupta, L. Understanding and managing anti-MDA 5 dermatomyositis, including potential COVID-19 mimicry. Rheumatol. Int. 41, 1021–1036 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Wang, G. et al. Presence of anti-MDA5 antibody and its value for the clinical assessment in patients with COVID-19: a retrospective cohort study. Front. Immunol. 12, 791348 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Ding, Y. & Ge, Y. Inflammatory myopathy following coronavirus disease 2019 vaccination: a systematic review. Front. Public. Health 10, 1007637 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  177. Roszkiewicz, J. & Smolewska, E. Kaleidoscope of autoimmune diseases in HIV infection. Rheumatol. Int. 36, 1481–1491 (2016).

    Article  CAS  PubMed  Google Scholar 

  178. Lloyd, T. E. et al. Overlapping features of polymyositis and inclusion body myositis in HIV-infected patients. Neurology 88, 1454–1460 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  179. Landon-Cardinal, O. et al. Expanding the spectrum of HIV-associated myopathy. J. Neurol. Neurosurg. Psychiatry 90, 1296–1298 (2019).

    Article  PubMed  Google Scholar 

  180. Nojima, T. et al. A case of polymyositis associated with hepatitis B infection. Clin. Exp. Rheumatol. 18, 86–88 (2000).

    CAS  PubMed  Google Scholar 

  181. Milisenda, J. C. et al. Polymyositis-associated to chronic hepatitis C virus infection. J. Neuromuscul. Dis. 1, S261–S262 (2014).

    Google Scholar 

  182. Uruha, A. et al. Hepatitis C virus infection in inclusion body myositis: a case-control study. Neurology 86, 211–217 (2016).

    Article  CAS  PubMed  Google Scholar 

  183. Peravali, R., Acharya, S., Raza, S. H., Pattanaik, D. & Randall, M. B. Dermatomyositis developed after exposure to Epstein-Barr virus infection and antibiotics use. Am. J. Med. Sci. 360, 402–405 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  184. Sakthivadivel, V. et al. Concurrent acute myositis and Guillain-Barre syndrome in Cytomegalovirus infection — a rare case report. BMC Infect. Dis. 20, 768 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  185. Oliver, N. D., Millar, A. & Pendleton, A. A case report on parvovirus B19 associated myositis. Case Rep. Rheumatol. 2012, 250537 (2012).

    PubMed  PubMed Central  Google Scholar 

  186. Megremis, S. et al. Analysis of human total antibody repertoires in TIF1γ autoantibody positive dermatomyositis. Commun. Biol. 4, 419 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Top 10 drugs 2019–20. Aust. Prescr. 43, 209 (2020).

  188. Audi, S. et al. The ‘top 100’ drugs and classes in England: an updated ‘starter formulary’ for trainee prescribers. Br. J. Clin. Pharmacol. 84, 2562–2571 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  189. Fuentes, A. V., Pineda, M. D. & Venkata, K. C. N. Comprehension of top 200 prescribed drugs in the us as a resource for pharmacy teaching, training and practice. Pharmacy 6, 43 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  190. Adhyaru, B. B. & Jacobson, T. A. Safety and efficacy of statin therapy. Nat. Rev. Cardiol. 15, 757–769 (2018).

    Article  CAS  PubMed  Google Scholar 

  191. Alfirevic, A. et al. Phenotype standardization for statin-induced myotoxicity. Clin. Pharmacol. Ther. 96, 470–476 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Ladislau, L., Arouche-Delaperche, L., Allenbach, Y. & Benveniste, O. Potential pathogenic role of anti-signal recognition protein and anti-3-hydroxy-3-methylglutaryl-CoA reductase antibodies in immune-mediated necrotizing myopathies. Curr. Rheumatol. Rep. 20, 56 (2018).

    Article  PubMed  Google Scholar 

  193. Abed, W., Abujbara, M., Batieha, A. & Ajlouni, K. Statin induced myopathy among patients attending the National Center for Diabetes, Endocrinology, & Genetics. Ann. Med. Surg. 74, 103304 (2022).

    Article  Google Scholar 

  194. Pasternak, R. C. et al. ACC/AHA/NHLBI clinical advisory on the use and safety of statins. Circulation 106, 1024–1028 (2002).

    Article  PubMed  Google Scholar 

  195. Banach, M. et al. Statin intolerance — an attempt at a unified definition. Position paper from an International Lipid Expert Panel. Arch. Med. Sci. 11, 1–23 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  196. Mueller, A. M. et al. The risk of muscular events among new users of hydrophilic and lipophilic statins: an observational cohort study. J. Gen. Intern. Med. 36, 2639–2647 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  197. Cholesterol Treatment Trialists’ Collaboration. Effect of statin therapy on muscle symptoms: an individual participant data meta-analysis of large-scale, randomised, double-blind trials. Lancet 400, 832–845 (2022).

    Article  Google Scholar 

  198. McClure, D. L., Valuck, R. J., Glanz, M., Murphy, J. R. & Hokanson, J. E. Statin and statin-fibrate use was significantly associated with increased myositis risk in a managed care population. J. Clin. Epidemiol. 60, 812–818 (2007).

    Article  PubMed  Google Scholar 

  199. Mancini, G. B. et al. Diagnosis, prevention, and management of statin adverse effects and intolerance: Canadian consensus working group update (2016). Can. J. Cardiol. 32, S35–65 (2016).

    Article  PubMed  Google Scholar 

  200. Bagchi, S., Yuan, R. & Engleman, E. G. Immune checkpoint inhibitors for the treatment of cancer: clinical impact and mechanisms of response and resistance. Annu. Rev. Pathol. 16, 223–249 (2021).

    Article  CAS  PubMed  Google Scholar 

  201. Ramos-Casals, M. et al. Immune-related adverse events of checkpoint inhibitors. Nat. Rev. Dis. Prim. 6, 38 (2020).

    Article  PubMed  Google Scholar 

  202. Chennamadhavuni, A., Abushahin, L., Jin, N., Presley, C. J. & Manne, A. Risk factors and biomarkers for immune-related adverse events: a practical guide to identifying high-risk patients and rechallenging immune checkpoint inhibitors. Front. Immunol. 13, 779691 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Calabrese, L. H., Calabrese, C. & Cappelli, L. C. Rheumatic immune-related adverse events from cancer immunotherapy. Nat. Rev. Rheumatol. 14, 569–579 (2018).

    Article  PubMed  Google Scholar 

  204. Hamada, N. et al. Incidence and distinct features of immune checkpoint inhibitor-related myositis from idiopathic inflammatory myositis: a single-center experience with systematic literature review and meta-analysis. Front. Immunol. 12, 803410 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Saygin, D., Ghosh, N. & Reid, P. Immune checkpoint inhibitor-associated myositis: a distinct form of inflammatory myopathy. J. Clin. Rheumatol. 28, 367–373 (2022).

    Article  PubMed  Google Scholar 

  206. Shelly, S. et al. Immune checkpoint inhibitor-associated myopathy: a clinicoseropathologically distinct myopathy. Brain Commun. 2, fcaa181 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  207. Longinow, J. et al. Immune checkpoint inhibitor induced myocarditis, myasthenia gravis, and myositis: a single-center case series. Cancer Med. 12, 2281–2289 (2023).

    Article  CAS  PubMed  Google Scholar 

  208. Hill, C. L. et al. Frequency of specific cancer types in dermatomyositis and polymyositis: a population-based study. Lancet 357, 96–100 (2001).

    Article  CAS  PubMed  Google Scholar 

  209. Lilleker, J. B. et al. The EuroMyositis registry: an international collaborative tool to facilitate myositis research. Ann. Rheum. Dis. 77, 30–39 (2018).

    Article  PubMed  Google Scholar 

  210. Sung, Y. K. et al. Temporal relationship between idiopathic inflammatory myopathies and malignancies and its mortality: a nationwide population-based study. Clin. Rheumatol. 39, 3409–3416 (2020).

    Article  PubMed  Google Scholar 

  211. Dani, L., Ian Che, W., Lundberg, I. E., Hellgren, K. & Holmqvist, M. Overall and site-specific cancer before and after diagnosis of idiopathic inflammatory myopathies: a nationwide study 2002–2016. Semin. Arthritis Rheum. 51, 331–337 (2021).

    Article  PubMed  Google Scholar 

  212. Stubgen, J. P. Juvenile dermatomyositis/polymyositis and lymphoma. J. Neurol. Sci. 377, 19–24 (2017).

    Article  PubMed  Google Scholar 

  213. Hida, A. et al. Anti-TIF1-γ antibody and cancer-associated myositis: a clinicohistopathologic study. Neurology 87, 299–308 (2016).

    Article  CAS  PubMed  Google Scholar 

  214. Oldroyd, A. et al. The temporal relationship between cancer and adult onset anti-transcriptional intermediary factor 1 antibody-positive dermatomyositis. Rheumatology 58, 650–655 (2019).

    Article  PubMed  Google Scholar 

  215. De Vooght, J. et al. Anti-TIF1-γ autoantibodies: warning lights of a tumour autoantigen. Rheumatology 59, 469–477 (2020).

    Article  PubMed  Google Scholar 

  216. Fiorentino, D. et al. Anti-CCAR1 autoantibodies are specific for anti-TIF1γ-positive dermatomyositis and decrease cancer risk relative to the general population. Arthritis Rheumatol. 75, 1238–1245 (2023).

    Article  CAS  PubMed  Google Scholar 

  217. Hosono, Y. et al. Coexisting autoantibodies against transcription factor Sp4 are associated with decreased cancer risk in patients with dermatomyositis with anti-TIF1γ autoantibodies. Ann. Rheum. Dis. 82, 246–252 (2023).

    Article  CAS  PubMed  Google Scholar 

  218. Sherman, M. A. et al. Anti-Sp4 autoantibodies co-occur with anti-TIF1 and are associated with distinct clinical features and immunogenetic risk factors in juvenile myositis. Arthritis Rheumatol. 75, 1668–1677(2023).

  219. Limaye, V. et al. The incidence and associations of malignancy in a large cohort of patients with biopsy-determined idiopathic inflammatory myositis. Rheumatol. Int. 33, 965–971 (2013).

    Article  PubMed  Google Scholar 

  220. Lee, S. J. et al. Cancer risks in Korean patients with myositis: comparison between cancers related and unrelated to myositis activity. Ann. Rheum. Dis. 74, 832 (2015).

    Article  Google Scholar 

  221. Liu, Y. et al. Characteristics and predictors of malignancy in dermatomyositis: analysis of 239 patients from northern China. Oncol. Lett. 16, 5960–5968 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  222. Okada, S. et al. Global surface ultraviolet radiation intensity may modulate the clinical and immunologic expression of autoimmune muscle disease. Arthritis Rheum. 48, 2285–2293 (2003).

    Article  PubMed  Google Scholar 

  223. Hossain, M. M. et al. The geospatial distribution of myositis and its phenotypes in the united states and associations with roadways: findings from a national myositis patient registry. Front. Med. 9, 842586 (2022).

    Article  Google Scholar 

  224. Nishina, N., Sato, S., Masui, K., Gono, T. & Kuwana, M. Seasonal and residential clustering at disease onset of anti-MDA5-associated interstitial lung disease. RMD Open. 6, e001202 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  225. So, H. et al. Seasonal variation in idiopathic inflammatory myopathies incidence and presentation: a retrospective study in Beijing and Hong Kong. Ann. Rheum. Dis. 79, 1601–1602 (2020).

    Article  Google Scholar 

  226. Toquet, S. et al. The seasonality of dermatomyositis associated with anti-MDA5 antibody: an argument for a respiratory viral trigger. Autoimmun. Rev. 20, 102788 (2021).

    Article  CAS  PubMed  Google Scholar 

  227. Albayda, J. et al. Antinuclear matrix protein 2 autoantibodies and edema, muscle disease, and malignancy risk in dermatomyositis patients. Arthritis Care Res. 69, 1771–1776 (2017).

    Article  CAS  Google Scholar 

  228. Greenberg, S. A. Inclusion body myositis: clinical features and pathogenesis. Nat. Rev. Rheumatol. 15, 257–272 (2019).

    Article  PubMed  Google Scholar 

  229. Gunawardena, H. The clinical features of myositis-associated autoantibodies: a review. Clin. Rev. Allergy Immunol. 52, 45–57 (2017).

    Article  CAS  PubMed  Google Scholar 

  230. Lundberg, I. E., de Visser, M. & Werth, V. P. Classification of myositis. Nat. Rev. Rheumatol. 14, 269–278 (2018).

    Article  PubMed  Google Scholar 

  231. McHugh, N. J. Ro52, myositis, and interstitial lung disease. J. Rheumatol. 50, 161–163 (2023).

    Article  PubMed  Google Scholar 

  232. Satoh, M., Tanaka, S., Ceribelli, A., Calise, S. J. & Chan, E. K. A comprehensive overview on myositis-specific antibodies: new and old biomarkers in idiopathic inflammatory myopathy. Clin. Rev. Allergy Immunol. 52, 1–19 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  233. Monaghan, M. et al. Inflammatory myositis secondary to anti-retroviral therapy in a child; case report and review of the literature. J. Neuromuscul. Dis. 8, 1089–1095 (2021).

    Article  PubMed  Google Scholar 

  234. Nofal, A. & El-Din, E. S. Hydroxyurea-induced dermatomyositis: true amyopathic dermatomyositis or dermatomyositis-like eruption? Int. J. Dermatol. 51, 535–541 (2012).

    Article  PubMed  Google Scholar 

  235. Hahn, M., Sriharan, K. & McFarland, M. S. Gemfibrozil-induced myositis in a patient with normal renal function. Ann. Pharmacother. 44, 211–214 (2010).

    Article  PubMed  Google Scholar 

  236. Lim, A. Y., Kek, P. C. & Soh, A. W. Carbimazole-induced myositis in the treatment of Graves’ disease: a complication in genetically susceptible individuals? Singap. Med. J. 54, e133–136 (2013).

    Article  Google Scholar 

  237. Syrmou, V. et al. COVID-19 vaccine-associated myositis: a comprehensive review of the literature driven by a case report. Immunol. Res. 71, 537–546 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  238. Ferri, C. et al. Polymyositis following pandemic influenza A (H1N1) and 2009–10 seasonal trivalent vaccines. Case Rep. Rheumatol. 2012, 836930 (2012).

    PubMed  PubMed Central  Google Scholar 

  239. Altman, A., Szyper-Kravitz, M. & Shoenfeld, Y. HBV vaccine and dermatomyositis: is there an association? Rheumatol. Int. 28, 609–612 (2008).

    Article  PubMed  Google Scholar 

  240. Chanbour, H., Jiblawi, A., Aboudalle, A., Alalman, O. & Chahine Elsett, Z. Association of silicosis and dermatomyositis: case report and literature review. Cureus 13, e19875 (2021).

    PubMed  PubMed Central  Google Scholar 

  241. O’Hanlon, T. et al. Immunogenetic differences between Caucasian women with and those without silicone implants in whom myositis develops. Arthritis Rheum. 50, 3646–3650 (2004).

    Article  PubMed  Google Scholar 

  242. Selva-O’Callaghan, A. et al. Silicone gel filled breast implants and dermatomyositis. Clin. Exp. Rheumatol. 22, 376 (2004).

    PubMed  Google Scholar 

  243. Limaye, S. & Limaye, V. Clinical characteristics of myositis associated with graft-versus-host disease. Curr. Rheumatol. Rep. 23, 30 (2021).

    Article  CAS  PubMed  Google Scholar 

  244. Reed, A. M., McNallan, K., Wettstein, P., Vehe, R. & Ober, C. Does HLA-dependent chimerism underlie the pathogenesis of juvenile dermatomyositis? J. Immunol. 172, 5041–5046 (2004).

    Article  CAS  PubMed  Google Scholar 

  245. Allanore, Y. et al. Systemic sclerosis. Nat. Rev. Dis. Prim. 1, 15002 (2015).

    Article  PubMed  Google Scholar 

  246. Brito-Zeron, P. et al. Sjogren syndrome. Nat. Rev. Dis. Prim. 2, 16047 (2016).

    Article  PubMed  Google Scholar 

  247. Crossfield, S. S. R., Marzo-Ortega, H., Kingsbury, S. R., Pujades-Rodriguez, M. & Conaghan, P. G. Changes in ankylosing spondylitis incidence, prevalence and time to diagnosis over two decades. RMD Open. 7, e001888 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  248. Gladman, D. D., Antoni, C., Mease, P., Clegg, D. O. & Nash, P. Psoriatic arthritis: epidemiology, clinical features, course, and outcome. Ann. Rheum. Dis. 64, ii14–17 (2005).

    PubMed  PubMed Central  Google Scholar 

  249. Watts, R. A., Hatemi, G., Burns, J. C. & Mohammad, A. J. Global epidemiology of vasculitis. Nat. Rev. Rheumatol. 18, 22–34 (2022).

    Article  PubMed  Google Scholar 

  250. Safiri, S. et al. Global, regional and national burden of rheumatoid arthritis 1990–2017: a systematic analysis of the Global Burden of Disease study 2017. Ann. Rheum. Dis. 78, 1463–1471 (2019).

    Article  PubMed  Google Scholar 

  251. Connors, G. R., Christopher-Stine, L., Oddis, C. V. & Danoff, S. K. Interstitial lung disease associated with the idiopathic inflammatory myopathies: what progress has been made in the past 35 years? Chest 138, 1464–1474 (2010).

    Article  PubMed  Google Scholar 

  252. Solomon, J., Swigris, J. J. & Brown, K. K. Myositis-related interstitial lung disease and antisynthetase syndrome. J. Bras. Pneumol. 37, 100–109 (2011).

    Article  PubMed  Google Scholar 

  253. Prieto-Pena, D. et al. Epidemiological and genetic features of anti-3-hydroxy-3-methylglutaryl-CoA reductase necrotizing myopathy: single-center experience and literature review. Eur. J. Intern. Med. 101, 86–92 (2022).

    Article  CAS  PubMed  Google Scholar 

  254. Shelly, S. et al. Incidence and prevalence of immune-mediated necrotizing myopathy in adults in Olmsted County, Minnesota. Muscle Nerve 65, 541–546 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  255. Mohassel, P. & Mammen, A. L. Anti-HMGCR myopathy. J. Neuromuscul. Dis. 5, 11–20 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  256. Adler, B., Christopher-Stine, L. & Tiniakou, E. Mushroom supplements triggering a flare of HMGCR immune mediated necrotising myopathy. BMJ Case Rep. 15, e248880 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  257. Mueller, P. S. Symptomatic myopathy due to red yeast rice. Ann. Intern. Med. 145, 474–475 (2006).

    Article  PubMed  Google Scholar 

  258. Jeng, K. C., Chen, C. S., Fang, Y. P., Hou, R. C. & Chen, Y. S. Effect of microbial fermentation on content of statin, GABA, and polyphenols in Pu-Erh tea. J. Agric. Food Chem. 55, 8787–8792 (2007).

    Article  CAS  PubMed  Google Scholar 

  259. Yaworski, A. M., Blyumin, M., Chang, T., Mammen, A. L. & Greene, M. Necrotizing myopathy with elevated anti-HMGCR antibodies following exposure to the supplement Bacopa. Muscle Nerve 67, E1–E3 (2023).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by the NIHR Manchester Biomedical Research Centre (NIHR203308). The views expressed are those of the authors and not necessarily those of the NIHR or the Department of Health and Social Care. T.K. is supported by the Ken Muirden ARA Fellowship as part of the 2023 Arthritis Australia National Research Program, and an Australian Government Postgraduate Research Training Program Scholarship.

Author information

Authors and Affiliations

Authors

Contributions

All authors researched data and contributed substantially to discussion of the content. T.K. wrote the article. All authors contributed to reviewing and/or editing the manuscript before submission.

Corresponding author

Correspondence to Hector Chinoy.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Rheumatology thanks Teerin Liewluck, Julie Paik and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khoo, T., Lilleker, J.B., Thong, B.YH. et al. Epidemiology of the idiopathic inflammatory myopathies. Nat Rev Rheumatol 19, 695–712 (2023). https://doi.org/10.1038/s41584-023-01033-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41584-023-01033-0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing