Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

TNF and TNF receptors as therapeutic targets for rheumatic diseases and beyond

Abstract

The cytokine TNF signals via two distinct receptors, TNF receptor 1 (TNFR1) and TNFR2, and is a central mediator of various immune-mediated diseases. Indeed, TNF-neutralizing biologic drugs have been in clinical use for the treatment of many inflammatory pathological conditions, including various rheumatic diseases, for decades. TNF has pleiotropic effects and can both promote and inhibit pro-inflammatory processes. The integrated net effect of TNF in vivo is a result of cytotoxic TNFR1 signalling and the stimulation of pro-inflammatory processes mediated by TNFR1 and TNFR2 and also TNFR2-mediated anti-inflammatory and tissue-protective activities. Inhibition of the beneficial activities of TNFR2 might explain why TNF-neutralizing drugs, although highly effective in some diseases, have limited benefit in the treatment of other TNF-associated pathological conditions (such as graft-versus-host disease) or even worsen the pathological condition (such as multiple sclerosis). Receptor-specific biologic drugs have the potential to tip the balance from TNFR1-mediated activities to TNFR2-mediated activities and enable the treatment of diseases that do not respond to current TNF inhibitors. Accordingly, a variety of reagents have been developed that either selectively inhibit TNFR1 or selectively activate TNFR2. Several of these reagents have shown promise in preclinical studies and are now in, or approaching, clinical trials.

Key points

  • TNF is an important pleotropic cytokine that triggers complex immune-regulatory circuits of crucial relevance in tissue homeostasis as well as in many inflammatory diseases and pathological conditions.

  • The clinically approved TNF blockers inhibit activation of both the pro-inflammatory and cytotoxic TNF receptor 1 (TNFR1) and the largely anti-inflammatory and tissue-protective TNF receptor 2 (TNFR2).

  • TNFR2 promotes the expansion of regulatory T cells and enhances the suppressive activity of these cells, and is thus a promising therapeutic target in the treatment of autoimmunity.

  • Biologic drugs that selectively and/or preferentially interfere with TNFR1 activation are in clinical trials and are effective in various preclinical disease models, including models of autoimmune disease.

  • Various ligand-based and antibody-based TNFR2 agonists are therapeutically effective in preclinical disease models including collagen-induced arthritis.

  • TNF receptor-targeting reagents with conditional and/or local activity are in early preclinical development and have the potential to expand the spectrum of applications of TNF receptor-regulating biologics in the future.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Model of TNFR1 and TNFR2 activation.
Fig. 2: The TNF–TNF receptor signalling network.
Fig. 3: Domain architecture of selected approved and experimental biologic drugs that target TNFR1 or TNFR2.
Fig. 4: Possible modes of action of anti-TNFR2-specific IgG antibodies.

Similar content being viewed by others

References

  1. Medler, J., Kucka, K. & Wajant, H. Tumor necrosis factor receptor 2 (TNFR2): an emerging target in cancer therapy. Cancers 14, 2603 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Medler, J. & Wajant, H. Tumor necrosis factor receptor-2 (TNFR2): an overview of an emerging drug target. Expert Opin. Ther. Targets 23, 295–307 (2019).

    Article  CAS  PubMed  Google Scholar 

  3. Rolski, F. & Błyszczuk, P. Complexity of TNF-α signaling in heart disease. J. Clin. Med. 9, 3267 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Salomon, B. L. Insights into the biology and therapeutic implications of TNF and regulatory T cells. Nat. Rev. Rheumatol. 17, 487–504 (2021).

    Article  PubMed  Google Scholar 

  5. Zahid, M. et al. Tumor necrosis factor alpha blockade and multiple sclerosis: exploring new avenues. Cureus 13, e18847 (2021).

    PubMed  PubMed Central  Google Scholar 

  6. Urquhart, L. Top companies and drugs by sales in 2021. Nat. Rev. Drug. Discov. 21, 251 (2022).

    Article  CAS  PubMed  Google Scholar 

  7. Hurrell, B. P. et al. TNFR2 signaling enhances ILC2 survival, function, and induction of airway hyperreactivity. Cell Rep. 29, 4509–4524.e4505 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Al-Lamki, R. S. et al. TL1A both promotes and protects from renal inflammation and injury. J. Am. Soc. Nephrol. 19, 953–960 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Suto, T. et al. TNFR2 is critical for TNF-induced rheumatoid arthritis fibroblast-like synoviocyte inflammation. Rheumatology 61, 4535–4546 (2022).

    Article  CAS  PubMed  Google Scholar 

  10. Wang, F. et al. IFN-γ-induced TNFR2 expression is required for TNF-dependent intestinal epithelial barrier dysfunction. Gastroenterology 131, 1153–1163 (2006).

    Article  CAS  PubMed  Google Scholar 

  11. Winzen, R., Wallach, D., Kemper, O., Resch, K. & Holtmann, H. Selective up-regulation of the 75-kDa tumor necrosis factor (TNF) receptor and its mRNA by TNF and IL-1. J. Immunol. 150, 4346–4353 (1993).

    Article  CAS  PubMed  Google Scholar 

  12. Blaser, H., Dostert, C., Mak, T. W. & Brenner, D. TNF and ROS crosstalk in inflammation. Trends Cell Biol. 26, 249–261 (2016).

    Article  CAS  PubMed  Google Scholar 

  13. van Loo, G. & Bertrand, M. J. M. Death by TNF: a road to inflammation. Nat. Rev. Immunol. 23, 289–303 (2023).

    Article  PubMed  Google Scholar 

  14. Wajant, H., Pfizenmaier, K. & Scheurich, P. Tumor necrosis factor signaling. Cell Death Differ. 10, 45–65 (2003).

    Article  CAS  PubMed  Google Scholar 

  15. Steeland, S., Libert, C. & Vandenbroucke, R. E. A new venue of TNF targeting. Int. J. Mol. Sci. 19, 1442 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Chandrasekharan, U. M. et al. TNFR2 depletion reduces psoriatic inflammation in mice by downregulating specific dendritic cell populations in lymph nodes and inhibiting IL-23/IL-17 pathways. J. Invest. Dermatol. 142, 2159–2172.e2159 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Chandrasekharan, U. M. et al. Tumor necrosis factor alpha (TNF-α) receptor-II is required for TNF-α-induced leukocyte-endothelial interaction in vivo. Blood 109, 1938–1944 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Funk, J. O. et al. Cutting edge: resistance to apoptosis and continuous proliferation of dendritic cells deficient for TNF receptor-1. J. Immunol. 165, 4792–4796 (2000).

    Article  CAS  PubMed  Google Scholar 

  19. Maney, N. J., Reynolds, G., Krippner-Heidenreich, A. & Hilkens, C. M. U. Dendritic cell maturation and survival are differentially regulated by TNFR1 and TNFR2. J. Immunol. 193, 4914–4923 (2014).

    Article  CAS  PubMed  Google Scholar 

  20. Calligaris, M. et al. Strategies to target ADAM17 in disease: from its discovery to the iRhom revolution. Molecules 26, 944 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Grell, M. et al. The transmembrane form of tumor necrosis factor is the prime activating ligand of the 80 kDa tumor necrosis factor receptor. Cell 83, 793–802 (1995).

    Article  CAS  PubMed  Google Scholar 

  22. Grell, M., Wajant, H., Zimmermann, G. & Scheurich, P. The type 1 receptor (CD120a) is the high-affinity receptor for soluble tumor necrosis factor. Proc. Natl Acad. Sci. USA 95, 570–575 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Medler, J. et al. TNFRSF receptor-specific antibody fusion proteins with targeting controlled FcγR-independent agonistic activity. Cell Death Dis. 10, 224 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Browning, J. L. et al. Characterization of surface lymphotoxin forms. Use of specific monoclonal antibodies and soluble receptors. J. Immunol. 154, 33–46 (1995).

    Article  CAS  PubMed  Google Scholar 

  25. Kucka, K. et al. Membrane lymphotoxin-α2β is a novel tumor necrosis factor (TNF) receptor 2 (TNFR2) agonist. Cell Death Dis. 12, 360 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Young, J. et al. Lymphotoxin-αβ heterotrimers are cleaved by metalloproteinases and contribute to synovitis in rheumatoid arthritis. Cytokine 51, 78–86 (2010).

    Article  CAS  PubMed  Google Scholar 

  27. Mauri, D. N. et al. LIGHT, a new member of the TNF superfamily, and lymphotoxin α are ligands for herpesvirus entry mediator. Immunity 8, 21–30 (1998).

    Article  CAS  PubMed  Google Scholar 

  28. Banner, D. W. et al. Crystal structure of the soluble human 55 kd TNF receptor-human TNF β complex: implications for TNF receptor activation. Cell 73, 431–445 (1993).

    Article  CAS  PubMed  Google Scholar 

  29. Kucka, K. & Wajant, H. Receptor oligomerization and its relevance for signaling by receptors of the tumor necrosis factor receptor superfamily. Front. Cell Dev. Biol. 8, 615141 (2020).

    Article  PubMed  Google Scholar 

  30. Mukai, Y. et al. Solution of the structure of the TNF-TNFR2 complex. Sci. Signal. 3, ra83 (2010).

    Article  CAS  PubMed  Google Scholar 

  31. Chen, X. et al. Progranulin does not bind tumor necrosis factor (TNF) receptors and is not a direct regulator of TNF-dependent signaling or bioactivity in immune or neuronal cells. J. Neurosci. 33, 9202–9213 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Etemadi, N., Webb, A., Bankovacki, A., Silke, J. & Nachbur, U. Progranulin does not inhibit TNF and lymphotoxin-α signalling through TNF receptor 1. Immunol. Cell Biol. 91, 661–664 (2013).

    Article  CAS  PubMed  Google Scholar 

  33. Lang, I., Füllsack, S. & Wajant, H. Lack of evidence for a direct interaction of progranulin and tumor necrosis factor receptor-1 and tumor necrosis factor receptor-2 from cellular binding studies. Front. Immunol. 9, 793 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Tang, W. et al. The growth factor progranulin binds to TNF receptors and is therapeutic against inflammatory arthritis in mice. Science 332, 478–484 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Rauert, H. et al. Membrane tumor necrosis factor (TNF) induces p100 processing via TNF receptor-2 (TNFR2). J. Biol. Chem. 285, 7394–7404 (2010).

    Article  CAS  PubMed  Google Scholar 

  36. Schneider, P. et al. Conversion of membrane-bound Fas(CD95) ligand to its soluble form is associated with downregulation of its proapoptotic activity and loss of liver toxicity. J. Exp. Med. 187, 1205–1213 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Sheehan, K. C. et al. Monoclonal antibodies specific for murine p55 and p75 tumor necrosis factor receptors: identification of a novel in vivo role for p75. J. Exp. Med. 181, 607–617 (1995).

    Article  CAS  PubMed  Google Scholar 

  38. Gerspach, J. et al. Restoration of membrane TNF-like activity by cell surface targeting and matrix metalloproteinase-mediated processing of a TNF prodrug. Cell Death Differ. 13, 273–284 (2006).

    Article  CAS  PubMed  Google Scholar 

  39. Karathanasis, C. et al. Single-molecule imaging reveals the oligomeric state of functional TNFα-induced plasma membrane TNFR1 clusters in cells. Sci. Signal 13, eaax5647 (2020).

    Article  CAS  PubMed  Google Scholar 

  40. Krippner-Heidenreich, A. et al. Control of receptor-induced signaling complex formation by the kinetics of ligand/receptor interaction. J. Biol. Chem. 277, 44155–44163 (2002).

    Article  CAS  PubMed  Google Scholar 

  41. Chan, F. K. et al. A domain in TNF receptors that mediates ligand-independent receptor assembly and signaling. Science 288, 2351–2354 (2000).

    Article  CAS  PubMed  Google Scholar 

  42. Weinelt, N. et al. Quantitative single-molecule imaging of TNFR1 reveals zafirlukast as antagonist of TNFR1 clustering and TNFα-induced NF-ĸB signaling. J. Leukoc. Biol. 109, 363–371 (2021).

    Article  CAS  PubMed  Google Scholar 

  43. Prada, J. P. et al. A systems-biology model of the tumor necrosis factor (TNF) interactions with TNF receptor 1 and 2. Bioinformatics 37, 669–676 (2021).

    Article  CAS  PubMed  Google Scholar 

  44. Kupka, S., Reichert, M., Draber, P. & Walczak, H. Formation and removal of poly-ubiquitin chains in the regulation of tumor necrosis factor-induced gene activation and cell death. FEBS J. 283, 2626–2639 (2016).

    Article  CAS  PubMed  Google Scholar 

  45. Lafont, E. et al. TBK1 and IKKε prevent TNF-induced cell death by RIPK1 phosphorylation. Nat. Cell Biol. 20, 1389–1399 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Zhang, Q., Lenardo, M. J. & Baltimore, D. 30 years of NF-κB: a blossoming of relevance to human pathobiology. Cell 168, 37–57 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Sabio, G. & Davis, R. J. TNF and MAP kinase signalling pathways. Semin. Immunol. 26, 237–245 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Vandenabeele, P., Declercq, W., Van Herreweghe, F. & Vanden Berghe, T. The role of the kinases RIP1 and RIP3 in TNF-induced necrosis. Sci. Signal. 3, re4 (2010).

    Article  PubMed  Google Scholar 

  49. Wajant, H. & Siegmund, D. TNFR1 and TNFR2 in the control of the life and death balance of macrophages. Front. Cell Dev. Biol. 7, 91 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Yang, X. D. & Sun, S. C. Targeting signaling factors for degradation, an emerging mechanism for TRAF functions. Immunol. Rev. 266, 56–71 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Borghi, A. et al. The E3 ubiquitin ligases HOIP and cIAP1 are recruited to the TNFR2 signaling complex and mediate TNFR2-induced canonical NF-κB signaling. Biochem. Pharmacol. 153, 292–298 (2018).

    Article  CAS  PubMed  Google Scholar 

  52. Pan, S. et al. Etk/Bmx as a tumor necrosis factor receptor type 2-specific kinase: role in endothelial cell migration and angiogenesis. Mol. Cell Biol. 22, 7512–7523 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Zhang, R. et al. Etk/Bmx transactivates vascular endothelial growth factor 2 and recruits phosphatidylinositol 3-kinase to mediate the tumor necrosis factor-induced angiogenic pathway. J. Biol. Chem. 278, 51267–51276 (2003).

    Article  CAS  PubMed  Google Scholar 

  54. Pegoretti, V., Baron, W., Laman, J. D. & Eisel, U. L. M. Selective modulation of TNF-TNFRs signaling: insights for multiple sclerosis treatment. Front. Immunol. 9, 925 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Ji, W. et al. Both internalization and AIP1 association are required for tumor necrosis factor receptor 2-mediated JNK signaling. Arterioscler. Thromb. Vasc. Biol. 32, 2271–2279 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Calmon-Hamaty, F., Combe, B., Hahne, M. & Morel, J. Lymphotoxin α stimulates proliferation and pro-inflammatory cytokine secretion of rheumatoid arthritis synovial fibroblasts. Cytokine 53, 207–214 (2011).

    Article  CAS  PubMed  Google Scholar 

  57. Robak, T., Gladalska, A. & Stepień, H. The tumour necrosis factor family of receptors/ligands in the serum of patients with rheumatoid arthritis. Eur. Cytokine Netw. 9, 145–154 (1998).

    CAS  PubMed  Google Scholar 

  58. Kennedy, W. P. et al. Efficacy and safety of pateclizumab (anti-lymphotoxin-α) compared to adalimumab in rheumatoid arthritis: a head-to-head phase 2 randomized controlled study (The ALTARA Study). Arthritis Res. Ther. 16, 467 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Markey, K. A. et al. Soluble lymphotoxin is an important effector molecule in GVHD and GVL. Blood 115, 122–132 (2010).

    Article  CAS  PubMed  Google Scholar 

  60. Bingham, C. O. 3rd et al. Effectiveness and safety of etanercept in subjects with RA who have failed infliximab therapy: 16-week, open-label, observational study. Curr. Med. Res. Opin. 25, 1131–1142 (2009).

    Article  CAS  PubMed  Google Scholar 

  61. Buch, M. H. et al. Therapy of patients with rheumatoid arthritis: outcome of infliximab failures switched to etanercept. Arthritis Rheum. 57, 448–453 (2007).

    Article  CAS  PubMed  Google Scholar 

  62. Buch, M. H. et al. C-reactive protein as a predictor of infliximab treatment outcome in patients with rheumatoid arthritis: defining subtypes of nonresponse and subsequent response to etanercept. Arthritis Rheum. 52, 42–48 (2005).

    Article  CAS  PubMed  Google Scholar 

  63. Di Poi, E. et al. Switching to etanercept in patients with rheumatoid arthritis with no response to infliximab. Clin. Exp. Rheumatol. 25, 85–87 (2007).

    PubMed  Google Scholar 

  64. Fleischmann, R. et al. Infliximab efficacy in rheumatoid arthritis after an inadequate response to etanercept or adalimumab: results of a target-driven active switch study. Curr. Med. Res. Opin. 30, 2139–2149 (2014).

    Article  CAS  PubMed  Google Scholar 

  65. Arora, T. et al. Differences in binding and effector functions between classes of TNF antagonists. Cytokine 45, 124–131 (2009).

    Article  CAS  PubMed  Google Scholar 

  66. Mitoma, H. et al. Mechanisms for cytotoxic effects of anti-tumor necrosis factor agents on transmembrane tumor necrosis factor alpha-expressing cells: comparison among infliximab, etanercept, and adalimumab. Arthritis Rheum. 58, 1248–1257 (2008).

    Article  CAS  PubMed  Google Scholar 

  67. Ueda, N. et al. The cytotoxic effects of certolizumab pegol and golimumab mediated by transmembrane tumor necrosis factor α. Inflamm. Bowel Dis. 19, 1224–1231 (2013).

    Article  PubMed  Google Scholar 

  68. Mori, L., Iselin, S., De Libero, G. & Lesslauer, W. Attenuation of collagen-induced arthritis in 55-kDa TNF receptor type 1 (TNFR1)-IgG1-treated and TNFR1-deficient mice. J. Immunol. 157, 3178–3182 (1996).

    Article  CAS  PubMed  Google Scholar 

  69. Eugster, H. P. et al. Severity of symptoms and demyelination in MOG-induced EAE depends on TNFR1. Eur. J. Immunol. 29, 626–632 (1999).

    Article  CAS  PubMed  Google Scholar 

  70. Grine, L., Dejager, L., Libert, C. & Vandenbroucke, R. E. Dual inhibition of TNFR1 and IFNAR1 in imiquimod-induced psoriasiform skin inflammation in mice. J. Immunol. 194, 5094–5102 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Guinea-Viniegra, J. et al. TNF α αshedding and epidermal inflammation are controlled by Jun proteins. Genes. Dev. 23, 2663–2674 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. He, P. et al. Deletion of tumor necrosis factor death receptor inhibits amyloid beta generation and prevents learning and memory deficits in Alzheimer’s mice. J. Cell Biol. 178, 829–841 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Fontaine, V. et al. Neurodegenerative and neuroprotective effects of tumor Necrosis factor (TNF) in retinal ischemia: opposite roles of TNF receptor 1 and TNF receptor 2. J. Neurosci. 22, Rc216 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Duerrschmid, C. et al. TNF receptor 1 signaling is critically involved in mediating angiotensin-II-induced cardiac fibrosis. J. Mol. Cell Cardiol. 57, 59–67 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Monden, Y. et al. Tumor necrosis factor-α is toxic via receptor 1 and protective via receptor 2 in a murine model of myocardial infarction. Am. J. Physiol. Heart Circ. Physiol. 293, H743–H753 (2007).

    Article  CAS  PubMed  Google Scholar 

  76. Acton, R. D. et al. Differential sensitivity to Escherichia coli infection in mice lacking tumor necrosis factor p55 or interleukin-1 p80 receptors. Arch. Surg. 131, 1216–1221 (1996).

    Article  CAS  PubMed  Google Scholar 

  77. Amar, S. et al. Tumor necrosis factor (TNF)-induced cutaneous necrosis is mediated by TNF receptor 1. J. Inflamm. 47, 180–189 (1995).

    CAS  PubMed  Google Scholar 

  78. Nowak, M. et al. LPS-induced liver injury in D-galactosamine-sensitized mice requires secreted TNF-α and the TNF-p55 receptor. Am. J. Physiol. Regul. Integr. Comp. Physiol. 278, R1202–R1209 (2000).

    Article  CAS  PubMed  Google Scholar 

  79. Shimizu, S. et al. Liver injury induced by lipopolysaccharide is mediated by TNFR-1 but not by TNFR-2 or Fas in mice. Hepatol. Res. 31, 136–142 (2005).

    Article  CAS  PubMed  Google Scholar 

  80. Moulin, M. et al. IAPs limit activation of RIP kinases by TNF receptor 1 during development. EMBO J. 31, 1679–1691 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Newton, K. et al. Cleavage of RIPK1 by caspase-8 is crucial for limiting apoptosis and necroptosis. Nature 574, 428–431 (2019).

    Article  CAS  PubMed  Google Scholar 

  82. Piao, X. et al. c-FLIP maintains tissue homeostasis by preventing apoptosis and programmed necrosis. Sci. Signal. 5, ra93 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  83. Rosenfeld, M. E., Prichard, L., Shiojiri, N. & Fausto, N. Prevention of hepatic apoptosis and embryonic lethality in RelA/TNFR-1 double knockout mice. Am. J. Pathol. 156, 997–1007 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Steed, P. M. et al. Inactivation of TNF signaling by rationally designed dominant-negative TNF variants. Science 301, 1895–1898 (2003).

    Article  CAS  PubMed  Google Scholar 

  85. Zalevsky, J. et al. Dominant-negative inhibitors of soluble TNF attenuate experimental arthritis without suppressing innate immunity to infection. J. Immunol. 179, 1872–1883 (2007).

    Article  CAS  PubMed  Google Scholar 

  86. Barnum, C. J. et al. Peripheral administration of the selective inhibitor of soluble tumor necrosis factor (TNF) XPro®1595 attenuates nigral cell loss and glial activation in 6-OHDA hemiparkinsonian rats. J. Parkinsons Dis. 4, 349–360 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Brambilla, R. et al. Inhibition of soluble tumour necrosis factor is therapeutic in experimental autoimmune encephalomyelitis and promotes axon preservation and remyelination. Brain 134, 2736–2754 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  88. Cavanagh, C. et al. Inhibiting tumor necrosis factor-α before amyloidosis prevents synaptic deficits in an Alzheimer’s disease model. Neurobiol. Aging 47, 41–49 (2016).

    Article  CAS  PubMed  Google Scholar 

  89. Clausen, B. H. et al. Systemically administered anti-TNF therapy ameliorates functional outcomes after focal cerebral ischemia. J. Neuroinflammation 11, 203 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  90. Cueva Vargas, J. L. et al. Soluble tumor necrosis factor α promotes retinal ganglion cell death in glaucoma via calcium-permeable AMPA receptor activation. J. Neurosci. 35, 12088–12102 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  91. Griepke, S. et al. Selective inhibition of soluble tumor necrosis factor signaling reduces abdominal aortic aneurysm progression. Front. Cardiovasc. Med. 9, 942342 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Hsiao, H. Y. et al. Inhibition of soluble tumor necrosis factor is therapeutic in Huntington’s disease. Hum. Mol. Genet. 23, 4328–4344 (2014).

    Article  CAS  PubMed  Google Scholar 

  93. Huang, S. C., Lee, C. T. & Chung, B. C. Tumor necrosis factor suppresses NR5A2 activity and intestinal glucocorticoid synthesis to sustain chronic colitis. Sci. Signal. 7, ra20 (2014).

    Article  PubMed  Google Scholar 

  94. Karamita, M. et al. Therapeutic inhibition of soluble brain TNF promotes remyelination by increasing myelin phagocytosis by microglia. JCI Insight 2, e87455 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  95. Maillet, I. et al. Allergic lung inflammation is mediated by soluble tumor necrosis factor (TNF) and attenuated by dominant-negative TNF biologics. Am. J. Respir. Cell Mol. Biol. 45, 731–739 (2011).

    Article  CAS  PubMed  Google Scholar 

  96. Novrup, H. G. et al. Central but not systemic administration of XPro1595 is therapeutic following moderate spinal cord injury in mice. J. Neuroinflammation 11, 159 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  97. Olleros, M. L. et al. Dominant-negative tumor necrosis factor protects from Mycobacterium bovis bacillus Calmette Guérin (BCG) and endotoxin-induced liver injury without compromising host immunity to BCG and Mycobacterium tuberculosis. J. Infect. Dis. 199, 1053–1063 (2009).

    Article  CAS  PubMed  Google Scholar 

  98. Randhi, R., Damon, M. & Dixon, K. J. Selective inhibition of soluble TNF using XPro1595 relieves pain and attenuates cerulein-induced pathology in mice. BMC Gastroenterol. 21, 243 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Sobo-Vujanovic, A. et al. Inhibition of soluble tumor necrosis factor prevents chemically induced carcinogenesis in mice. Cancer Immunol. Res. 4, 441–451 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Chou, R. C., Kane, M., Ghimire, S., Gautam, S. & Gui, J. Treatment for rheumatoid arthritis and risk of Alzheimer’s disease: a nested case-control analysis. CNS Drugs 30, 1111–1120 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Zhou, M., Xu, R., Kaelber, D. C. & Gurney, M. E. Tumor Necrosis Factor (TNF) blocking agents are associated with lower risk for Alzheimer’s disease in patients with rheumatoid arthritis and psoriasis. PLoS One 15, e0229819 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. US National Library of Medicine. ClinicalTrials.gov. https://clinicaltrials.gov/ct2/show/NCT05522387 (2022).

  103. US National Library of Medicine. ClinicalTrials.gov. https://clinicaltrials.gov/ct2/show/NCT05318976 (2023).

  104. Shibata, H. et al. Creation and X-ray structure analysis of the tumor necrosis factor receptor-1-selective mutant of a tumor necrosis factor-α antagonist. J. Biol. Chem. 283, 998–1007 (2008).

    Article  CAS  PubMed  Google Scholar 

  105. Nomura, T. et al. Therapeutic effect of PEGylated TNFR1-selective antagonistic mutant TNF in experimental autoimmune encephalomyelitis mice. J. Control. Rel. 149, 8–14 (2011).

    Article  CAS  Google Scholar 

  106. Shibata, H. et al. The treatment of established murine collagen-induced arthritis with a TNFR1-selective antagonistic mutant TNF. Biomaterials 30, 6638–6647 (2009).

    Article  CAS  PubMed  Google Scholar 

  107. Thoma, B., Grell, M., Pfizenmaier, K. & Scheurich, P. Identification of a 60-kD tumor necrosis factor (TNF) receptor as the major signal transducing component in TNF responses. J. Exp. Med. 172, 1019–1023 (1990).

    Article  CAS  PubMed  Google Scholar 

  108. Richter, F., Seifert, O., Herrmann, A., Pfizenmaier, K. & Kontermann, R. E. Improved monovalent TNF receptor 1-selective inhibitor with novel heterodimerizing Fc. MAbs 11, 653–665 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  109. Zettlitz, K. A. et al. ATROSAB, a humanized antagonistic anti-tumor necrosis factor receptor one-specific antibody. MAbs 2, 639–647 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  110. Richter, F. et al. The TNFR1 antagonist atrosimab is therapeutic in mouse models of acute and chronic inflammation. Front. Immunol. 12, 705485 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. US National Library of Medicine. ClinicalTrials.gov. https://clinicaltrials.gov/ct2/show/NCT04650126 (2022).

  112. US National Library of Medicine. ClinicalTrials.gov, https://clinicaltrials.gov/ct2/show/NCT01476046 (2017).

  113. Holland, M. C. et al. Autoantibodies to variable heavy (VH) chain Ig sequences in humans impact the safety and clinical pharmacology of a VH domain antibody antagonist of TNF-α receptor 1. J. Clin. Immunol. 33, 1192–1203 (2013).

    Article  CAS  PubMed  Google Scholar 

  114. US National Library of Medicine. ClinicalTrials.gov. https://clinicaltrials.gov/ct2/show/NCT01818024 (2017).

  115. Cordy, J. C. et al. Specificity of human anti-variable heavy (VH) chain autoantibodies and impact on the design and clinical testing of a VH domain antibody antagonist of tumour necrosis factor-α receptor 1. Clin. Exp. Immunol. 182, 139–148 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. US National Library of Medicine. ClinicalTrials.gov, https://clinicaltrials.gov/ct2/show/NCT01587807 (2019).

  117. Proudfoot, A. et al. Novel anti-tumour necrosis factor receptor-1 (TNFR1) domain antibody prevents pulmonary inflammation in experimental acute lung injury. Thorax 73, 723–730 (2018).

    Article  PubMed  Google Scholar 

  118. Steeland, S. et al. Generation and characterization of small single domain antibodies inhibiting human tumor necrosis factor receptor 1. J. Biol. Chem. 290, 4022–4037 (2015).

    Article  CAS  PubMed  Google Scholar 

  119. Steeland, S. et al. TNFR1 inhibition with a nanobody protects against EAE development in mice. Sci. Rep. 7, 13646 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  120. Deng, G. M., Liu, L. & Tsokos, G. C. Targeted tumor necrosis factor receptor I preligand assembly domain improves skin lesions in MRL/lpr mice. Arthritis Rheum. 62, 2424–2431 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Deng, G. M., Zheng, L., Chan, F. K. & Lenardo, M. Amelioration of inflammatory arthritis by targeting the pre-ligand assembly domain of tumor necrosis factor receptors. Nat. Med. 11, 1066–1072 (2005).

    Article  CAS  PubMed  Google Scholar 

  122. Wang, Y. L. et al. Targeting pre-ligand assembly domain of TNFR1 ameliorates autoimmune diseases — an unrevealed role in downregulation of Th17 cells. J. Autoimmun. 37, 160–170 (2011).

    Article  CAS  PubMed  Google Scholar 

  123. Murali, R. et al. Disabling TNF receptor signaling by induced conformational perturbation of tryptophan-107. Proc. Natl Acad. Sci. USA 102, 10970–10975 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Rowe, R. K. et al. Novel TNF receptor-1 inhibitors identified as potential therapeutic candidates for traumatic brain injury. J. Neuroinflammation 15, 154 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  125. Chen, S. et al. Discovery of novel ligands for TNF-α and TNF Receptor-1 through structure-based virtual screening and biological assay. J. Chem. Inf. Model. 57, 1101–1111 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Lo, C. H. et al. Noncompetitive inhibitors of TNFR1 probe conformational activation states. Sci. Signal. 12, eaav5637 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  127. Lo, C. H. et al. An innovative high-throughput screening approach for discovery of small molecules that inhibit TNF receptors. SLAS Discov. 22, 950–961 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. de Kivit, S. et al. Stable human regulatory T cells switch to glycolysis following TNF receptor 2 costimulation. Nat. Metab. 2, 1046–1061 (2020).

    Article  PubMed  Google Scholar 

  129. Lubrano di Ricco, M. et al. Tumor necrosis factor receptor family costimulation increases regulatory T-cell activation and function via NF-κB. Eur. J. Immunol. 50, 972–985 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Santinon, F. et al. Involvement of tumor necrosis factor receptor type II in FoxP3 stability and as a marker of Treg cells specifically expanded by anti-tumor necrosis factor treatments in rheumatoid arthritis. Arthritis Rheumatol. 72, 576–587 (2020).

    Article  CAS  PubMed  Google Scholar 

  131. Tseng, W. Y. et al. TNF receptor 2 signaling prevents DNA methylation at the Foxp3 promoter and prevents pathogenic conversion of regulatory T cells. Proc. Natl Acad. Sci. USA 116, 21666–21672 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Hövelmeyer, N., Schmidt-Supprian, M. & Ohnmacht, C. NF-κB in control of regulatory T cell development, identity, and function. J. Mol. Med. 100, 985–995 (2022).

    Article  PubMed  Google Scholar 

  133. Claus, C. et al. CD27 signaling increases the frequency of regulatory T cells and promotes tumor growth. Cancer Res. 72, 3664–3676 (2012).

    Article  CAS  PubMed  Google Scholar 

  134. Mahmud, S. A. et al. Costimulation via the tumor-necrosis factor receptor superfamily couples TCR signal strength to the thymic differentiation of regulatory T cells. Nat. Immunol. 15, 473–481 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Hu, X. et al. Transmembrane TNF-α promotes suppressive activities of myeloid-derived suppressor cells via TNFR2. J. Immunol. 192, 1320–1331 (2014).

    Article  CAS  PubMed  Google Scholar 

  136. Zhao, X. et al. TNF signaling drives myeloid-derived suppressor cell accumulation. J. Clin. Invest. 122, 4094–4104 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Beldi, G. et al. TNFR2 is a crucial hub controlling mesenchymal stem cell biological and functional properties. Front. Cell Dev. Biol. 8, 596831 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  138. Beldi, G. et al. TNFα/TNFR2 signaling pathway: an active immune checkpoint for mesenchymal stem cell immunoregulatory function. Stem Cell Res. Ther. 11, 281 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Chopra, M. et al. Exogenous TNFR2 activation protects from acute GvHD via host T reg cell expansion. J. Exp. Med. 213, 1881–1900 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Dong, Y. et al. Essential protective role of tumor necrosis factor receptor 2 in neurodegeneration. Proc. Natl Acad. Sci. USA 113, 12304–12309 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Fischer, R. et al. Novel strategies to mimic transmembrane tumor necrosis factor-dependent activation of tumor necrosis factor receptor 2. Sci. Rep. 7, 6607 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  142. Inoue, M. et al. Structural optimization of a TNFR1-selective antagonistic TNFα mutant to create new-modality TNF-regulating biologics. J. Biol. Chem. 295, 9379–9391 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Vargas, J. G. et al. A TNFR2-specific TNF fusion protein with improved in vivo activity. Front. Immunol. 13, 888274 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Loetscher, H., Stueber, D., Banner, D., Mackay, F. & Lesslauer, W. Human tumor necrosis factor alpha (TNFα) mutants with exclusive specificity for the 55-kDa or 75-kDa TNF receptors. J. Biol. Chem. 268, 26350–26357 (1993).

    Article  CAS  PubMed  Google Scholar 

  145. Hutt, M. et al. Superior properties of Fc-comprising scTRAIL fusion proteins. Mol. Cancer Ther. 16, 2792–2802 (2017).

    Article  CAS  PubMed  Google Scholar 

  146. Siegemund, M. et al. IgG-single-chain TRAIL fusion proteins for tumour therapy. Sci. Rep. 8, 7808 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  147. Beilhack, A., Kums, J., Nelke, J. & Wajant, H. Tumor necrosis factor (TNF) receptor superfamily (TNFRSF) receptor-activating antibody fusion proteins with FcγR-independent agonistic activity. (TNFRSF receptor-activating antibody fusion proteins with FcγR-independent agonistic activity; TRAAFFIAA). World patent WO 2019/129644 (2019).

  148. Li, M., Zhang, X., Bai, X. & Liang, T. Targeting TNFR2: a novel breakthrough in the treatment of cancer. Front. Oncol. 12, 862154 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. US National Library of Medicine. ClinicalTrials.gov, https://clinicaltrials.gov/ct2/show/NCT04752826 (2023).

  150. US National Library of Medicine. ClinicalTrials.gov, https://clinicaltrials.gov/ct2/show/NCT05569057 (2022).

  151. US National Library of Medicine. ClinicalTrials.gov, https://clinicaltrials.gov/ct2/show/NCT05238883 (2023).

  152. National Cancer Institute. Anti-TNFR2 Monoclonal Antibody SIM1811-03 (Code C191777). https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&ns=ncit&code=C191777 (2023).

  153. Linda Mårtensson, K. C. et al. Proceedings of the Annual Meeting of the American Association for Cancer Research 2020 (AACR, 2020).

  154. Shuo Wei, G. Y. et al. Discovery and characterization of novel TNFR2 antibodies to modulate T cell activities in immunosuppressive environment. Proc. Annu. Meeting Am. Assoc. Cancer Res. 2020. 80, 2282 (AACR, 2020).

  155. Drutskaya, M. S., Efimov, G. A., Kruglov, A. A. & Nedospasov, S. A. Can we design a better anti-cytokine therapy? J. Leukoc. Biol. 102, 783–790 (2017).

    Article  CAS  PubMed  Google Scholar 

  156. Efimov, G. A. et al. Cell-type-restricted anti-cytokine therapy: TNF inhibition from one pathogenic source. Proc. Natl Acad. Sci. USA 113, 3006–3011 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. The Antibody Society. Therapeutic Monoclonal Antibodies Approved or in Review in the EU or US https://www.antibodysociety.org/resources/approved-antibodies (6 July 2023).

  158. Ishiwatari-Ogata, C. et al. Ozoralizumab, a humanized anti-TNFα NANOBODY® compound, exhibits efficacy not only at the onset of arthritis in a human TNF transgenic mouse but also during secondary failure of administration of an anti-TNFα IgG. Front. Immunol. 13, 853008 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Berns, M. & Hommes, D. W. Anti-TNF-α therapies for the treatment of Crohn’s disease: the past, present and future. Expert. Opin. Investig. Drugs 25, 129–143 (2016).

    Article  CAS  PubMed  Google Scholar 

  160. US National Library of Medicine. ClinicalTrials.gov. https://clinicaltrials.gov/ct2/show/NCT00808262 (2011).

  161. US National Library of Medicine. ClinicalTrials.gov. https://clinicaltrials.gov/ct2/show/NCT01040715 (2014).

  162. US National Library of Medicine. ClinicalTrials.gov. https://clinicaltrials.gov/ct2/show/NCT01291810 (2014).

  163. US National Library of Medicine. ClinicalTrials.gov. https://clinicaltrials.gov/ct2/show/NCT01911234 (2019).

  164. US National Library of Medicine. ClinicalTrials.gov. https://clinicaltrials.gov/ct2/show/NCT01759056 (2014).

  165. US National Library of Medicine. ClinicalTrials.gov. https://clinicaltrials.gov/ct2/show/NCT02221037 (2020).

  166. US National Library of Medicine. ClinicalTrials.gov. https://clinicaltrials.gov/ct2/show/NCT03943264 (2023).

  167. US National Library of Medicine. ClinicalTrials.gov. https://clinicaltrials.gov/ct2/show/NCT04370236 (2022).

  168. US National Library of Medicine. ClinicalTrials.gov. https://clinicaltrials.gov/ct2/show/NCT05321498 (2022).

  169. Inoue, M. et al. Characterization of a TNFR2-selective agonistic TNF-α mutant and its derivatives as an optimal regulatory T cell expander. J. Immunol. 206, 1740–1751 (2021).

    Article  CAS  PubMed  Google Scholar 

  170. US National Library of Medicine. ClinicalTrials.gov. https://clinicaltrials.gov/ct2/show/NCT05781386 (2023).

  171. Schmid, T. et al. Chronic inflammation increases the sensitivity of mouse Treg for TNFR2 costimulation. Front. Immunol. 8, 1471 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  172. Lamontain, V. et al. Stimulation of TNF receptor type 2 expands regulatory T cells and ameliorates established collagen-induced arthritis in mice. Cell Mol. Immunol. 16, 65–74 (2019).

    Article  CAS  PubMed  Google Scholar 

  173. Gouweleeuw, L. et al. Effects of selective TNFR1 inhibition or TNFR2 stimulation, compared to non-selective TNF inhibition, on (neuro)inflammation and behavior after myocardial infarction in male mice. Brain Behav. Immun. 93, 156–171 (2021).

    Article  CAS  PubMed  Google Scholar 

  174. Ronin, E. et al. Tissue-restricted control of established central nervous system autoimmunity by TNF receptor 2-expressing Treg cells. Proc. Natl Acad. Sci. USA 118, e2014043118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Ortí-Casañ, N. et al. A TNF receptor 2 agonist ameliorates neuropathology and improves cognition in an Alzheimer’s disease mouse model. Proc. Natl Acad. Sci. USA 119, e2201137119 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  176. Fischer, R. et al. TNFR2 promotes Treg-mediated recovery from neuropathic pain across sexes. Proc. Natl Acad. Sci. USA 116, 17045–17050 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Gerald, M. J. et al. Continuous infusion of an agonist of the tumor necrosis factor receptor 2 in the spinal cord improves recovery after traumatic contusive injury. CNS Neurosci. Ther. 25, 884–893 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  178. Fischer, R. et al. Selective activation of tumor necrosis factor receptor II induces antiinflammatory responses and alleviates experimental arthritis. Arthritis Rheumatol. 70, 722–735 (2018).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The research work of the authors is supported by the Deutsche Forschungsgemeinschaft grants DFG Si 1128/6–1 (to D.S.) and DFG WA 1025/33–1 and 324392634–TR221 (to H.W.).

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Harald Wajant.

Ethics declarations

Competing interests

H.W. declares that he received consultancy fees from Dualyx NV regarding the targeting of Treg cells via TNF receptor 2 (TNFR2). D.S. declares no competing interests. The University of Würzburg has filed patent applications for “Novel TNFR2 binding molecules” and “Tumour necrosis factor (TNF) receptor superfamily (TNFRSF) receptor-activating antibody fusion proteins with FcγR-independent agonistic activity (TRAAFFIA)”, with H.W. as one of the inventors.

Peer review

Peer review information

Nature Reviews Rheumatology thanks D. Wallach and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Antibody-dependent cellular cytotoxicity

An antibody effector function by which antibody-opsonized cells are recognized and killed or lysed by immune cells that express appropriate Fcγ receptors (such as natural killers).

Antibody-dependent cellular phagocytosis

An antibody effector function by which antibody-opsonized cells are recognized and phagocytosed by macrophages.

Association rate constant

This constant describes the kinetics by which two components (such as a ligand and receptor) form a complex.

Auto-affinity

Affinity of proteins for self-assembly.

Complement-dependent cytotoxicity

An antibody effector function triggered by cell-bound IgG and IgM antibodies, which results in cell killing or lysis by the so-called membrane attack complex of the complement system.

Dissociation rate constant

This constant describes the kinetics of the dissociation of a two-component complex (such as a ligand–receptor complex) into the individual components.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Siegmund, D., Wajant, H. TNF and TNF receptors as therapeutic targets for rheumatic diseases and beyond. Nat Rev Rheumatol 19, 576–591 (2023). https://doi.org/10.1038/s41584-023-01002-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41584-023-01002-7

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research