Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Heat of the night: sleep disturbance activates inflammatory mechanisms and induces pain in rheumatoid arthritis

Abstract

Sleep has a homeostatic role in the regulation of the immune system and serves to constrain activation of inflammatory signalling and expression of cellular inflammation. In patients with rheumatoid arthritis (RA), a misaligned inflammatory profile induces a dysregulation of sleep–wake activity, which leads to excessive inflammation and the induction of increased sensitivity to pain. Given that multiple biological mechanisms contribute to sleep disturbances (such as insomnia), and that the central nervous system communicates with the innate immune system via neuroendocrine and neural effector pathways, potential exists to develop prevention opportunities to mitigate the risk of insomnia in RA. Furthermore, understanding these risk mechanisms might inform additional insomnia treatment strategies directed towards steering and reducing the magnitude of the inflammatory response, which together could influence outcomes of pain and disease activity in RA.

Key points

  • Patients with rheumatoid arthritis (RA), a chronic inflammatory disorder, frequently complain of symptoms of insomnia and pain.

  • Inflammation can induce sleep disturbance, and in turn sleep disturbance increases inflammation in a feedforward loop, which is sustained by sympathetic arousal mechanisms and a downregulation of glucocorticoid receptor sensitivity.

  • Sleep disturbance can also increase pain sensitivity, as mediated by increases in inflammation; in patients with RA, sleep loss induces heightened pain responses and activation of arthritis-related joint pain.

  • Interventions that treat insomnia have the potential to interrupt the effects of sleep disturbance on inflammation, pain sensitivity and symptomatic progression in patients with RA.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Model depicting the impact of sleep disturbance and inflammation on pain and disease activity in patients with RA.
Fig. 2: Schematic model of neural sites and effector mechanisms involved in sleep regulation of inflammation.

References

  1. Gravallese, E. M. & Firestein, G. S. Rheumatoid arthritis — common origins, divergent mechanisms. N. Engl. J. Med. 388, 529–542 (2023).

    Article  CAS  PubMed  Google Scholar 

  2. Alivernini, S., Firestein, G. S. & McInnes, I. B. The pathogenesis of rheumatoid arthritis. Immunity 55, 2255–2270 (2022).

    Article  CAS  PubMed  Google Scholar 

  3. Krueger, J. M., Frank, M. G., Wisor, J. P. & Roy, S. Sleep function: toward elucidating an enigma. Sleep. Med. Rev. 28, 46–54 (2016).

    Article  PubMed  Google Scholar 

  4. Brown, R. E., Basheer, R., McKenna, J. T., Strecker, R. E. & McCarley, R. W. Control of sleep and wakefulness. Physiol. Rev. 92, 1087–1187 (2012).

    Article  CAS  PubMed  Google Scholar 

  5. Buysse, D. J., Ancoli-Israel, S., Edinger, J. D., Lichstein, K. L. & Morin, C. M. Recommendations for a standard research assessment of insomnia. Sleep 29, 1155–1173 (2006).

    Article  PubMed  Google Scholar 

  6. Rechtschaffen, A. & Kales, A. (eds) A manual of standardized terminology, techniques and scoring system for sleep stages of human subjects (US National Institute of Neurological Diseases and Blindness, 1968).

  7. Ehlers, C. L., Havstad, J. W., Garfinkel, A. & Kupfer, D. J. Nonlinear analysis of EEG sleep states. Neuropsychopharmacology 5, 167–176 (1991).

    CAS  PubMed  Google Scholar 

  8. Ancoli-Israel, S. et al. The role of actigraphy in the study of sleep and circadian rhythms. Sleep 26, 342–392 (2003).

    Article  PubMed  Google Scholar 

  9. American Psychiatric Association & American Psychiatric Association. DSM-5 Task Force. Diagnostic and statistical manual of mental disorders : DSM-5. 5th edn (American Psychiatric Association, 2013).

  10. Morin, C. M., Belleville, G., Belanger, L. & Ivers, H. The Insomnia Severity Index: psychometric indicators to detect insomnia cases and evaluate treatment response. Sleep 34, 601–608 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Irwin, M. R. Sleep and inflammation: partners in sickness and in health. Nat. Rev. Immunol. 19, 702–715 (2019).

    Article  CAS  PubMed  Google Scholar 

  12. Besedovsky, L., Lange, T. & Haack, M. The sleep-immune crosstalk in health and disease. Physiol. Rev. 99, 1325–1380 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  13. McAlpine, C. S. et al. Sleep exerts lasting effects on hematopoietic stem cell function and diversity. J. Exp. Med. https://doi.org/10.1084/jem.20220081 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  14. McAlpine, C. S. et al. Sleep modulates haematopoiesis and protects against atherosclerosis. Nature 566, 383–387 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Carroll, J. E. et al. Epigenetic aging and immune senescence in women with insomnia symptoms: findings from the Women’s Health Initiative Study. Biol. Psychiatry 81, 136–144 (2017).

    Article  PubMed  Google Scholar 

  16. Westermann, J., Lange, T., Textor, J. & Born, J. System consolidation during sleep — a common principle underlying psychological and immunological memory formation. Trends Neurosci. 38, 585–597 (2015).

    Article  CAS  PubMed  Google Scholar 

  17. Pace-Schott, E. F. & Spencer, R. M. Sleep-dependent memory consolidation in healthy aging and mild cognitive impairment. Curr. Top. Behav. Neurosci. 25, 307–330 (2015).

    Article  PubMed  Google Scholar 

  18. Spira, A. P., Chen-Edinboro, L. P., Wu, M. N. & Yaffe, K. Impact of sleep on the risk of cognitive decline and dementia. Curr. Opin. Psychiatry 27, 478–483 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Palmer, C. A. & Alfano, C. A. Sleep and emotion regulation: an organizing, integrative review. Sleep. Med. Rev. 31, 6–16 (2017).

    Article  PubMed  Google Scholar 

  20. Irwin, M. R. Why sleep is important for health: a psychoneuroimmunology perspective. Annu. Rev. Psychol. 66, 143–172 (2015).

    Article  PubMed  Google Scholar 

  21. Irwin, M. R. & Vitiello, M. V. Implications of sleep disturbance and inflammation for Alzheimer’s disease dementia. Lancet Neurol. 18, 296–306 (2019).

    Article  CAS  PubMed  Google Scholar 

  22. Morin, C. M., LeBlanc, M., Daley, M., Gregoire, J. P. & Merette, C. Epidemiology of insomnia: prevalence, self-help treatments, consultations, and determinants of help-seeking behaviors. Sleep. Med. 7, 123–130 (2006).

    Article  CAS  PubMed  Google Scholar 

  23. Ohayon, M. M. Epidemiology of insomnia: what we know and what we still need to learn. Sleep. Med. Rev. 6, 97–111 (2002).

    Article  PubMed  Google Scholar 

  24. Morin, C. M. et al. The natural history of insomnia: a population-based 3-year longitudinal study. Arch. Intern. Med. 169, 447–453 (2009).

    Article  PubMed  Google Scholar 

  25. Van Dyke, M. E., Vaccarino, V., Quyyumi, A. A. & Lewis, T. T. Socioeconomic status discrimination is associated with poor sleep in African-Americans, but not Whites. Soc. Sci. Med. 153, 141–147 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Drewes, A. M. Pain and sleep disturbances with special reference to fibromyalgia and rheumatoid arthritis. Rheumatology 38, 1035–1038 (1999).

    Article  CAS  PubMed  Google Scholar 

  27. Mustafa, M. et al. Frequency of sleep disorders in patients with rheumatoid arthritis. Open Access Rheumatol. 11, 163–171 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Freitas, D. C., Schlosser, T. C., dos Santos, A. A., Neri, A. L. & Ceolim, M. F. [Association between insomnia and rheumatoid arthritis in elderly]. Rev. Esc. Enferm. Usp. 47, 869–875 (2013).

    Article  PubMed  Google Scholar 

  29. Reading, S. R. et al. Do rheumatoid arthritis patients have a higher risk for sleep apnea. J. Rheumatol. 36, 1869–1872 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Shen, T. C. et al. Risk of obstructive sleep apnoea in patients with rheumatoid arthritis: a nationwide population-based retrospective cohort study. BMJ Open 6, e013151 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Westhovens, R., Van der Elst, K., Matthys, A., Tran, M. & Gilloteau, I. Sleep problems in patients with rheumatoid arthritis. J. Rheumatol. 41, 31–40 (2014).

    Article  PubMed  Google Scholar 

  32. Wali, S. et al. Prevalence of obstructive sleep apnea in patients with rheumatoid arthritis. J. Clin. Sleep. Med. 16, 259–265 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Hirsch, M. et al. Objective and subjective sleep disturbances in patients with rheumatoid arthritis. A reappraisal. Arthritis Rheum. 37, 41–49 (1994).

    Article  CAS  PubMed  Google Scholar 

  34. Drewes, A. M. et al. Sleep in rheumatoid arthritis: a comparison with healthy subjects and studies of sleep/wake interactions. Br. J. Rheumatol. 37, 71–81 (1998).

    Article  CAS  PubMed  Google Scholar 

  35. Mahowald, M. W., Mahowald, M. L., Bundlie, S. R. & Ytterberg, S. R. Sleep fragmentation in rheumatoid arthritis. Arthritis Rheum. 32, 974–983 (1989).

    Article  CAS  PubMed  Google Scholar 

  36. Clarke, L. L., Wilson, S. & Kirwan, J. R. Using actigraphy to measure sleep patterns in rheumatoid arthritis: a pilot study in patients taking night-time prednisone. Musculoskelet. Care 11, 179–185 (2013).

    Article  Google Scholar 

  37. Miyauchi, K., Fujimoto, K., Abe, T., Takei, M. & Ogawa, K. Cross-sectional assessment of sleep and fatigue in middle-aged Japanese women with primary Sjogren syndrome or rheumatoid arthritis using self-reports and wrist actigraphy. Medicine 100, e27233 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Zamarron, F., Maceiras, F., Mera, A. & Gomez-Reino, J. J. Effects of the first infliximab infusion on sleep and alertness in patients with active rheumatoid arthritis. Ann. Rheum. Dis. 63, 88–90 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Moldofsky, H., Lue, F. A. & Smythe, H. A. Alpha EEG sleep and morning symptoms in rheumatoid arthritis. J. Rheumatol. 10, 373–379 (1983).

    CAS  PubMed  Google Scholar 

  40. Lavie, P., Nahir, M., Lorber, M. & Scharf, Y. Nonsteroidal antiinflammatory drug therapy in rheumatoid arthritis patients. Lack of association between clinical improvement and effects on sleep. Arthritis Rheum. 34, 655–659 (1991).

    Article  CAS  PubMed  Google Scholar 

  41. Koskenvuo, K., Hublin, C., Partinen, M., Paunio, T. & Koskenvuo, M. Childhood adversities and quality of sleep in adulthood: a population-based study of 26,000 Finns. Sleep. Med. 11, 17–22 (2010).

    Article  PubMed  Google Scholar 

  42. Poon, C. Y. & Knight, B. G. Impact of childhood parental abuse and neglect on sleep problems in old age. J. Gerontol. B Psychol. Sci. Soc. Sci. 66, 307–310 (2011).

    Article  PubMed  Google Scholar 

  43. Bader, K., Schafer, V., Schenkel, M., Nissen, L. & Schwander, J. Adverse childhood experiences associated with sleep in primary insomnia. J. Sleep. Res. 16, 285–296 (2007).

    Article  PubMed  Google Scholar 

  44. Spielman, A. J., Caruso, L. S. & Glovinsky, P. B. A behavioral perspective on insomnia treatment. Psychiatr. Clin. North Am. 10, 541–553 (1987).

    Article  CAS  PubMed  Google Scholar 

  45. Van Someren, E. J. W. Brain mechanisms of insomnia: new perspectives on causes and consequences. Physiol. Rev. 101, 995–1046 (2021).

    Article  PubMed  Google Scholar 

  46. Kemp, B. R. et al. Do early-life social, behavioral, and health exposures increase later-life arthritis incidence? Res. Aging 44, 479–493 (2022).

    Article  PubMed  Google Scholar 

  47. Schwetlik, S. N., Baldock, K. L., Hill, C. L. & Ferrar, K. Chronic stress and arthritis: a scoping review. Arthritis Care Res. 74, 982–996 (2022).

    Article  Google Scholar 

  48. Spitzer, C. et al. Gender-specific association between childhood trauma and rheumatoid arthritis: a case-control study. J. Psychosom. Res. 74, 296–300 (2013).

    Article  PubMed  Google Scholar 

  49. Yoshida, T. et al. Pain catastrophizing hinders disease activity score 28 — erythrocyte sedimentation rate remission of rheumatoid arthritis in patients with normal C-reactive protein levels. Int. J. Rheum. Dis. 24, 1520–1529 (2021).

    Article  CAS  PubMed  Google Scholar 

  50. Nerurkar, L., Siebert, S., McInnes, I. B. & Cavanagh, J. Rheumatoid arthritis and depression: an inflammatory perspective. Lancet Psychiatry 6, 164–173 (2019).

    Article  PubMed  Google Scholar 

  51. Vallerand, I. A., Patten, S. B. & Barnabe, C. Depression and the risk of rheumatoid arthritis. Curr. Opin. Rheumatol. 31, 279–284 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Irwin, M. R. et al. Sleep loss exacerbates fatigue, depression, and pain in rheumatoid arthritis. Sleep 35, 537–543 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Roberts, M. B. & Drummond, P. D. Sleep problems are associated with chronic pain over and above mutual associations with depression and catastrophizing. Clin. J. Pain. 32, 792–799 (2016).

    Article  PubMed  Google Scholar 

  54. Lee, Y. C. et al. Subgrouping of patients with rheumatoid arthritis based on pain, fatigue, inflammation, and psychosocial factors. Arthritis Rheumatol. 66, 2006–2014 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Bjurstrom, M. F., Olmstead, R. & Irwin, M. R. Reciprocal relationship between sleep macrostructure and evening and morning cellular inflammation in rheumatoid arthritis. Psychosom. Med. 79, 24–33 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Suarez-Pereira, I. et al. The role of the locus coeruleus in pain and associated stress-related disorders. Biol. Psychiatry 91, 786–797 (2022).

    Article  CAS  PubMed  Google Scholar 

  57. Weinberger, J. F. et al. Inhibition of tumor necrosis factor improves sleep continuity in patients with treatment resistant depression and high inflammation. Brain Behav. Immun. 47, 193–200 (2015).

    Article  CAS  PubMed  Google Scholar 

  58. Poe, G. R. et al. Locus coeruleus: a new look at the blue spot. Nat. Rev. Neurosci. 21, 644–659 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Reyes, B. A., Drolet, G. & Van Bockstaele, E. J. Dynorphin and stress-related peptides in rat locus coeruleus: contribution of amygdalar efferents. J. Comp. Neurol. 508, 663–675 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Wood, C. S., Valentino, R. J. & Wood, S. K. Individual differences in the locus coeruleus-norepinephrine system: relevance to stress-induced cardiovascular vulnerability. Physiol. Behav. 172, 40–48 (2017).

    Article  CAS  PubMed  Google Scholar 

  61. Haspula, D. & Clark, M. A. Neuroinflammation and sympathetic overactivity: mechanisms and implications in hypertension. Auton. Neurosci. 210, 10–17 (2018).

    Article  CAS  PubMed  Google Scholar 

  62. Adlan, A. M., Paton, J. F., Lip, G. Y., Kitas, G. D. & Fisher, J. P. Increased sympathetic nerve activity and reduced cardiac baroreflex sensitivity in rheumatoid arthritis. J. Physiol. 595, 967–981 (2017).

    Article  CAS  PubMed  Google Scholar 

  63. Borbely, A. A., Daan, S., Wirz-Justice, A. & Deboer, T. The two-process model of sleep regulation: a reappraisal. J. Sleep. Res. 25, 131–143 (2016).

    Article  PubMed  Google Scholar 

  64. Collomp, K. et al. Altered diurnal pattern of steroid hormones in relation to various behaviors, external factors and pathologies: a review. Physiol. Behav. 164, 68–85 (2016).

    Article  CAS  PubMed  Google Scholar 

  65. Crofford, L. J. et al. Circadian relationships between interleukin (IL)-6 and hypothalamic-pituitary-adrenal axis hormones: failure of IL-6 to cause sustained hypercortisolism in patients with early untreated rheumatoid arthritis. J. Clin. Endocrinol. Metab. 82, 1279–1283 (1997).

    Article  CAS  PubMed  Google Scholar 

  66. Straub, R. H. & Cutolo, M. Circadian rhythms in rheumatoid arthritis: implications for pathophysiology and therapeutic management. Arthritis Rheum. 56, 399–408 (2007).

    Article  PubMed  Google Scholar 

  67. Buttgereit, F., Smolen, J. S., Coogan, A. N. & Cajochen, C. Clocking in: chronobiology in rheumatoid arthritis. Nat. Rev. Rheumatol. 11, 349–356 (2015).

    Article  CAS  PubMed  Google Scholar 

  68. Straub, R. H. et al. Inflammation is an important covariate for the crosstalk of sleep and the HPA axis in rheumatoid arthritis. Neuroimmunomodulation 24, 11–20 (2017).

    Article  CAS  PubMed  Google Scholar 

  69. Nguyen, K. D. et al. Circadian gene Bmal1 regulates diurnal oscillations of Ly6Chi inflammatory monocytes. Science 341, 1483–1488 (2013).

    Article  CAS  PubMed  Google Scholar 

  70. Scheiermann, C., Gibbs, J., Ince, L. & Loudon, A. Clocking in to immunity. Nat. Rev. Immunol. 18, 423–437 (2018).

    Article  CAS  PubMed  Google Scholar 

  71. Bieber, K. et al. Autoimmune pre-disease. Autoimmun. Rev. 22, 103236 (2023).

    Article  CAS  PubMed  Google Scholar 

  72. Miller, A. H. & Raison, C. L. The role of inflammation in depression: from evolutionary imperative to modern treatment target. Nat. Rev. Immunol. 16, 22–34 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Dantzer, R., O’Connor, J. C., Freund, G. G., Johnson, R. W. & Kelley, K. W. From inflammation to sickness and depression: when the immune system subjugates the brain. Nat. Rev. Neurosci. 9, 46–56 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Fang, J., Sanborn, C. K., Renegar, K. B., Majde, J. A. & Krueger, J. M. Influenza viral infections enhance sleep in mice. Proc. Soc. Exp. Biol. Med. 210, 242–252 (1995).

    Article  CAS  PubMed  Google Scholar 

  75. Imeri, L. & Opp, M. R. How (and why) the immune system makes us sleep. Nat. Rev. Neurosci. 10, 199–210 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Irwin, M. R. & Opp, M. R. Sleep health: reciprocal regulation of sleep and innate immunity. Neuropsychopharmacology 42, 129–155 (2017).

    Article  CAS  PubMed  Google Scholar 

  77. Kapas, L. et al. Spontaneous and influenza virus-induced sleep are altered in TNF-α double-receptor deficient mice. J. Appl. Physiol. 105, 1187–1198 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Davis, C. J. et al. The neuron-specific interleukin-1 receptor accessory protein is required for homeostatic sleep and sleep responses to influenza viral challenge in mice. Brain Behav. Immun. 47, 35–43 (2015).

    Article  CAS  PubMed  Google Scholar 

  79. Lange, T., Marshall, L., Spath-Schwalbe, E., Fehm, H. L. & Born, J. Systemic immune parameters and sleep after ultra-low dose administration of IL-2 in healthy men. Brain Behav. Immun. 16, 663–674 (2002).

    Article  CAS  PubMed  Google Scholar 

  80. Lue, F. A. et al. Sleep and cerebrospinal fluid interleukin-1-like activity in the cat. Inter. J. Neurosci. 42, 179–183 (1988).

    Article  CAS  Google Scholar 

  81. Taylor-Gjevre, R. M., Gjevre, J. A., Nair, B. V., Skomro, R. P. & Lim, H. J. Improved sleep efficiency after anti-tumor necrosis factor α therapy in rheumatoid arthritis patients. Ther. Adv. Musculoskelet. Dis. 3, 227–233 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Karatas, G. et al. The evaluation of sleep quality and response to anti-tumor necrosis factor α therapy in rheumatoid arthritis patients. Clin. Rheumatol. 36, 45–50 (2017).

    Article  PubMed  Google Scholar 

  83. Detert, J. et al. Effects of treatment with etanercept versus methotrexate on sleep quality, fatigue and selected immune parameters in patients with active rheumatoid arthritis. Clin. Exp. Rheumatol. 34, 848–856 (2016).

    PubMed  Google Scholar 

  84. Wells, G., Li, T. & Tugwell, P. Investigation into the impact of abatacept on sleep quality in patients with rheumatoid arthritis, and the validity of the MOS-Sleep questionnaire Sleep Disturbance Scale. Ann. Rheum. Dis. 69, 1768–1773 (2010).

    Article  PubMed  Google Scholar 

  85. Tektonidou, M. G. et al. Real-world evidence of the impact of adalimumab on work productivity and sleep measures in patients with rheumatoid arthritis, psoriatic arthritis, and ankylosing spondylitis. Ther. Adv. Musculoskelet. Dis. 12, 1759720X20949088 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Fragiadaki, K., Tektonidou, M. G., Konsta, M., Chrousos, G. P. & Sfikakis, P. P. Sleep disturbances and interleukin 6 receptor inhibition in rheumatoid arthritis. J. Rheumatol. 39, 60–62 (2012).

    Article  CAS  PubMed  Google Scholar 

  87. Bartlett, S. J. et al. The impact of tofacitinib on fatigue, sleep, and health-related quality of life in patients with rheumatoid arthritis: a post hoc analysis of data from Phase 3 trials. Arthritis Res. Ther. 24, 83 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Irwin, M. R., Olmstead, R., Valladares, E. M., Breen, E. C. & Ehlers, C. L. Tumor necrosis factor antagonism normalizes rapid eye movement sleep in alcohol dependence. Biol. Psychiatry 66, 191–195 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Genty, M. et al. Improvement of fatigue in patients with rheumatoid arthritis treated with biologics: relationship with sleep disorders, depression and clinical efficacy. A prospective, multicentre study. Clin. Exp. Rheumatol. 35, 85–92 (2017).

    PubMed  Google Scholar 

  90. Genovese, M. C. et al. Efficacy and safety of the selective co-stimulation modulator abatacept following 2 years of treatment in patients with rheumatoid arthritis and an inadequate response to anti-tumour necrosis factor therapy. Ann. Rheum. Dis. 67, 547–554 (2008).

    Article  CAS  PubMed  Google Scholar 

  91. Strand, V. et al. Tofacitinib in combination with conventional disease-modifying antirheumatic drugs in patients with active rheumatoid arthritis: patient-reported outcomes from a phase III randomized controlled trial. Arthritis Care Res. 69, 592–598 (2017).

    Article  CAS  Google Scholar 

  92. Lind, M. J. & Gehrman, P. R. Genetic pathways to insomnia. Brain Sci. https://doi.org/10.3390/brainsci6040064 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  93. Irwin, M. R., Olmstead, R. & Carroll, J. E. Sleep disturbance, sleep duration, and inflammation: a systematic review and meta-analysis of cohort studies and experimental sleep deprivation. Biol. Psychiatry 80, 40–52 (2016).

    Article  PubMed  Google Scholar 

  94. Irwin, M. R., Wang, M., Campomayor, C. O., Collado-Hidalgo, A. & Cole, S. Sleep deprivation and activation of morning levels of cellular and genomic markers of inflammation. Arch. Intern. Med. 166, 1756–1762 (2006).

    Article  CAS  PubMed  Google Scholar 

  95. Irwin, M. R. et al. Sleep loss activates cellular inflammatory signaling. Biol. Psychiatry 64, 538–540 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Irwin, M. R., Witarama, T., Caudill, M., Olmstead, R. & Breen, E. C. Sleep loss activates cellular inflammation and signal transducer and activator of transcription (STAT) family proteins in humans. Brain Behav. Immun. 47, 86–92 (2015).

    Article  CAS  PubMed  Google Scholar 

  97. Irwin, M. R., Carrillo, C. & Olmstead, R. Sleep loss activates cellular markers of inflammation: sex differences. Brain Behav. Immun. 24, 54–57 (2010).

    Article  CAS  PubMed  Google Scholar 

  98. Motivala, S. J., Khanna, D., FitzGerald, J. & Irwin, M. R. Stress activation of cellular markers of inflammation in rheumatoid arthritis: protective effects of tumor necrosis factor α antagonists. Arthritis Rheum. 58, 376–383 (2008).

    Article  CAS  PubMed  Google Scholar 

  99. Bierhaus, A. et al. A mechanism converting psychosocial stress into mononuclear cell activation. Proc. Natl Acad. Sci. USA 100, 1920–1925 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Pace, T. W. et al. Increased stress-induced inflammatory responses in male patients with major depression and increased early life stress. Am. J. Psychiatry 163, 1630–1633 (2006).

    Article  PubMed  Google Scholar 

  101. Parry, C., Kent, E. E., Mariotto, A. B., Alfano, C. M. & Rowland, J. H. Cancer survivors: a booming population. Cancer Epidemiol. Biomark. Prev. 20, 1996–2005 (2011).

    Article  Google Scholar 

  102. Veldhuijzen van Zanten, J. J., Ring, C., Carroll, D. & Kitas, G. D. Increased C reactive protein in response to acute stress in patients with rheumatoid arthritis. Ann. Rheum. Dis. 64, 1299–1304 (2005).

    Article  CAS  PubMed  Google Scholar 

  103. Jacobs, R. et al. Systemic lupus erythematosus and rheumatoid arthritis patients differ from healthy controls in their cytokine pattern after stress exposure. Rheumatology 40, 868–875 (2001).

    Article  CAS  PubMed  Google Scholar 

  104. Grandner, M. A. et al. Extreme sleep durations and increased C-reactive protein: effects of sex and ethnoracial group. Sleep 36, 769–779E (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  105. Friedman, E. M. Social relationships, sleep quality, and interleukin-6 in aging women. Proc. Natl Acad. Sci. 102, 18757–18762 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Park, H. et al. Sleep and inflammation during adolescence. Psychosom. Med. 78, 677–685 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Piber, D. et al. Sleep disturbance and activation of cellular and transcriptional mechanisms of inflammation in older adults. Brain Behav. Immun. 106, 67–75 (2022).

    Article  CAS  PubMed  Google Scholar 

  108. O’Connor, M. F. & Irwin, M. R. Links between behavioral factors and inflammation. Clin. Pharmacol. Ther. 87, 479–482 (2010).

    Article  PubMed  Google Scholar 

  109. Prather, A. A., Epel, E. S., Cohen, B. E., Neylan, T. C. & Whooley, M. A. Gender differences in the prospective associations of self-reported sleep quality with biomarkers of systemic inflammation and coagulation: findings from the Heart and Soul Study. J. Psychiatr. Res. 47, 1228–1235 (2013).

    Article  PubMed  Google Scholar 

  110. Cho, H. J., Seeman, T. E., Kiefe, C. I., Lauderdale, D. S. & Irwin, M. R. Sleep disturbance and longitudinal risk of inflammation: moderating influences of social integration and social isolation in the coronary artery risk development in young adults (CARDIA) study. Brain Behav. Immun. 46, 319–326 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  111. Hall, M. H. et al. Association between sleep duration and mortality is mediated by markers of inflammation and health in older adults: the Health, Aging and Body Composition Study. Sleep 38, 189–195 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  112. Smagula, S. F. et al. Actigraphy- and polysomnography-measured sleep disturbances, inflammation, and mortality among older men. Psychosom. Med. 78, 686–696 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Ruiz, F. S. et al. Immune alterations after selective rapid eye movement or total sleep deprivation in healthy male volunteers. Innate Immun. 18, 44–54 (2012).

    Article  CAS  PubMed  Google Scholar 

  114. Vallat, R., Shah, V. D., Redline, S., Attia, P. & Walker, M. P. Broken sleep predicts hardened blood vessels. PLoS Biol. 18, e3000726 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Filippa, M. G. et al. Adrenocortical dysfunction in rheumatoid arthritis: alpha narrative review and future directions. Eur. J. Clin. Invest. 52, e13635 (2022).

    Article  CAS  PubMed  Google Scholar 

  116. Irwin, M., Thompson, J., Miller, C., Gillin, J. C. & Ziegler, M. Effects of sleep and sleep deprivation on catecholamine and interleukin-2 levels in humans: clinical implications. J. Clin. Endocrinol. Metab. 84, 1979–1985 (1999).

    CAS  PubMed  Google Scholar 

  117. Somers, V. K., Dyken, M. E., Mark, A. L. & Abboud, F. M. Sympathetic-nerve activity during sleep in normal subjects. N. Engl. J. Med. 328, 303–307 (1993).

    Article  CAS  PubMed  Google Scholar 

  118. Pongratz, G. & Straub, R. H. The sympathetic nervous response in inflammation. Arthritis Res. Ther. 16, 504 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  119. Dekkers, J. C., Geenen, R., Godaert, G. L., Bijlsma, J. W. & van Doornen, L. J. Elevated sympathetic nervous system activity in patients with recently diagnosed rheumatoid arthritis with active disease. Clin. Exp. Rheumatol. 22, 63–70 (2004).

    CAS  PubMed  Google Scholar 

  120. Morssinkhof, M. W. L. et al. Associations between sex hormones, sleep problems and depression: a systematic review. Neurosci. Biobehav. Rev. 118, 669–680 (2020).

    Article  CAS  PubMed  Google Scholar 

  121. Taylor-Gjevre, R. M., Nair, B. V. & Gjevre, J. A. Obstructive sleep apnoea in relation to rheumatic disease. Rheumatology 52, 15–21 (2013).

    Article  PubMed  Google Scholar 

  122. Straub, R. H., Bijlsma, J. W., Masi, A. & Cutolo, M. Role of neuroendocrine and neuroimmune mechanisms in chronic inflammatory rheumatic diseases — the 10-year update. Semin. Arthritis Rheum. 43, 392–404 (2013).

    Article  CAS  PubMed  Google Scholar 

  123. Cutolo, M. & Straub, R. H. Sex steroids and autoimmune rheumatic diseases: state of the art. Nat. Rev. Rheumatol. 16, 628–644 (2020).

    Article  CAS  PubMed  Google Scholar 

  124. Crestani, C. C. et al. Mechanisms in the bed nucleus of the stria terminalis involved in control of autonomic and neuroendocrine functions: a review. Curr. Neuropharmacol. 11, 141–159 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Presto, P., Mazzitelli, M., Junell, R., Griffin, Z. & Neugebauer, V. Sex differences in pain along the neuraxis. Neuropharmacology 210, 109030 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Petrov, M. E. et al. Disrupted sleep is associated with altered pain processing by sex and ethnicity in knee osteoarthritis. J. Pain. 16, 478–490 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  127. Smith, M. T. & Haythornthwaite, J. A. How do sleep disturbance and chronic pain inter-relate? Insights from the longitudinal and cognitive-behavioral clinical trials literature. Sleep. Med. Rev. 8, 119–132 (2004).

    Article  PubMed  Google Scholar 

  128. Bonvanie, I. J., Oldehinkel, A. J., Rosmalen, J. G. M. & Janssens, K. A. M. Sleep problems and pain: a longitudinal cohort study in emerging adults. Pain 157, 957–963 (2016).

    Article  PubMed  Google Scholar 

  129. Gupta, A. et al. The role of psychosocial factors in predicting the onset of chronic widespread pain: results from a prospective population-based study. Rheumatology 46, 666–671 (2007).

    Article  CAS  PubMed  Google Scholar 

  130. Smith, M. T. et al. Sleep onset insomnia symptoms during hospitalization for major burn injury predict chronic pain. Pain 138, 497–506 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  131. Nicassio, P. M. et al. The contribution of pain and depression to self-reported sleep disturbance in patients with rheumatoid arthritis. Pain 153, 107–112 (2012).

    Article  PubMed  Google Scholar 

  132. Lee, E. et al. Persistent sleep disturbance: a risk factor for recurrent depression in community-dwelling older adults. Sleep 36, 1685–1691 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  133. Cho, H. J. et al. Sleep disturbance and depression recurrence in community-dwelling older adults: a prospective study. Am. J. Psychiatry 165, 1543–1550 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  134. Zautra, A. J. et al. Depression history, stress, and pain in rheumatoid arthritis patients. J. Behav. Med. 30, 187–197 (2007).

    Article  PubMed  Google Scholar 

  135. Moldofsky, H. Sleep and pain. Sleep. Med. Rev. 5, 385–396 (2001).

    Article  PubMed  Google Scholar 

  136. Lee, Y. C. et al. Pain persists in DAS28 rheumatoid arthritis remission but not in ACR/EULAR remission: a longitudinal observational study. Arthritis Res. Ther. 13, R83 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  137. Michaud, K. et al. Systematic literature review of residual symptoms and an unmet need in patients with rheumatoid arthritis. Arthritis Care Res. 73, 1606–1616 (2021).

    Article  Google Scholar 

  138. Woolf, C. J. Central sensitization: implications for the diagnosis and treatment of pain. Pain 152, S2–S15 (2011).

    Article  PubMed  Google Scholar 

  139. Trouvin, A. P., Attal, N. & Perrot, S. Assessing central sensitization with quantitative sensory testing in inflammatory rheumatic diseases: a systematic review. Jt. Bone Spine 89, 105399 (2022).

    Article  Google Scholar 

  140. Walsh, D. A. & McWilliams, D. F. Mechanisms, impact and management of pain in rheumatoid arthritis. Nat. Rev. Rheumatol. 10, 581–592 (2014).

    Article  CAS  PubMed  Google Scholar 

  141. Staud, R. Abnormal endogenous pain modulation is a shared characteristic of many chronic pain conditions. Expert. Rev. Neurother. 12, 577–585 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  142. Petersen, K. K., Arendt-Nielsen, L., Simonsen, O., Wilder-Smith, O. & Laursen, M. B. Presurgical assessment of temporal summation of pain predicts the development of chronic postoperative pain 12 months after total knee replacement. Pain 156, 55–61 (2015).

    Article  PubMed  Google Scholar 

  143. Edwards, R. R., Sarlani, E., Wesselmann, U. & Fillingim, R. B. Quantitative assessment of experimental pain perception: multiple domains of clinical relevance. Pain 114, 315–319 (2005).

    Article  PubMed  Google Scholar 

  144. Finan, P. H. et al. Discordance between pain and radiographic severity in knee osteoarthritis: findings from quantitative sensory testing of central sensitization. Arthritis Rheum. 65, 363–372 (2013).

    Article  PubMed  Google Scholar 

  145. Anderson, W. S., Sheth, R. N., Bencherif, B., Frost, J. J. & Campbell, J. N. Naloxone increases pain induced by topical capsaicin in healthy human volunteers. Pain 99, 207–216 (2002).

    Article  CAS  PubMed  Google Scholar 

  146. Vladimirova, N. et al. Pain sensitisation in women with active rheumatoid arthritis: a comparative cross-sectional study. Arthritis 2015, 434109 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  147. Lee, Y. C. et al. Association between pain sensitization and disease activity in patients with rheumatoid arthritis: a cross-sectional study. Arthritis Care Res. 70, 197–204 (2018).

    Article  Google Scholar 

  148. Heisler, A. C. et al. Association of pain centralization and patient-reported pain in active rheumatoid arthritis. Arthritis Care Res. 72, 1122–1129 (2020).

    Article  CAS  Google Scholar 

  149. Song, J. et al. Pain sensitization as a potential mediator of the relationship between sleep disturbance and subsequent pain in rheumatoid arthritis. Arthritis Care Res. 75, 778–784 (2023).

    Article  CAS  Google Scholar 

  150. Trouvin, A. P. et al. Mechanisms of chronic pain in inflammatory rheumatism: the role of descending modulation. Pain https://doi.org/10.1097/j.pain.0000000000002745 (2022).

    Article  PubMed  Google Scholar 

  151. Lee, Y. C. et al. The role of sleep problems in central pain processing in rheumatoid arthritis. Arthritis Rheum. 65, 59–68 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  152. Heisler, A. C. et al. Association of dysregulated central pain processing and response to disease-modifying antirheumatic drug therapy in rheumatoid arthritis. Arthritis Rheumatol. 72, 2017–2024 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Smith, M. T. Jr. et al. Sex differences in measures of central sensitization and pain sensitivity to experimental sleep disruption: implications for sex differences in chronic pain. Sleep https://doi.org/10.1093/sleep/zsy209 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  154. Simpson, N. S., Scott-Sutherland, J., Gautam, S., Sethna, N. & Haack, M. Chronic exposure to insufficient sleep alters processes of pain habituation and sensitization. Pain 159, 33–40 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  155. Smith, M. T., Edwards, R. R., McCann, U. D. & Haythornthwaite, J. A. The effects of sleep deprivation on pain inhibition and spontaneous pain in women. Sleep 30, 494–505 (2007).

    Article  PubMed  Google Scholar 

  156. Eichhorn, N., Treede, R. D. & Schuh-Hofer, S. The role of sex in sleep deprivation related changes of nociception and conditioned pain modulation. Neuroscience 387, 191–200 (2018).

    Article  CAS  PubMed  Google Scholar 

  157. Iacovides, S., George, K., Kamerman, P. & Baker, F. C. Sleep fragmentation hypersensitizes healthy young women to deep and superficial experimental pain. J. Pain. 18, 844–854 (2017).

    Article  PubMed  Google Scholar 

  158. Staffe, A. T. et al. Total sleep deprivation increases pain sensitivity, impairs conditioned pain modulation and facilitates temporal summation of pain in healthy participants. PLoS One 14, e0225849 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Edwards, R. R. et al. Sleep continuity and architecture: associations with pain-inhibitory processes in patients with temporomandibular joint disorder. Eur. J. Pain. 13, 1043–1047 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Watkins, L. R., Maier, S. F. & Goehler, L. E. Immune activation: the role of pro-inflammatory cytokines in inflammation, illness responses and pathological pain states. Pain 63, 289–302 (1995).

    Article  PubMed  Google Scholar 

  161. Sommer, C., Leinders, M. & Uceyler, N. Inflammation in the pathophysiology of neuropathic pain. Pain 159, 595–602 (2018).

    Article  CAS  PubMed  Google Scholar 

  162. Pinho-Ribeiro, F. A., Verri, W. A. Jr. & Chiu, I. M. Nociceptor sensory neuron-immune interactions in pain and inflammation. Trends Immunol. 38, 5–19 (2017).

    Article  CAS  PubMed  Google Scholar 

  163. Lautenbacher, S., Kundermann, B. & Krieg, J. C. Sleep deprivation and pain perception. Sleep. Med. Rev. 10, 357–369 (2006).

    Article  PubMed  Google Scholar 

  164. Onen, S. H., Alloui, A., Gross, A., Eschallier, A. & Dubray, C. The effects of total sleep deprivation, selective sleep interruption and sleep recovery on pain tolerance thresholds in healthy subjects. J. Sleep. Res. 10, 35–42 (2001).

    Article  CAS  PubMed  Google Scholar 

  165. Roehrs, T., Hyde, M., Blaisdell, B., Greenwald, M. & Roth, T. Sleep loss and REM sleep loss are hyperalgesic. Sleep 29, 145–151 (2006).

    Article  PubMed  Google Scholar 

  166. Irwin, M. R., Olmstead, R., Bjurstrom, M. F., Finan, P. H. & Smith, M. T. Sleep disruption and activation of cellular inflammation mediate heightened pain sensitivity: a randomized clinical trial. Pain 164, 1128–1137 (2023).

    Article  CAS  PubMed  Google Scholar 

  167. Haack, M., Sanchez, E. & Mullington, J. M. Elevated inflammatory markers in response to prolonged sleep restriction are associated with increased pain experience in healthy volunteers. Sleep 30, 1145–1152 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  168. Tang, N. K. Insomnia co-occurring with chronic pain: clinical features, interaction, assessments and possible interventions. Rev. Pain. 2, 2–7 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  169. Segond von Banchet, G. et al. Experimental arthritis causes tumor necrosis factor-alpha-dependent infiltration of macrophages into rat dorsal root ganglia which correlates with pain-related behavior. Pain 145, 151–159 (2009).

    Article  CAS  PubMed  Google Scholar 

  170. Basbaum, A. I., Bautista, D. M., Scherrer, G. & Julius, D. Cellular and molecular mechanisms of pain. Cell 139, 267–284 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Ebbinghaus, M. et al. Interleukin-6-dependent influence of nociceptive sensory neurons on antigen-induced arthritis. Arthritis Res. Ther. 17, 334 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  172. Schaible, H. G., Konig, C. & Ebersberger, A. Spinal pain processing in arthritis: neuron and glia (inter)actions. J. Neurochem. https://doi.org/10.1111/jnc.15742 (2022).

    Article  PubMed  Google Scholar 

  173. Schaible, H. G. Nociceptive neurons detect cytokines in arthritis. Arthritis Res. Ther. 16, 470 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  174. Ebbinghaus, M. et al. The role of interleukin-1β in arthritic pain: main involvement in thermal, but not mechanical, hyperalgesia in rat antigen-induced arthritis. Arthritis Rheum. 64, 3897–3907 (2012).

    Article  CAS  PubMed  Google Scholar 

  175. Irwin, M., Clark, C., Kennedy, B., Christian Gillin, J. & Ziegler, M. Nocturnal catecholamines and immune function in insomniacs, depressed patients, and control subjects. Brain Behav. Immun. 17, 365–372 (2003).

    Article  CAS  PubMed  Google Scholar 

  176. Irwin, M. R. & Cole, S. W. Reciprocal regulation of the neural and innate immune systems. Nat. Rev. Immunol. 11, 625–632 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Miller, G. E. et al. A functional genomic fingerprint of chronic stress in humans: blunted glucocorticoid and increased NF-κB signaling. Biol. Psychiatry 64, 266–272 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Tracey, K. J. Reflex control of immunity. Nat. Rev. Immunol. 9, 418–428 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Koopman, F. A. et al. Restoring the balance of the autonomic nervous system as an innovative approach to the treatment of rheumatoid arthritis. Mol. Med. 17, 937–948 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Adlan, A. M., Lip, G. Y., Paton, J. F., Kitas, G. D. & Fisher, J. P. Autonomic function and rheumatoid arthritis: a systematic review. Semin. Arthritis Rheum. 44, 283–304 (2014).

    Article  PubMed  Google Scholar 

  181. Reynolds, A. C., Marshall, N. S., Hill, C. L. & Adams, R. J. Systematic review of the efficacy of commonly prescribed pharmacological treatments for primary treatment of sleep disturbance in patients with diagnosed autoimmune disease. Sleep. Med. Rev. 49, 101232 (2020).

    Article  PubMed  Google Scholar 

  182. Roth, T. et al. The effect of eszopiclone in patients with insomnia and coexisting rheumatoid arthritis: a pilot study. Prim. Care Companion J. Clin. Psychiatry 11, 292–301 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  183. Montgomery, P. & Dennis, J. Cognitive behavioural interventions for sleep problems in adults aged 60+. Cochrane Database Syst. Rev. https://doi.org/10.1002/14651858.CD003161 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  184. Montgomery, P. & Dennis, J. Cognitive behavioural interventions for sleep problems in adults aged 60+. Update. Cochrane Database Syst. Rev. https://doi.org/10.1002/14651858.CD003161 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  185. Morgenthaler, T. et al. Practice parameters for the psychological and behavioral treatment of insomnia: an update. An American Academy of sleep medicine report. Sleep 29, 1415–1419 (2006).

    Article  PubMed  Google Scholar 

  186. Riemann, D. et al. European guideline for the diagnosis and treatment of insomnia. J. Sleep. Res. 26, 675–700 (2017).

    Article  PubMed  Google Scholar 

  187. Qaseem, A. et al. Management of chronic insomnia disorder in adults: a clinical practice guideline from the American College of Physicians. Ann. Intern. Med. 165, 125–133 (2016).

    Article  PubMed  Google Scholar 

  188. Irwin, M. R. et al. Prevention of incident and recurrent major depression in older adults with insomnia: a randomized clinical trial. JAMA Psychiatry 79, 33–41 (2022).

    Article  PubMed  Google Scholar 

  189. Irwin, M. R. et al. Tai Chi Chih compared with cognitive behavioral therapy for the treatment of insomnia in survivors of breast cancer: a randomized, partially blinded, noninferiority trial. J. Clin. Oncol. 35, 2656–2665 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  190. Garland, S. N. et al. Mindfulness-based stress reduction compared with cognitive behavioral therapy for the treatment of insomnia comorbid with cancer: a randomized, partially blinded, noninferiority trial. J. Clin. Oncol. 32, 449–457 (2014).

    Article  PubMed  Google Scholar 

  191. Siu, P. M. et al. Effects of Tai Chi or exercise on sleep in older adults with insomnia: a randomized clinical trial. JAMA Netw. Open 4, e2037199 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  192. Moldofsky, H., Lue, F. A., Mously, C., Roth-Schechter, B. & Reynolds, W. J. The effect of zolpidem in patients with fibromyalgia: a dose ranging, double blind, placebo controlled, modified crossover study. J. Rheumatol. 23, 529–533 (1996).

    CAS  PubMed  Google Scholar 

  193. Edinger, J. D., Wohlgemuth, W. K., Krystal, A. D. & Rice, J. R. Behavioral insomnia therapy for fibromyalgia patients: a randomized clinical trial. Arch. Intern. Med. 165, 2527–2535 (2005).

    Article  PubMed  Google Scholar 

  194. Drewes, A. M., Bjerregard, K., Taagholt, S. J., Svendsen, L. & Nielsen, K. D. Zopiclone as night medication in rheumatoid arthritis. Scand. J. Rheumatol. 27, 180–187 (1998).

    Article  CAS  PubMed  Google Scholar 

  195. Scharf, M. B., Baumann, M. & Berkowitz, D. V. The effects of sodium oxybate on clinical symptoms and sleep patterns in patients with fibromyalgia. J. Rheumatol. 30, 1070–1074 (2003).

    CAS  PubMed  Google Scholar 

  196. Walsh, J. K., Muehlbach, M. J., Lauter, S. A., Hilliker, N. A. & Schweitzer, P. K. Effects of triazolam on sleep, daytime sleepiness, and morning stiffness in patients with rheumatoid arthritis. J. Rheumatol. 23, 245–252 (1996).

    CAS  PubMed  Google Scholar 

  197. Irwin, M. R., Cole, J. C. & Nicassio, P. M. Comparative meta-analysis of behavioral interventions for insomnia and their efficacy in middle-aged adults and in older adults 55+ years of age. Health Psychol. 25, 3–14 (2006).

    Article  PubMed  Google Scholar 

  198. Selvanathan, J. et al. Cognitive behavioral therapy for insomnia in patients with chronic pain — a systematic review and meta-analysis of randomized controlled trials. Sleep. Med. Rev. 60, 101460 (2021).

    Article  PubMed  Google Scholar 

  199. Latocha, K. M. et al. The effect of group-based cognitive behavioural therapy for insomnia in patients with rheumatoid arthritis: a randomised controlled trial. Rheumatology https://doi.org/10.1093/rheumatology/keac448 (2022).

    Article  Google Scholar 

  200. Smith, M. T. et al. Cognitive-behavioral therapy for insomnia in knee osteoarthritis: a randomized, double-blind, active placebo-controlled clinical trial. Arthritis Rheumatol. 67, 1221–1233 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  201. Loeppenthin, K. et al. Efficacy and acceptability of intermittent aerobic exercise on polysomnography-measured sleep in people with rheumatoid arthritis with self-reported sleep disturbance: a randomized controlled trial. ACR Open Rheumatol. 4, 395–405 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  202. McKenna, S. G. et al. The feasibility of an exercise intervention to improve sleep (time, quality and disturbance) in people with rheumatoid arthritis: a pilot RCT. Rheumatol. Int. 41, 297–310 (2021).

    Article  PubMed  Google Scholar 

  203. Kilic, N. & Parlar Kilic, S. The effect of progressive muscle relaxation on sleep quality and fatigue in patients with rheumatoid arthritis: a randomized controlled trial. Int. J. Nurs. Pract. https://doi.org/10.1111/ijn.13015 (2021).

    Article  PubMed  Google Scholar 

  204. Ward, L., Stebbings, S., Athens, J., Cherkin, D. & David Baxter, G. Yoga for the management of pain and sleep in rheumatoid arthritis: a pilot randomized controlled trial. Musculoskelet. Care 16, 39–47 (2018).

    Article  Google Scholar 

  205. Tang, N. K. et al. Nonpharmacological treatments of insomnia for long-term painful conditions: a systematic review and meta-analysis of patient-reported outcomes in randomized controlled trials. Sleep 38, 1751–1764 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  206. Krueger, J. M. & Majde, J. A. Microbial products and cytokines in sleep and fever regulation. Crit. Rev. Immunol. 37, 291–315 (2017).

    Article  PubMed  Google Scholar 

  207. Motivala, S. J., Sollers, J., Thayer, J. & Irwin, M. R. Tai chi chih acutely decreases sympathetic nervous system activity in older adults. J. Gerontol. A Biol. Sci. Med. Sci. 61, 1177–1180 (2006).

    Article  PubMed  Google Scholar 

  208. Park, J., Lyles, R. H. & Bauer-Wu, S. Mindfulness meditation lowers muscle sympathetic nerve activity and blood pressure in African-American males with chronic kidney disease. Am. J. Physiol. Regul. Integr. Comp. Physiol. 307, R93–R101 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Ardi, Z., Golland, Y., Shafir, R., Sheppes, G. & Levit-Binnun, N. The effects of mindfulness-based stress reduction on the association between autonomic interoceptive signals and emotion regulation selection. Psychosom. Med. 83, 852–862 (2021).

    Article  PubMed  Google Scholar 

  210. Black, D. S. et al. Tai chi meditation effects on nuclear factor-κB signaling in lonely older adults: a randomized controlled trial. Psychother. Psychosom. 83, 315–317 (2014).

    Article  PubMed  Google Scholar 

  211. Irwin, M. R. et al. Tai chi, cellular inflammation, and transcriptome dynamics in breast cancer survivors with insomnia: a randomized controlled trial. J. Natl Cancer Inst. Monogr. 2014, 295–301 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  212. Irwin, M. R. et al. Cognitive behavioral therapy and tai chi reverse cellular and genomic markers of inflammation in late-life insomnia: a randomized controlled trial. Biol. Psychiatry 78, 721–729 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  213. Ford, E. S. Does exercise reduce inflammation? Physical activity and C-reactive protein among U.S. adults. Epidemiology 13, 561–568 (2002).

    Article  PubMed  Google Scholar 

  214. Esposito, K. et al. Effect of weight loss and lifestyle changes on vascular inflammatory markers in obese women: a randomized trial. J. Am. Med. Assoc. 289, 1799–1804 (2003).

    Article  CAS  Google Scholar 

  215. Creswell, J. D. et al. Mindfulness-based stress reduction training reduces loneliness and pro-inflammatory gene expression in older adults: a small randomized controlled trial. Brain Behav. Immun. 26, 1095–1101 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Black, D. S. et al. Yogic meditation reverses NF-κB and IRF-related transcriptome dynamics in leukocytes of family dementia caregivers in a randomized controlled trial. Psychoneuroendocrinology 38, 348–355 (2013).

    Article  CAS  PubMed  Google Scholar 

  217. Zautra, A. J. et al. Comparison of cognitive behavioral and mindfulness meditation interventions on adaptation to rheumatoid arthritis for patients with and without history of recurrent depression. J. Consult. Clin. Psychol. 76, 408–421 (2008).

    Article  PubMed  Google Scholar 

  218. Kunzel, H. et al. Sleep in pituitary insufficient patients compared to patients with depression and healthy controls at baseline and after challenge with CRH. J. Psychiatr. Res. 129, 124–128 (2020).

    Article  PubMed  Google Scholar 

  219. Buckley, T. M. & Schatzberg, A. F. On the interactions of the hypothalamic-pituitary-adrenal (HPA) axis and sleep: normal HPA axis activity and circadian rhythm, exemplary sleep disorders. J. Clin. Endocrinol. Metab. 90, 3106–3114 (2005).

    Article  CAS  PubMed  Google Scholar 

  220. Straub, R. H. et al. Anti-tumour necrosis factor antibody treatment does not change serum levels of cortisol binding globulin in patients with rheumatoid arthritis but it increases androstenedione relative to cortisol. Ann. Rheum. Dis. 64, 1353–1356 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. Zielinski, M. R., Dunbrasky, D. L., Taishi, P., Souza, G. & Krueger, J. M. Vagotomy attenuates brain cytokines and sleep induced by peripherally administered tumor necrosis factor-α and lipopolysaccharide in mice. Sleep 36, 1227–1238 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  222. Vitkovic, L., Bockaert, J. & Jacque, C. “Inflammatory” cytokines: neuromodulators in normal brain? J. Neurochem. 74, 457–471 (2000).

    Article  CAS  PubMed  Google Scholar 

  223. Banks, W. A. The blood-brain barrier in neuroimmunology: tales of separation and assimilation. Brain Behav. Immun. 44, 1–8 (2015).

    Article  CAS  PubMed  Google Scholar 

  224. Opp, M. R. & Krueger, J. M. Sleep and immunity: a growing field with clinical impact. Brain Behav. Immun. 47, 1–3 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  225. D’Mello, C., Le, T. & Swain, M. G. Cerebral microglia recruit monocytes into the brain in response to tumor necrosis factorα signaling during peripheral organ inflammation. J. Neurosci. 29, 2089–2102 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  226. McEwen, B. S. Physiology and neurobiology of stress and adaptation: central role of the brain. Physiol. Rev. 87, 873–904 (2007).

    Article  PubMed  Google Scholar 

  227. McEwen, B. S. Sleep deprivation as a neurobiologic and physiologic stressor: allostasis and allostatic load. Metabolism 55, S20–S23 (2006).

    Article  CAS  PubMed  Google Scholar 

  228. Besedovsky, L., Lange, T. & Born, J. Sleep and immune function. Pflugers Arch. 463, 121–137 (2012).

    Article  CAS  PubMed  Google Scholar 

  229. Redwine, L., Dang, J., Hall, M. & Irwin, M. Disordered sleep, nocturnal cytokines, and immunity in alcoholics. Psychosom. Med. 65, 75–85 (2003).

    Article  CAS  PubMed  Google Scholar 

  230. Irwin, M. et al. Partial night sleep deprivation reduces natural killer and cellular immune responses in humans. FASEB J. 10, 643–653 (1996).

    Article  CAS  PubMed  Google Scholar 

  231. Vgontzas, A. N. et al. Circadian interleukin-6 secretion and quantity and depth of sleep. J. Clin. Endocrinol. Metab. 84, 2603–2607 (1999).

    Article  CAS  PubMed  Google Scholar 

  232. Redwine, L., Hauger, R., Gillin, J. & Irwin, M. Effects of sleep and sleep deprivation on interleukin-6, growth hormone, cortisol, and melatonin levels in humans. J. Clin. Endocrinol. Metab. 85, 3597–3603 (2000).

    CAS  PubMed  Google Scholar 

  233. Muller-Newen, G. et al. Soluble IL-6 receptor potentiates the antagonistic activity of soluble gp130 on IL-6 responses. J. Immunol. 161, 6347–6355 (1998).

    Article  CAS  PubMed  Google Scholar 

  234. Dimitrov, S., Besedovsky, L., Born, J. & Lange, T. Differential acute effects of sleep on spontaneous and stimulated production of tumor necrosis factor in men. Brain Behav. Immun. 47, 201–210 (2015).

    Article  CAS  PubMed  Google Scholar 

  235. Born, J., Lange, T., Hansen, K., Molle, M. & Fehm, H. L. Effects of sleep and circadian rhythm on human circulating immune cells. J. Immunol. 158, 4454–4464 (1997).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The work of the authors is funded by National Institutes of Health (NIH) — National Institute on Drug Abuse (NIH/NIDA) R01DA0329922 (to M.T.S. and M.R.I.), by NIH – National Heart, Lung, and Blood Institute (NIH-NHLB) R01 HL079955 (to M.R.I.), and the Norman Cousins Center for Psychoneuroimmunology.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to all aspects of the preparation of this manuscript.

Corresponding author

Correspondence to Michael R. Irwin.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Rheumatology thanks Filip Swirski, Monica Andersen and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

C-reactive protein

(CRP). An acute phase protein that is synthesized by the liver in response to the production of IL-6 by macrophages or T cells.

Electroencephalography

(EEG). A measure that tracks the electrical activity of the brain; one use is to graphically represent stages of sleep, which are defined by differences in waveform shape, frequency and amplitude.

Electromyography

A measure that tracks the electrical activity of muscle; it can be used, together with the EEG, to define stages of sleep, such as rapid eye movement sleep, in which low muscle tone or activity is accompanied by random and rapid eye movements.

Epigenetic ageing

An estimate of biological age given by evaluating changes in DNA methylation at particular genomic locations, which is found to be more predictive of mortality risk than chronological age.

Experimental sleep disruption

Imposing a loss of sleep during the night, for either part of the night (in other words, partial night sleep deprivation) or for the entire night (in other words, total night sleep deprivation).

Glucocorticoid resistance

A state of decreased sensitivity to the anti-inflammatory effects of glucocorticoids, which can be caused by ongoing increases in inflammation as well as by a genetic predisposition.

Glucocorticoids

Neuroendocrine hormones that belong to the steroid hormone class, which suppress inflammation and antiviral immune responses, in addition to having a role in the metabolism of protein, fat and glucose.

Hypothalamic–pituitary–adrenal axis

(HPA axis). A neuroendocrine system that links the hypothalamus, pituitary and adrenal glands and functions to regulate the immune system in response to circadian signalling, behavioural states such as sleep and peripheral inflammatory signals.

Parasympathetic nervous system

A component of the autonomic nervous system that comprises nerve fibres that innervate visceral tissues to regulate actions of the body when it is at rest, mainly through the release of the neurotransmitter acetylcholine.

Rapid eye movement

(REM). A stage of sleep, also known as paradoxical sleep, that is characterized by desynchronized electroencephalogram activity in a manner similar to waking, accompanied by random and rapid movement of the eyes together with low muscle tone. REM sleep is viewed as the sleep period in which there is a propensity to dream.

REM density

A measure specific to REM sleep and refers to the number of eye movements during REM sleep, which increases throughout the night along with a reduction in the drive to sleep. In other words, REM density is higher during the circadian or sleep period with arousal, and decreased in the night following sleep deprivation, which increases the drive to sleep.

Sleep continuity

The relative distribution of uninterrupted sleep, as opposed to wakefulness, during the night, as measured by sleep efficiency and wake time after sleep onset (the amount of time spent awake after turning off the lights and initiating sleep).

Sleep duration

The amount of time spent asleep during the night, measured either by subjective report or objectively, using polysomnography or actigraphy. Short sleep duration is defined as less than the reference amount of 7 h per night and is typically characterized as being less than 6 h of sleep per night. Long sleep duration is typically characterized as being more than 8 h of sleep per night.

Sleep efficiency

Time spent asleep as a percentage of the total time spent in bed.

Sympathetic nervous system

(SNS). A component of the autonomic nervous system that comprises nerve fibres that innervate lymphoid tissues, as well as nearly all other body tissues. The SNS regulates immune cell traffic and immune responses during sleep and in response to stress through the release of noradrenaline.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Irwin, M.R., Straub, R.H. & Smith, M.T. Heat of the night: sleep disturbance activates inflammatory mechanisms and induces pain in rheumatoid arthritis. Nat Rev Rheumatol 19, 545–559 (2023). https://doi.org/10.1038/s41584-023-00997-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41584-023-00997-3

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing