Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Effect of DMARDs on the immunogenicity of vaccines

Abstract

Vaccines are important for protecting individuals at increased risk of severe infections, including patients undergoing DMARD therapy. However, DMARD therapy can also compromise the immune system, leading to impaired responses to vaccination. This Review focuses on the impact of DMARDs on influenza and SARS-CoV-2 vaccinations, as such vaccines have been investigated most thoroughly. Various data suggest that B cell depletion therapy, mycophenolate mofetil, cyclophosphamide, azathioprine and abatacept substantially reduce the immunogenicity of these vaccines. However, the effects of glucocorticoids, methotrexate, TNF inhibitors and JAK inhibitors on vaccine responses remain unclear and could depend on the dosage and type of vaccination. Vaccination is aimed at initiating robust humoral and cellular vaccine responses, which requires efficient interactions between antigen-presenting cells, T cells and B cells. DMARDs impair these cells in different ways and to different degrees, such as the prevention of antigen-presenting cell maturation, alteration of T cell differentiation and selective inhibition of B cell subsets, thus inhibiting processes that are necessary for an effective vaccine response. Innovative modified vaccination strategies are needed to improve vaccination responses in patients undergoing DMARD therapy and to protect these patients from the severe outcomes of infectious diseases.

Key points

  • Vaccines should ideally evoke efficient interactions between antigen-presenting cells and T cells and B cells; certain DMARDs disturb these interactions, leading to reduced vaccine responses and protection from infection.

  • The immunogenicity of influenza and SARS-CoV-2 vaccines is often reduced in patients with rheumatic diseases, depending on the type of DMARD used during vaccination.

  • A few DMARDs substantially inhibit responses to both vaccines (such as B cell depletion therapy or mycophenolate mofetil), whereas other DMARDs likely have no effect (including IL-6 inhibitors and hydroxychloroquine).

  • The effect of some DMARDs (including TNF inhibitors, methotrexate and glucocorticoids) on vaccine responses could depend on the type of vaccine or DMARD dose used.

  • The differential effects of DMARDs on vaccine responses are likely explained by the varying ways in which these drugs target disease and the functioning of antigen-presenting cells, T cells and B cells.

  • Specific vaccine strategies, such as a drug holiday, should be considered for patients on each type of DMARD, depending on their effects on vaccine effectiveness and on controlling disease activity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Immune responses after vaccination.
Fig. 2: The effect of DMARDs on immunological processes important for vaccine responses.

References

  1. Holmes, K. K., Bertozzi, S., Bloom, B. R. & Jha, P. in Disease Control Priorities, (Volume 6): Major Infectious Diseases (World Bank Publications, 2017).

  2. Cookson, B. Regarding “Understanding the emerging coronavirus: what it means to health security and infection prevention”. J. Hosp. Infect. 105, 792 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Carroll, D. et al. The global virome project. Science 359, 872–874 (2018).

    Article  CAS  PubMed  Google Scholar 

  4. Pollard, A. J. & Bijker, E. M. A guide to vaccinology: from basic principles to new developments. Nat. Rev. Immunol. 21, 83–100 (2021).

    Article  CAS  PubMed  Google Scholar 

  5. Pardi, N., Hogan, M. J., Porter, F. W. & Weissman, D. mRNA vaccines — a new era in vaccinology. Nat. Rev. Drug. Discov. 17, 261–279 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Tuano, K. S., Seth, N. & Chinen, J. Secondary immunodeficiencies: an overview. Ann. Allergy Asthma Immunol. 127, 617–626 (2021).

    Article  CAS  PubMed  Google Scholar 

  7. Marshall, J. S., Warrington, R., Watson, W. & Kim, H. L. An introduction to immunology and immunopathology. Allergy Asthma Clin. Immunol. 14, 1–10 (2018).

    Article  Google Scholar 

  8. Bullock, J. et al. Rheumatoid arthritis: a brief overview of the treatment. Med. Princ. Pract. 27, 501–507 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Youssef, J., Novosad, S. A. & Winthrop, K. L. Infection risk and safety of corticosteroid use. Rheum. Dis. Clin. 42, 157–176 (2016).

    Article  Google Scholar 

  10. Kroon, F. P. B. et al. Risk and prognosis of SARS-CoV-2 infection and vaccination against SARS-CoV-2 in rheumatic and musculoskeletal diseases: a systematic literature review to inform EULAR recommendations. Ann. Rheum. Dis. 81, 422–432 (2022).

    Article  CAS  PubMed  Google Scholar 

  11. Bower, H., Frisell, T., Di Giuseppe, D., Delcoigne, B. & Askling, J. Influenza outcomes in patients with inflammatory joint diseases and DMARDs: how do they compare to those of COVID-19? Ann. Rheum. Dis. 81, 433–439 (2022).

    Article  CAS  PubMed  Google Scholar 

  12. Li, J. et al. Association between glucocorticoids treatment and viral clearance delay in patients with COVID-19: a systematic review and meta-analysis. BMC Infect. Dis. 21, 1–13 (2021).

    Article  Google Scholar 

  13. Sadarangani, M., Marchant, A. & Kollmann, T. R. Immunological mechanisms of vaccine-induced protection against COVID-19 in humans. Nat. Rev. Immunol. 21, 475–484 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Geginat, J. et al. Plasticity of human CD4 T cell subsets. Front. Immunol. 5, 630 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Medzhitov, R. Recognition of microorganisms and activation of the immune response. Nature 449, 819–826 (2007).

    Article  CAS  PubMed  Google Scholar 

  16. Fujio, K., Okamura, T. & Yamamoto, K. The family of IL-10-secreting CD4+ T cells. Adv. Immunol. 105, 99–130 (2010).

    Article  CAS  PubMed  Google Scholar 

  17. Aleebrahim-Dehkordi, E. et al. T helper type (Th1/Th2) responses to SARS-CoV-2 and influenza A (H1N1) virus: from cytokines produced to immune responses. Transpl. Immunol. 70, 101495 (2022).

    Article  CAS  PubMed  Google Scholar 

  18. Oberhardt, V. et al. Rapid and stable mobilization of CD8+ T cells by SARS-CoV-2 mRNA vaccine. Nature 597, 268–273 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Zhang, Z. et al. Humoral and cellular immune memory to four COVID-19 vaccines. Cell 185, 2434–2451 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Krammer, F. et al. Influenza. Nat. Rev. Dis. Prim. 4, 3 (2018).

    Article  PubMed  Google Scholar 

  21. Tanriover, M. D. et al. Efficacy and safety of an inactivated whole-virion SARS-CoV-2 vaccine (CoronaVac): interim results of a double-blind, randomised, placebo-controlled, phase 3 trial in Turkey. Lancet 398, 213–222 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Heath, P. T. et al. Safety and efficacy of NVX-CoV2373 Covid-19 vaccine. N. Engl. J. Med. 385, 1172–1183 (2021).

    Article  CAS  PubMed  Google Scholar 

  23. Rotshild, V., Hirsh-Raccah, B., Miskin, I., Muszkat, M. & Matok, I. Comparing the clinical efficacy of COVID-19 vaccines: a systematic review and network meta-analysis. Sci. Rep. 11, 1–9 (2021).

    Article  Google Scholar 

  24. Morais, P., Adachi, H. & Yu, Y. T. The critical contribution of pseudouridine to mRNA COVID-19 vaccines. Front. Cell. Dev. Biol. 9, 789427 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Zimmermann, P. et al. Correlation of vaccine responses. Front. Immunol. 12, 646677 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Lucas, C. et al. Impact of circulating SARS-CoV-2 variants on mRNA vaccine-induced immunity. Nature 600, 523–529 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Oosting, S. F. et al. mRNA-1273 COVID-19 vaccination in patients receiving chemotherapy, immunotherapy, or chemoimmunotherapy for solid tumours: a prospective, multicentre, non-inferiority trial. Lancet Oncol. 22, 1681–1691 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Schlom, J. & Donahue, R. N. The importance of cellular immunity in the development of vaccines and therapeutics for COVID-19. J. Infect. Dis. 222, 1435–1438 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Slota, M., Lim, J., Dang, Y. & Disis, M. L. ELISpot for measuring human immune responses to vaccines. Expert Rev. Vaccines 10, 299–306 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Barrios, Y. et al. Easy approach to detect cell immunity to COVID vaccines in common variable immunodeficiency patients. Allergol. Immunopathol. 50, 101–105 (2022).

    Article  Google Scholar 

  31. Bettini, E. & Locci, M. SARS-CoV-2 mRNA vaccines: immunological mechanism and beyond. Vaccines 9, 147 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Rossol, M., Kraus, S., Pierer, M., Baerwald, C. & Wagner, U. The CD14bright CD16+ monocyte subset is expanded in rheumatoid arthritis and promotes expansion of the Th17 cell population. Arthritis Rheum. 64, 671–677 (2012).

    Article  CAS  PubMed  Google Scholar 

  33. Samson, M. et al. Th1 and Th17 lymphocytes expressing CD161 are implicated in giant cell arteritis and polymyalgia rheumatica pathogenesis. Arthritis Rheum. 64, 3788–3798 (2012).

    Article  CAS  PubMed  Google Scholar 

  34. George, M. D. et al. Risk for serious infection with low-dose glucocorticoids in patients with rheumatoid arthritis: a cohort study. Ann. Intern. Med. 173, 870–878 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Conway, R. et al. SARS–CoV‐2 infection and COVID‐19 outcomes in rheumatic diseases: a systematic literature review and meta‐analysis. Arthritis Rheumatol. 74, 766–775 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Subesinghe, S., Bechman, K., Rutherford, A. I., Goldblatt, D. & Galloway, J. B. A systematic review and metaanalysis of antirheumatic drugs and vaccine immunogenicity in rheumatoid arthritis. J. Rheumatol. 45, 733–744 (2018).

    Article  CAS  PubMed  Google Scholar 

  37. Friedman, M. A., Curtis, J. R. & Winthrop, K. L. Impact of disease-modifying antirheumatic drugs on vaccine immunogenicity in patients with inflammatory rheumatic and musculoskeletal diseases. Ann. Rheum. Dis. 80, 1255–1265 (2021).

    Article  CAS  PubMed  Google Scholar 

  38. Rondaan, C. et al. Efficacy, immunogenicity and safety of vaccination in adult patients with autoimmune inflammatory rheumatic diseases: a systematic literature review for the 2019 update of EULAR recommendations. RMD Open 5, e001035 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Gabay, C. et al. Impact of synthetic and biologic disease‐modifying antirheumatic drugs on antibody responses to the AS03‐adjuvanted pandemic influenza vaccine: a prospective, open‐label, parallel‐cohort, single‐center study. Arthritis Rheum. 63, 1486–1496 (2011).

    Article  CAS  PubMed  Google Scholar 

  40. Van Assen, S. et al. Humoral responses after influenza vaccination are severely reduced in patients with rheumatoid arthritis treated with rituximab. Arthritis Rheum. 62, 75–81 (2010).

    Article  PubMed  Google Scholar 

  41. Furer, V. et al. 2019 update of EULAR recommendations for vaccination in adult patients with autoimmune inflammatory rheumatic diseases. Ann. Rheum. Dis. 79, 39–52 (2020).

    Article  CAS  PubMed  Google Scholar 

  42. Bass, A. R. et al. 2022 American College of Rheumatology Guideline for Vaccinations in Patients With Rheumatic and Musculoskeletal Diseases. Arthritis Care Res. 75, 449–464 (2023).

    Article  Google Scholar 

  43. Arad, U. et al. The cellular immune response to influenza vaccination is preserved in rheumatoid arthritis patients treated with rituximab. Vaccine 29, 1643–1648 (2011).

    Article  CAS  PubMed  Google Scholar 

  44. Graalmann, T. et al. B cell depletion impairs vaccination-induced CD8+ T cell responses in a type I interferon-dependent manner. Ann. Rheum. Dis. 80, 1537–1544 (2021).

    Article  CAS  PubMed  Google Scholar 

  45. Adler, S. et al. Protective effect of A/H1N1 vaccination in immune-mediated disease — a prospectively controlled vaccination study. Rheumatology 51, 695–700 (2012).

    Article  CAS  PubMed  Google Scholar 

  46. Abu-Shakra, M. et al. Specific antibody response after influenza immunization in systemic lupus erythematosus. J. Rheumatol. 29, 2555–2557 (2002).

    CAS  PubMed  Google Scholar 

  47. Holvast, A. et al. Studies of cell‐mediated immune responses to influenza vaccination in systemic lupus erythematosus. Arthritis Rheum. 60, 2438–2447 (2009).

    Article  CAS  PubMed  Google Scholar 

  48. Alten, R. et al. Antibody response to pneumococcal and influenza vaccination in patients with rheumatoid arthritis receiving abatacept. BMC Musculoskelet. Disord. 17, 1–10 (2016).

    Article  Google Scholar 

  49. Ribeiro, A. C. et al. Abatacept and reduced immune response to pandemic 2009 influenza A/H1N1 vaccination in patients with rheumatoid arthritis. Arthritis Care Res. 65, 476–480 (2013).

    Article  CAS  Google Scholar 

  50. Campos, L. M. et al. High disease activity: an independent factor for reduced immunogenicity of the pandemic influenza a vaccine in patients with juvenile systemic lupus erythematosus. Arthritis Care Res. 65, 1121–1127 (2013).

    Article  CAS  Google Scholar 

  51. Huang, Y., Wang, H., Wan, L., Lu, X. & Tam, W. W. S. Is systemic lupus erythematosus associated with a declined immunogenicity and poor safety of influenza vaccination?: a systematic review and meta-analysis. Medicine 95, e3637 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Huang, Y., Wang, H. & Tam, W. W. Is rheumatoid arthritis associated with reduced immunogenicity of the influenza vaccination? A systematic review and meta-analysis. Curr. Med. Res. Opin. 33, 1901–1908 (2017).

    Article  CAS  PubMed  Google Scholar 

  53. Ribeiro, A. C. et al. Reduced seroprotection after pandemic H1N1 influenza adjuvant-free vaccination in patients with rheumatoid arthritis: implications for clinical practice. Ann. Rheum. Dis. 70, 2144–2147 (2011).

    Article  PubMed  Google Scholar 

  54. Hua, C., Barnetche, T., Combe, B. & Morel, J. Effect of methotrexate, anti–tumor necrosis factor α, and rituximab on the immune response to influenza and pneumococcal vaccines in patients with rheumatoid arthritis: a systematic review and meta‐analysis. Arthritis Care Res. 66, 1016–1026 (2014).

    Article  CAS  Google Scholar 

  55. Park, J. K. et al. Impact of temporary methotrexate discontinuation for 2 weeks on immunogenicity of seasonal influenza vaccination in patients with rheumatoid arthritis: a randomised clinical trial. Ann. Rheum. Dis. 77, 898–904 (2018).

    CAS  PubMed  Google Scholar 

  56. Park, J. K. et al. Effect of methotrexate discontinuation on efficacy of seasonal influenza vaccination in patients with rheumatoid arthritis: a randomised clinical trial. Ann. Rheum. Dis. 76, 1559–1565 (2017).

    Article  CAS  PubMed  Google Scholar 

  57. Kapetanovic, M. C., Saxne, T., Nilsson, J. & Geborek, P. Influenza vaccination as model for testing immune modulation induced by anti-TNF and methotrexate therapy in rheumatoid arthritis patients. Rheumatology 46, 608–611 (2007).

    Article  CAS  PubMed  Google Scholar 

  58. Winthrop, K. L. et al. The effect of tofacitinib on pneumococcal and influenza vaccine responses in rheumatoid arthritis. Ann. Rheum. Dis. 75, 687–695 (2016).

    Article  CAS  PubMed  Google Scholar 

  59. Borba, E. F. et al. Influenza A/H1N1 vaccination of patients with SLE: can antimalarial drugs restore diminished response under immunosuppressive therapy? Rheumatology 51, 1061–1069 (2012).

    Article  CAS  PubMed  Google Scholar 

  60. Jena, A. et al. Response to SARS-CoV-2 vaccination in immune mediated inflammatory diseases: systematic review and meta-analysis. Autoimmun. Rev. 21, 102927 (2022).

    Article  CAS  PubMed  Google Scholar 

  61. Aikawa, N. E. et al. Increment of immunogenicity after third dose of a homologous inactivated SARS-CoV-2 vaccine in a large population of patients with autoimmune rheumatic diseases. Ann. Rheum. Dis. 81, 1036–1043 (2022).

    Article  CAS  PubMed  Google Scholar 

  62. Deepak, P. et al. Glucocorticoids and B cell depleting agents substantially impair immunogenicity of mRNA vaccines to SARS-CoV-2. Ann. Intern. Med., 174, 1572–1585 (2021).

    Article  PubMed  Google Scholar 

  63. Schietzel, S. et al. Humoral and cellular immune responses on SARS-CoV-2 vaccines in patients with anti-CD20 therapies: a systematic review and meta-analysis of 1342 patients. RMD Open 8, e002036 (2022).

    Article  PubMed  Google Scholar 

  64. Apostolidis, S. A. et al. Cellular and humoral immune responses following SARS-CoV-2 mRNA vaccination in patients with multiple sclerosis on anti-CD20 therapy. Nat. Med. 27, 1990–2001 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Boekel, L. et al. Antibody development after COVID-19 vaccination in patients with autoimmune diseases in the Netherlands: a substudy of data from two prospective cohort studies. Lancet Rheumatol. 3, e778–e788 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Wieske, L. et al. Humoral responses after second and third SARS-CoV-2 vaccination in patients with immune-mediated inflammatory disorders on immunosuppressants: a cohort study. Lancet Rheumatol. 4, e338–e350 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Braun-Moscovici, Y. et al. Disease activity and humoral response in patients with inflammatory rheumatic diseases after two doses of the Pfizer mRNA vaccine against SARS-CoV-2. Ann. Rheum. Dis. 80, 1317–1321 (2021).

    Article  CAS  PubMed  Google Scholar 

  68. Furer, V. et al. Predictors of immunogenic response to the BNT162b2 mRNA COVID-19 vaccination in patients with autoimmune inflammatory rheumatic diseases treated with rituximab. Vaccines 10, 901 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Simon, D. et al. Efficacy and safety of SARS-CoV-2 revaccination in non-responders with immune-mediated inflammatory disease. Ann. Rheum. Dis. 81, 1023–1027 (2022).

    Article  CAS  PubMed  Google Scholar 

  70. Madelon, N. et al. Robust T-cell responses in anti-CD20-treated patients following COVID-19 vaccination: a prospective cohort study. Clin. Infect. Dis. 75, e1037–e1045 (2022).

    Article  PubMed  Google Scholar 

  71. Alexander, J. L. et al. COVID-19 vaccine-induced antibody and T-cell responses in immunosuppressed patients with inflammatory bowel disease after the third vaccine dose (VIP): a multicentre, prospective, case-control study. Lancet Gastroenterol. Hepatol. 7, 1005–1015 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Schäfer, A., Kovacs, M. S., Eder, A., Nigg, A. & Feuchtenberger, M. Janus kinase (JAK) inhibitors significantly reduce the humoral vaccination response against SARS-CoV-2 in patients with rheumatoid arthritis. Clin. Rheumatol. 41, 3707–3714 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Deepak, P. et al. Effect of immunosuppression on the immunogenicity of mRNA vaccines to SARS-CoV-2: a prospective cohort study. Ann. Intern. Med. 174, 1572–1585 (2021).

    Article  PubMed  Google Scholar 

  74. Mauro, D. et al. Serological response to BNT162b2 anti-SARS-CoV-2 vaccination in patients with inflammatory rheumatic diseases: results from the RHEUVAX cohort. Front. Immunol. 13, 901055 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Furer, V. et al. Immunogenicity and safety of the BNT162b2 mRNA COVID-19 vaccine in adult patients with autoimmune inflammatory rheumatic diseases and in the general population: a multicentre study. Ann. Rheum. Dis. 80, 1330–1338 (2021).

    Article  CAS  PubMed  Google Scholar 

  76. Syversen, S. W. et al. Immunogenicity and safety of standard and third‐dose SARS-CoV‐2 vaccination in patients receiving immunosuppressive therapy. Arthritis Rheumatol. 74, 1321–1332 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Sieiro Santos, C. et al. Immune responses to mRNA vaccines against SARS-CoV-2 in patients with immune-mediated inflammatory rheumatic diseases. RMD Open https://doi.org/10.1136/rmdopen-2021-001898 (2022).

    Article  PubMed  Google Scholar 

  78. Kappelman, M. D. et al. Factors affecting initial humoral immune response to SARS-CoV-2 vaccines among patients with inflammatory bowel diseases. Am. J. Gastroenterol. 117, 462–469 (2022).

    Article  CAS  PubMed  Google Scholar 

  79. Prendecki, M. et al. Humoral and T-cell responses to SARS-CoV-2 vaccination in patients receiving immunosuppression. Ann. Rheum. Dis. 80, 1322–1329 (2021).

    Article  CAS  PubMed  Google Scholar 

  80. Kashiwado, Y. et al. Antibody response to SARS-CoV-2 mRNA vaccines in patients with rheumatic diseases in Japan: interim analysis of a multicenter cohort study. Mod. Rheumatol. 33, 367–372 (2022).

    Article  Google Scholar 

  81. Sugihara, K. et al. Humoral immune response against BNT162b2 mRNA COVID-19 vaccine in patients with rheumatic disease undergoing immunosuppressive therapy: a Japanese monocentric study. Medicine 101, e31288 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. van Sleen, Y. et al. Humoral and cellular SARS-CoV-2 vaccine responses in patients with giant cell arteritis and polymyalgia rheumatica. RMD Open 8, e002479 (2022).

    Article  Google Scholar 

  83. Garcia-Cirera, S. et al. Glucocorticoids’ treatment impairs the medium-term immunogenic response to SARS-CoV-2 mRNA vaccines in systemic lupus erythematosus patients. Sci. Rep. 12, 1–9 (2022).

    Article  Google Scholar 

  84. Medeiros-Ribeiro, A. C. et al. Immunogenicity and safety of the CoronaVac inactivated vaccine in patients with autoimmune rheumatic diseases: a phase 4 trial. Nat. Med. 27, 1744–1751 (2021).

    Article  CAS  PubMed  Google Scholar 

  85. Izmirly, P. M. et al. Evaluation of immune response and disease status in systemic lupus erythematosus patients following SARS-CoV‐2 vaccination. Arthritis Rheumatol. 74, 284–294 (2022).

    Article  CAS  PubMed  Google Scholar 

  86. Krasselt, M. et al. Humoral and cellular response to COVID-19 vaccination in patients with autoimmune inflammatory rheumatic diseases under real-life conditions. Rheumatology 61, SI180–SI188 (2022).

    Article  CAS  PubMed  Google Scholar 

  87. So, H., Li, T., Chan, V., Tam, L. & Chan, P. K. Immunogenicity and safety of inactivated and mRNA COVID-19 vaccines in patients with systemic lupus erythematosus. Ther. Adv. Musculoskelet. Dis. 14, 1759720X221089586 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Delvino, P. et al. Impact of immunosuppressive treatment on the immunogenicity of mRNA Covid-19 vaccine in vulnerable patients with giant cell arteritis. Rheumatology 61, 870–872 (2022).

    Article  CAS  PubMed  Google Scholar 

  89. Medeiros-Ribeiro, A. C. et al. Distinct impact of DMARD combination and monotherapy in immunogenicity of an inactivated SARS-CoV-2 vaccine in rheumatoid arthritis. Ann. Rheum. Dis. 81, 710–719 (2022).

    Article  CAS  PubMed  Google Scholar 

  90. Monti, S. et al. Immunosuppressive treatments selectively affect the humoral and cellular response to SARS-CoV-2 in vaccinated patients with vasculitis. Rheumatology 62, 726–734 (2023).

    Article  PubMed  Google Scholar 

  91. Mahil, S. K. et al. The effect of methotrexate and targeted immunosuppression on humoral and cellular immune responses to the COVID-19 vaccine BNT162b2: a cohort study. Lancet Rheumatol. 3, e627–e637 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Haberman, R. H. et al. Methotrexate hampers immunogenicity to BNT162b2 mRNA COVID-19 vaccine in immune-mediated inflammatory disease. Ann. Rheum. Dis. 80, 1339–1344 (2021).

    Article  CAS  PubMed  Google Scholar 

  93. Arumahandi De Silva, A. N. et al. Pausing methotrexate improves immunogenicity of COVID-19 vaccination in elderly patients with rheumatic diseases. Ann. Rheum. Dis. 81, 881–888 (2022).

    Article  CAS  PubMed  Google Scholar 

  94. Habermann, E. et al. Pausing methotrexate prevents impairment of Omicron BA.1 and BA.2 neutralisation after COVID-19 booster vaccination. RMD Open https://doi.org/10.1136/rmdopen-2022-002639 (2022).

    Article  PubMed  Google Scholar 

  95. Skaria, T. G. et al. Withholding methotrexate after vaccination with ChAdOx1 nCov19 in patients with rheumatoid or psoriatic arthritis in India (MIVAC I and II): results of two, parallel, assessor-masked, randomised controlled trials. Lancet Rheumatol. 4, e755–e764 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Araujo, C. S. R. et al. Two-week methotrexate discontinuation in patients with rheumatoid arthritis vaccinated with inactivated SARS-CoV-2 vaccine: a randomised clinical trial. Ann. Rheum. Dis. 81, 889–897 (2022).

    Article  CAS  PubMed  Google Scholar 

  97. Dayam, R. M. et al. Accelerated waning of immunity to SARS-CoV-2 mRNA vaccines in patients with immune mediated inflammatory diseases. JCI Insight 7, e159721 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  98. Edelman-Klapper, H. et al. Lower serologic response to COVID-19 mRNA vaccine in patients with inflammatory bowel diseases treated with Anti-TNFα. Gastroenterology 162, 454–467 (2022).

    Article  CAS  PubMed  Google Scholar 

  99. Saad, C. G. et al. Interaction of TNFi and conventional synthetic DMARD in SARS-CoV-2 vaccine response in axial spondyloarthritis and psoriatic arthritis. Jt. Bone Spine 90, 105464 (2023).

    Article  Google Scholar 

  100. Lin, S. et al. Antibody decay, T cell immunity and breakthrough infections following two SARS-CoV-2 vaccine doses in inflammatory bowel disease patients treated with infliximab and vedolizumab. Nat. Commun. 13, 1379 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Geisen, U. M. et al. The long term vaccine‐induced anti‐SARS‐CoV‐2 immune response is impaired in quantity and quality under TNFα blockade. J. Med. Virol. 94, 5780–5789 (2022).

    Article  CAS  PubMed  Google Scholar 

  102. Vollenberg, R., Tepasse, P., Lorentzen, E. & Nowacki, T. M. Impaired humoral immunity with concomitant preserved T cell reactivity in IBD patients on treatment with infliximab 6 month after vaccination with the SARS-CoV-2 mRNA vaccine BNT162b2: a pilot study. J. Pers. Med. 12, 694 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  103. Wroński, J. et al. Humoral and cellular immunogenicity of COVID-19 booster dose vaccination in inflammatory arthritis patients. Front. Immunol. 13, 1033804 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  104. Yuki, E. F. et al. Impact of distinct therapies on antibody response to SARS‐CoV‐2 vaccine in systemic lupus erythematosus. Arthritis Care Res. 74, 562–571 (2022).

    Article  CAS  Google Scholar 

  105. Verstappen, G. M. et al. Immunogenicity and safety of COVID-19 vaccination in patients with primary Sjogren’s syndrome. RMD Open 8, e002265 (2022).

    Article  PubMed  Google Scholar 

  106. Zhao, T. et al. Third dose of anti-SARS-CoV-2 inactivated vaccine for patients with RA: focusing on immunogenicity and effects of RA drugs. Front. Med. 9, 978272 (2022).

    Article  Google Scholar 

  107. Stahl, D. et al. Reduced humoral response to a third dose (booster) of SARS-CoV-2 mRNA vaccines by concomitant methotrexate therapy in elderly patients with rheumatoid arthritis. RMD Open 8, e002632 (2022).

    Article  PubMed  Google Scholar 

  108. Ten Hagen, A. et al. Improvement of humoral immunity by repeated dose-intensified COVID-19 vaccinations in primary non-to low-responders and B cell deficient rheumatic disease patients. J. Autoimmun. 135, 102996 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  109. Mrak, D. et al. Immunogenicity and safety of a fourth COVID-19 vaccination in rituximab-treated patients: an open-label extension study. Ann. Rheum. Dis. 81, 1750–1756 (2022).

    Article  CAS  PubMed  Google Scholar 

  110. Furer, V. et al. Immunogenicity induced by two and three doses of the BNT162b2 mRNA vaccine in patients with autoimmune inflammatory rheumatic diseases and immunocompetent controls: a longitudinal multicentre study. Ann. Rheum. Dis. 81, 1594–1602 (2022).

    Article  CAS  PubMed  Google Scholar 

  111. Abhishek, A. et al. Effect of a 2-week interruption in methotrexate treatment versus continued treatment on COVID-19 booster vaccine immunity in adults with inflammatory conditions (VROOM study): a randomised, open label, superiority trial. Lancet Respir. Med. 10, 840–850 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Tobudic, S. et al. Accelerated waning of immunity and reduced effect of booster in patients treated with bDMARD and tsDMARD after SARS-CoV-2 mRNA vaccination. Front. Med. 10, 68 (2023).

    Article  Google Scholar 

  113. Tran, A. P., Tassone, D., Ding, N. & Nossent, J. Antibody response to the COVID-19 ChAdOx1nCov-19 and BNT162b vaccines after temporary suspension of DMARD therapy in immune-mediated inflammatory disease: an extension study (RESCUE 2). RMD Open 9, e002871 (2023).

    Article  PubMed  Google Scholar 

  114. Aikawa, N. E. et al. Immunogenicity and safety of two doses of the CoronaVac SARS-CoV-2 vaccine in SARS-CoV-2 seropositive and seronegative patients with autoimmune rheumatic diseases in Brazil: a subgroup analysis of a phase 4 prospective study. Lancet Rheumatol. 4, e113–e124 (2022).

    Article  CAS  PubMed  Google Scholar 

  115. Guthmiller, J. J., Utset, H. A. & Wilson, P. C. B cell responses against influenza viruses: short-lived humoral immunity against a life-long threat. Viruses 13, 965 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. van Sleen, Y. et al. Involvement of monocyte subsets in the immunopathology of giant cell arteritis. Sci. Rep. 7, 6553-017–06826-4 (2017).

    Google Scholar 

  117. van Sleen, Y. et al. Leukocyte dynamics reveal a persistent myeloid dominance in giant cell arteritis and polymyalgia rheumatica. Front. Immunol. 10, 1981 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  118. Dayyani, F. et al. Mechanism of glucocorticoid-induced depletion of human CD14+CD16+ monocytes. J. Leukoc. Biol. 74, 33–39 (2003).

    Article  CAS  PubMed  Google Scholar 

  119. Rozkova, D., Horvath, R., Bartunkova, J. & Spisek, R. Glucocorticoids severely impair differentiation and antigen presenting function of dendritic cells despite upregulation of Toll-like receptors. Clin. Immunol. 120, 260–271 (2006).

    Article  CAS  PubMed  Google Scholar 

  120. Cronstein, B. N. & Aune, T. M. Methotrexate and its mechanisms of action in inflammatory arthritis. Nat. Rev. Rheumatol. 16, 145–154 (2020).

    Article  CAS  PubMed  Google Scholar 

  121. Herman, S., Zurgil, N. & Deutsch, M. Low dose methotrexate induces apoptosis with reactive oxygen species involvement in T lymphocytic cell lines to a greater extent than in monocytic lines. Inflamm. Res. 54, 273–280 (2005).

    Article  CAS  PubMed  Google Scholar 

  122. Cutolo, M. et al. Antiproliferative and antiinflammatory effects of methotrexate on cultured differentiating myeloid monocytic cells (THP-1) but not on synovial macrophages from patients with rheumatoid arthritis. J. Rheumatol. 27, 2551–2557 (2000).

    CAS  PubMed  Google Scholar 

  123. Catrina, A. I. et al. Evidence that anti–tumor necrosis factor therapy with both etanercept and infliximab induces apoptosis in macrophages, but not lymphocytes, in rheumatoid arthritis joints. Arthritis Rheum. 52, 61–72 (2005).

    Article  CAS  PubMed  Google Scholar 

  124. Shen, C. et al. Infliximab induces apoptosis of monocytes and T lymphocytes in a human–mouse chimeric model. Clin. Immunol. 115, 250–259 (2005).

    Article  CAS  PubMed  Google Scholar 

  125. Baldwin, H. M., Ito-Ihara, T., Isaacs, J. D. & Hilkens, C. M. U. Tumour necrosis factor alpha blockade impairs dendritic cell survival and function in rheumatoid arthritis. Ann. Rheum. Dis. 69, 1200–1207 (2010).

    Article  CAS  PubMed  Google Scholar 

  126. Brokaw, J. J. et al. Glucocorticoid-induced apoptosis of dendritic cells in the rat tracheal mucosa. Am. J. Respir. Cell Mol. Biol. 19, 598–605 (1998).

    Article  CAS  PubMed  Google Scholar 

  127. Tamariz-Amador, L. et al. Immune biomarkers to predict SARS-CoV-2 vaccine effectiveness in patients with hematological malignancies. Blood Cancer J. 11, 1–13 (2021).

    Article  Google Scholar 

  128. Anthony, D. et al. Lower peripheral blood CD14+ monocyte frequency and higher CD34+ progenitor cell frequency are associated with HBV vaccine induced response in HIV infected individuals. Vaccine 29, 3558–3563 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Kayesh, M. E. H., Kohara, M. & Tsukiyama-Kohara, K. An overview of recent insights into the response of tlr to SARS-CoV-2 infection and the potential of tlr agonists as SARS-CoV-2 vaccine adjuvants. Viruses 13, 2302 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Linares-Fernández, S., Lacroix, C., Exposito, J. & Verrier, B. Tailoring mRNA vaccine to balance innate/adaptive immune response. Trends Mol. Med. 26, 311–323 (2020).

    Article  PubMed  Google Scholar 

  131. Banchereau, J. et al. Immunobiology of dendritic cells. Annu. Rev. Immunol. 18, 767–811 (2000).

    Article  CAS  PubMed  Google Scholar 

  132. Panda, A. et al. Age-associated decrease in TLR function in primary human dendritic cells predicts influenza vaccine response. J. Immunol. 184, 2518–2527 (2010).

    Article  CAS  PubMed  Google Scholar 

  133. Stalder, R., Zhang, B., Jean Wrobel, L., Boehncke, W. & Brembilla, N. C. The Janus kinase inhibitor tofacitinib impacts human dendritic cell differentiation and favours M1 macrophage development. Exp. Dermatol. 29, 71–78 (2020).

    Article  CAS  PubMed  Google Scholar 

  134. Ogawa, S. et al. Molecular determinants of crosstalk between nuclear receptors and Toll-like receptors. Cell 122, 707–721 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Richez, C. et al. Myeloid dendritic cells correlate with clinical response whereas plasmacytoid dendritic cells impact autoantibody development in rheumatoid arthritis patients treated with infliximab. Arthritis Res. Ther. 11, 1–10 (2009).

    Article  Google Scholar 

  136. Baldini, M. et al. Selective up-regulation of the soluble pattern-recognition receptor pentraxin 3 and of vascular endothelial growth factor in giant cell arteritis: relevance for recent optic nerve ischemia. Arthritis Rheum. 64, 854–865 (2012).

    Article  CAS  PubMed  Google Scholar 

  137. Wijngaarden, S., van Roon, J., van de Winkel, J., Bijlsma, J. & Lafeber, F. Down-regulation of activating Fcγ receptors on monocytes of patients with rheumatoid arthritis upon methotrexate treatment. Rheumatology 44, 729–734 (2005).

    Article  CAS  PubMed  Google Scholar 

  138. Heine, A. et al. The JAK-inhibitor ruxolitinib impairs dendritic cell function in vitro and in vivo. Blood. J. Am. Soc. Hematol. 122, 1192–1202 (2013).

    CAS  Google Scholar 

  139. Ellingsen, T., Hornung, N., Moller, B. K., Poulsen, J. H. & Stengaard-Pedersen, K. Differential effect of methotrexate on the increased CCR2 density on circulating CD4 T lymphocytes and monocytes in active chronic rheumatoid arthritis, with a down regulation only on monocytes in responders. Ann. Rheum. Dis. 66, 151–157 (2007).

    Article  CAS  PubMed  Google Scholar 

  140. Falcón-Beas, C. et al. Dexamethasone turns tumor antigen-presenting cells into tolerogenic dendritic cells with T cell inhibitory functions. Immunobiology 224, 697–705 (2019).

    Article  PubMed  Google Scholar 

  141. Aevermann, B. D. et al. Machine learning-based single cell and integrative analysis reveals that baseline mDC predisposition correlates with hepatitis B vaccine antibody response. Front. Immunol. 12, 690470 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Miyata, M. et al. Glucocorticoids suppress inflammation via the upregulation of negative regulator IRAK-M. Nat. Commun. 6, 1–12 (2015).

    Article  Google Scholar 

  143. Seitz, M., Zwicker, M. & Loetscher, P. Effects of methotrexate on differentiation of monocytes and production of cytokine inhibitors by monocytes. Arthritis Rheum. 41, 2032–2038 (1998).

    Article  CAS  PubMed  Google Scholar 

  144. Brunner, P. M. et al. Infliximab induces downregulation of the IL-12/IL-23 axis in 6-sulfo-LacNac (slan)+ dendritic cells and macrophages. J. Allergy Clin. Immunol. 132, 1184–1193 (2013).

    Article  CAS  PubMed  Google Scholar 

  145. Celada, A., McKercher, S. & Maki, R. A. Repression of major histocompatibility complex IA expression by glucocorticoids: the glucocorticoid receptor inhibits the DNA binding of the X box DNA binding protein. J. Exp. Med. 177, 691–698 (1993).

    Article  CAS  PubMed  Google Scholar 

  146. Fessler, B. J., Paliogianni, F., Hama, N., Balow, J. E. & Boumpas, D. T. Glucocorticoids modulate CD28 mediated pathways for interleukin 2 production in human T cells: evidence for posttranscriptional regulation. Transplantation 62, 1113–1118 (1996).

    Article  CAS  PubMed  Google Scholar 

  147. Girndt, M., Sester, U., Kaul, H., Hünger, F. & Köhler, H. Glucocorticoids inhibit activation-dependent expression of costimulatory molecule b7-1 in human monocytes. Transplantation 66, 370–375 (1998).

    Article  CAS  PubMed  Google Scholar 

  148. Anderson, A. E. et al. Tolerogenic dendritic cells generated with dexamethasone and vitamin D3 regulate rheumatoid arthritis CD4+ T cells partly via transforming growth factor-β1. Clin. Exp. Immunol. 187, 113–123 (2017).

    Article  CAS  PubMed  Google Scholar 

  149. Tanaka, Y., Maeshima, K. & Yamaoka, K. In vitro and in vivo analysis of a JAK inhibitor in rheumatoid arthritis. Ann. Rheum. Dis. 71, i70–i74 (2012).

    Article  CAS  PubMed  Google Scholar 

  150. Furiati, S. C. et al. Th1, Th17, and Treg responses are differently modulated by TNF-α inhibitors and methotrexate in psoriasis patients. Sci. Rep. 9, 1–11 (2019).

    Article  CAS  Google Scholar 

  151. Nived, P. et al. Methotrexate reduces circulating Th17 cells and impairs plasmablast and memory B cell expansions following pneumococcal conjugate immunization in RA patients. Sci. Rep. 11, 1–9 (2021).

    Article  Google Scholar 

  152. Priyadarssini, M., Chandrashekar, L. & Rajappa, M. Effect of methotrexate monotherapy on T‐cell subsets in the peripheral circulation in psoriasis. Clin. Exp. Dermatol. 44, 491–497 (2019).

    Article  CAS  PubMed  Google Scholar 

  153. Nadkarni, S., Mauri, C. & Ehrenstein, M. R. Anti-TNF-α therapy induces a distinct regulatory T cell population in patients with rheumatoid arthritis via TGF-β. J. Exp. Med. 204, 33–39 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Li, C. C., Munitic, I., Mittelstadt, P. R., Castro, E. & Ashwell, J. D. Suppression of dendritic cell-derived IL-12 by endogenous glucocorticoids is protective in LPS-induced sepsis. PLoS Biol. 13, e1002269 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  155. Hu, X., Li, W. P., Meng, C. & Ivashkiv, L. B. Inhibition of IFN-γ signaling by glucocorticoids. J. Immunol. 170, 4833–4839 (2003).

    Article  CAS  PubMed  Google Scholar 

  156. Liberman, A. C. et al. The activated glucocorticoid receptor inhibits the transcription factor T‐bet by direct protein‐protein interaction. FASEB J. 21, 1177–1188 (2007).

    Article  CAS  PubMed  Google Scholar 

  157. Linhares, U. C. et al. The ex vivo production of IL-6 and IL-21 by CD4+ T cells is directly associated with neurological disability in neuromyelitis optica patients. J. Clin. Immunol. 33, 179–189 (2013).

    Article  CAS  PubMed  Google Scholar 

  158. Galon, J. et al. Gene profiling reveals unknown enhancing and suppressive actions of glucocorticoids on immune cells. FASEB J. 16, 61–71 (2002).

    Article  CAS  PubMed  Google Scholar 

  159. Prenek, L. et al. Regulatory T cells are less sensitive to glucocorticoid hormone induced apoptosis than CD4+ T cells. Apoptosis 25, 715–729 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  160. Izmirly, P. M. et al. Evaluation of immune response and disease status in SLE patients following SARS‐CoV‐2 vaccination. Arthritis Rheumatol. 74, 284–294 (2022).

    Article  CAS  PubMed  Google Scholar 

  161. Sieiro Santos, C. et al. Immune responses to mRNA vaccines against SARS-CoV-2 in patients with immune-mediated inflammatory rheumatic diseases. RMD Open 8, e001898 (2022).

    Article  PubMed  Google Scholar 

  162. Povoleri, G. A. et al. Anti‐TNF treatment negatively regulates human CD4+ T‐cell activation and maturation in vitro, but does not confer an anergic or suppressive phenotype. Eur. J. Immunol. 50, 445–458 (2020).

    Article  CAS  PubMed  Google Scholar 

  163. Franchimont, D. et al. Inhibition of Th1 immune response by glucocorticoids: dexamethasone selectively inhibits IL-12-induced Stat4 phosphorylation in T lymphocytes. J. Immunol. 164, 1768–1774 (2000).

    Article  CAS  PubMed  Google Scholar 

  164. Bejad, M., Bonilha, C. S., McInnes, I. B., Garside, P. & Benson, R. A. Tofacitinib inhibits CD4 T cell polarisation to Th1 during priming thereby leading to clinical impact in a model of experimental arthritis. Clin. Exp. Rheumatol. 40, 1313–1323 (2022).

    Google Scholar 

  165. Aldridge, J. et al. Blood PD-1+ TFh and CTLA-4+CD4+ T cells predict remission after CTLA-4Ig treatment in early rheumatoid arthritis. Rheumatology 61, 1233–1242 (2022).

    Article  CAS  PubMed  Google Scholar 

  166. Verstappen, G. M. et al. Attenuation of follicular helper T cell–dependent B cell hyperactivity by abatacept treatment in primary Sjögren’s syndrome. Arthritis Rheumatol. 69, 1850–1861 (2017).

    Article  CAS  PubMed  Google Scholar 

  167. Wing, J. B., Ise, W., Kurosaki, T. & Sakaguchi, S. Regulatory T cells control antigen-specific expansion of Tfh cell number and humoral immune responses via the coreceptor CTLA-4. Immunity 41, 1013–1025 (2014).

    Article  CAS  PubMed  Google Scholar 

  168. Schmidt, A., Oberle, N. & Krammer, P. H. Molecular mechanisms of Treg-mediated T cell suppression. Front. Immunol. 3, 51 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Wing, J. B., Lim, E. L. & Sakaguchi, S. Control of foreign Ag‐specific Ab responses by Treg and Tfr. Immunol. Rev. 296, 104–119 (2020).

    Article  CAS  PubMed  Google Scholar 

  170. Kobie, J. J. et al. Decreased influenza-specific B cell responses in rheumatoid arthritis patients treated with anti-tumor necrosis factor. Arthritis Res. Ther. 13, 1–12 (2011).

    Article  Google Scholar 

  171. Bischof, F. & Melms, A. Glucocorticoids inhibit CD40 ligand expression of peripheral CD4+ lymphocytes. Cell. Immunol. 187, 38–44 (1998).

    Article  CAS  PubMed  Google Scholar 

  172. Lederman, S. et al. T-BAM/CD40-L on helper T lymphocytes augments lymphokine-induced B cell Ig isotype switch recombination and rescues B cells from programmed cell death. J. Immunol. 152, 2163–2171 (1994).

    Article  CAS  PubMed  Google Scholar 

  173. Rizzi, M. et al. Impact of tofacitinib treatment on human B-cells in vitro and in vivo. J. Autoimmun. 77, 55–66 (2017).

    Article  CAS  PubMed  Google Scholar 

  174. Lanzillotta, M. et al. Effects of glucocorticoids on B-cell subpopulations in patients with IgG4-related disease. Clin. Exp. Rheumatol. 37, S159–S166 (2019).

    Google Scholar 

  175. Graver, J. C. et al. Association of the CXCL9-CXCR3 and CXCL13-CXCR5 axes with B-cell trafficking in giant cell arteritis and polymyalgia rheumatica. J. Autoimmun. 123, 102684 (2021).

    Article  CAS  PubMed  Google Scholar 

  176. Franco, L. M. et al. Immune regulation by glucocorticoids can be linked to cell type-dependent transcriptional responses. J. Exp. Med. 216, 384–406 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Glaesener, S. et al. Distinct effects of methotrexate and etanercept on the B cell compartment in patients with juvenile idiopathic arthritis. Arthritis Rheumatol. 66, 2590–2600 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Thiel, J. et al. B cell homeostasis is disturbed by immunosuppressive therapies in patients with ANCA-associated vasculitides. Autoimmunity 46, 429–438 (2013).

    Article  CAS  PubMed  Google Scholar 

  179. Anolik, J. H. et al. Cutting edge: anti-tumor necrosis factor therapy in rheumatoid arthritis inhibits memory B lymphocytes via effects on lymphoid germinal centers and follicular dendritic cell networks. J. Immunol. 180, 688–692 (2008).

    Article  CAS  PubMed  Google Scholar 

  180. Haacke, E. A. et al. Abatacept treatment of patients with primary Sjögren’s syndrome results in a decrease of germinal centres in salivary gland tissue. Clin. Exp. Rheumatol. 35, 317–320 (2017).

    PubMed  Google Scholar 

  181. Lee, D. S., Rojas, O. L. & Gommerman, J. L. B cell depletion therapies in autoimmune disease: advances and mechanistic insights. Nat. Rev. Drug Discov. 20, 179–199 (2021).

    Article  CAS  PubMed  Google Scholar 

  182. Ramamoorthy, S. & Cidlowski, J. A. Corticosteroids: mechanisms of action in health and disease. Rheum. Dis. Clin. 42, 15–31 (2016).

    Article  Google Scholar 

  183. Samarasinghe, R. A., Witchell, S. F. & DeFranco, D. B. Cooperativity and complementarity: synergies in non-classical and classical glucocorticoid signaling. Cell Cycle 11, 2819–2827 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Besedovsky, L. et al. Cortisol increases CXCR4 expression but does not affect CD62L and CCR7 levels on specific T cell subsets in humans. Am. J. Physiol. Endocrinol. Metab. 306, E1322–E1329 (2014).

    Article  CAS  PubMed  Google Scholar 

  185. He, Y. et al. Identification of a lysosomal pathway that modulates glucocorticoid signaling and the inflammatory response. Sci. Signal. 4, ra44–ra44 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Wagner, A. D. et al. Glucocorticoid effects on tissue residing immune cells in giant cell arteritis: importance of GM-CSF. Front. Med. 8, 709404 (2021).

    Article  Google Scholar 

  187. Chambers, E. S. et al. Dendritic cell phenotype in severe asthma reflects clinical responsiveness to glucocorticoids. Clin. Exp. Allergy 48, 13–22 (2018).

    Article  CAS  PubMed  Google Scholar 

  188. Bruscoli, S. et al. Lack of glucocorticoid-induced leucine zipper (GILZ) deregulates B-cell survival and results in B-cell lymphocytosis in mice. Blood. J. Am. Soc. Hematol. 126, 1790–1801 (2015).

    CAS  Google Scholar 

  189. Rhen, T. & Cidlowski, J. A. Antiinflammatory action of glucocorticoids — new mechanisms for old drugs. N. Engl. J. Med. 353, 1711–1723 (2005).

    Article  CAS  PubMed  Google Scholar 

  190. Saxon, A., Stevens, R. H., Ramer, S. J., Clements, P. J. & Yu, D. T. Glucocorticoids administered in vivo inhibit human suppressor T lymphocyte function and diminish B lymphocyte responsiveness in in vitro immunoglobulin synthesis. J. Clin. Invest. 61, 922–930 (1978).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Spurlock, C. F. III, Tossberg, J. T., Matlock, B. K., Olsen, N. J. & Aune, T. M. Methotrexate inhibits NF‐κB activity via long intergenic (noncoding) RNA–p21 induction. Arthritis Rheumatol. 66, 2947–2957 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Lester, S. et al. Treatment‐induced stable, moderate reduction in blood cell counts correlate to disease control in early rheumatoid arthritis. Intern. Med. J. 39, 296–303 (2009).

    Article  CAS  PubMed  Google Scholar 

  193. Elmér, E. et al. Methotrexate treatment suppresses monocytes in nonresponders to pneumococcal conjugate vaccine in rheumatoid arthritis patients. J. Immunol. Res. 2022, 7561661 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  194. Hirohata, S., Yanagida, T., Hashimoto, H., Tomita, T. & Ochi, T. Suppressive influences of methotrexate on the generation of CD14+ monocyte-lineage cells from bone marrow of patients with rheumatoid arthritis. Clin. Immunol. 91, 84–89 (1999).

    Article  CAS  PubMed  Google Scholar 

  195. Municio, C. et al. Methotrexate selectively targets human proinflammatory macrophages through a thymidylate synthase/p53 axis. Ann. Rheum. Dis. 75, 2157–2165 (2016).

    Article  CAS  PubMed  Google Scholar 

  196. Hildner, K. et al. Tumour necrosis factor (TNF) production by T cell receptor-primed T lymphocytes is a target for low dose methotrexate in rheumatoid arthritis. Clin. Exp. Immunol. 118, 137–146 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Gerards, A. H., De Lathouder, S., De Groot, E., Dijkmans, B. & Aarden, L. Inhibition of cytokine production by methotrexate. Studies in healthy volunteers and patients with rheumatoid arthritis. Rheumatology 42, 1189–1196 (2003).

    Article  CAS  PubMed  Google Scholar 

  198. Cessak, G. et al. TNF inhibitors — mechanisms of action, approved and off-label indications. Pharmacol. Rep. 66, 836–844 (2014).

    Article  CAS  PubMed  Google Scholar 

  199. Lis, K., Kuzawińska, O. & Bałkowiec-Iskra, E. Tumor necrosis factor inhibitors — state of knowledge. Arch. Med. Sci. 10, 1175–1185 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  200. Baddley, J. et al. ESCMID Study Group for Infections in Compromised Hosts (ESGICH) Consensus Document on the safety of targeted and biological therapies: an infectious diseases perspective (Soluble immune effector molecules [I]: anti-tumor necrosis factor-α agents). Clin. Microbiol. Infect. 24, S10–S20 (2018).

    Article  CAS  PubMed  Google Scholar 

  201. Pasparakis, M., Alexopoulou, L., Episkopou, V. & Kollias, G. Immune and inflammatory responses in TNFα-deficient mice: a critical requirement for TNFα in the formation of primary B cell follicles, follicular dendritic cell networks and germinal centers, and in the maturation of the humoral immune response. J. Exp. Med. 184, 1397–1411 (1996).

    Article  CAS  PubMed  Google Scholar 

  202. Bedini, C., Nasorri, F., Girolomoni, G., de Pità, O. & Cavani, A. Antitumour necrosis factor‐α chimeric antibody (infliximab) inhibits activation of skin‐homing CD4+ and CD8+ T lymphocytes and impairs dendritic cell function. Br. J. Dermatol. 157, 249–258 (2007).

    Article  CAS  PubMed  Google Scholar 

  203. Zaba, L. C. et al. Amelioration of epidermal hyperplasia by TNF inhibition is associated with reduced Th17 responses. J. Exp. Med. 204, 3183–3194 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Laestadius, Å. et al. Altered proportions of circulating CXCR5+ helper T cells do not dampen influenza vaccine responses in children with rheumatic disease. Vaccine 37, 3685–3693 (2019).

    Article  CAS  PubMed  Google Scholar 

  205. Tanaka, Y., Luo, Y., O’Shea, J. J. & Nakayamada, S. Janus kinase-targeting therapies in rheumatology: a mechanisms-based approach. Nat. Rev. Rheumatol. 18, 133–145 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Reinwald, M. et al. ESCMID study group for infections in compromised hosts (ESGICH) consensus document on the safety of targeted and biological therapies: an infectious diseases perspective (Intracellular signaling pathways: tyrosine kinase and mTOR inhibitors). Clin. Microbiol. Infect. 24, S53–S70 (2018).

    Article  PubMed  Google Scholar 

  207. Kubo, S. et al. The JAK inhibitor, tofacitinib, reduces the T cell stimulatory capacity of human monocyte-derived dendritic cells. Ann. Rheum. Dis. 73, 2192–2198 (2014).

    Article  CAS  PubMed  Google Scholar 

  208. Schmidt, A. et al. Complex human adenoid tissue-based ex vivo culture systems reveal anti-inflammatory drug effects on germinal center T and B cells. EBioMedicine 53, 102684 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  209. Bonelli, M. & Scheinecker, C. How does abatacept really work in rheumatoid arthritis? Curr. Opin. Rheumatol. 30, 295–300 (2018).

    Article  CAS  PubMed  Google Scholar 

  210. Moret, F., Bijlsma, J., Lafeber, F. & Van Roon, J. The efficacy of abatacept in reducing synovial T cell activation by CD1c myeloid dendritic cells is overruled by the stimulatory effects of T cell–activating cytokines. Arthritis Rheumatol. 67, 637–644 (2015).

    Article  CAS  PubMed  Google Scholar 

  211. Bozec, A. et al. Abatacept blocks anti-citrullinated protein antibody and rheumatoid factor mediated cytokine production in human macrophages in IDO-dependent manner. Arthritis Res. Ther. 20, 1–9 (2018).

    Article  Google Scholar 

  212. Nakayamada, S. et al. Differential effects of biological DMARDs on peripheral immune cell phenotypes in patients with rheumatoid arthritis. Rheumatology 57, 164–174 (2018).

    Article  CAS  PubMed  Google Scholar 

  213. Broen, J. C. & van Laar, J. M. Mycophenolate mofetil, azathioprine and tacrolimus: mechanisms in rheumatology. Nat. Rev. Rheumatol. 16, 167–178 (2020).

    Article  CAS  PubMed  Google Scholar 

  214. Alamilla-Sanchez, M. E., Alcala-Salgado, M. A., Alonso-Bello, C. D. & Fonseca-Gonzalez, G. T. Mechanism of action and efficacy of immunosuppressors in lupus nephritis. Int. J. Nephrol. Renovasc. Dis. 14, 441–458 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Eickenberg, S. et al. Mycophenolic acid counteracts B cell proliferation and plasmablast formation in patients with systemic lupus erythematosus. Arthritis Res. Ther. 14, 1–14 (2012).

    Article  Google Scholar 

  216. Litjens, N. H. et al. Monomethylfumarate affects polarization of monocyte‐derived dendritic cells resulting in down‐regulated Th1 lymphocyte responses. Eur. J. Immunol. 34, 565–575 (2004).

    Article  CAS  PubMed  Google Scholar 

  217. Winthrop, K. L. et al. ESCMID Study Group for Infections in Compromised Hosts (ESGICH) Consensus Document on the safety of targeted and biological therapies: an infectious diseases perspective (soluble immune effector molecules [II]: agents targeting interleukins, immunoglobulins and complement factors). Clin. Microbiol. Infect. 24, S21–S40 (2018).

    Article  CAS  PubMed  Google Scholar 

  218. Shirota, Y. et al. Impact of anti-interleukin-6 receptor blockade on circulating T and B cell subsets in patients with systemic lupus erythematosus. Ann. Rheum. Dis. 72, 118–128 (2013).

    Article  CAS  PubMed  Google Scholar 

  219. Schrezenmeier, E. & Dörner, T. Mechanisms of action of hydroxychloroquine and chloroquine: implications for rheumatology. Nat. Rev. Rheumatol. 16, 155–166 (2020).

    Article  CAS  PubMed  Google Scholar 

  220. Matasiæ, R., Dietz, A. B. & Vuk-Pavloviæ, S. Maturation of human dendritic cells as sulfasalazine target. Croat. Med. J. 42, 440–445 (2001).

    Google Scholar 

  221. Han, J. et al. The mechanisms of hydroxychloroquine in rheumatoid arthritis treatment: Inhibition of dendritic cell functions via Toll like receptor 9 signaling. Biomed. Pharmacother. 132, 110848 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. Goodwin, K., Viboud, C. & Simonsen, L. Antibody response to influenza vaccination in the elderly: a quantitative review. Vaccine 24, 1159–1169 (2006).

    Article  CAS  PubMed  Google Scholar 

  223. Deng, Y., Jing, Y., Campbell, A. E. & Gravenstein, S. Age-related impaired type 1 T cell responses to influenza: reduced activation ex vivo, decreased expansion in CTL culture in vitro, and blunted response to influenza vaccination in vivo in the elderly. J. Immunol. 172, 3437–3446 (2004).

    Article  CAS  PubMed  Google Scholar 

  224. Esteban, N. V. et al. Daily cortisol production rate in man determined by stable isotope dilution/mass spectrometry. J. Clin. Endocrinol. Metab. 72, 39–45 (1991).

    Article  CAS  PubMed  Google Scholar 

  225. Boekel, L. et al. Breakthrough SARS-CoV-2 infections with the delta (B.1.617.2) variant in vaccinated patients with immune-mediated inflammatory diseases using immunosuppressants: a substudy of two prospective cohort studies. Lancet Rheumatol. 4, e417–e429 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  226. Liew, J. et al. SARS-CoV-2 breakthrough infections among vaccinated individuals with rheumatic disease: results from the COVID-19 Global Rheumatology Alliance provider registry. RMD Open 8, e002187 (2022).

    Article  PubMed  Google Scholar 

  227. Shen, C. et al. Efficacy of COVID-19 vaccines in patients taking immunosuppressants. Ann. Rheum. Dis. 81, 875–880 (2022).

    Article  CAS  PubMed  Google Scholar 

  228. Khoury, D. S. et al. Neutralizing antibody levels are highly predictive of immune protection from symptomatic SARS-CoV-2 infection. Nat. Med. 27, 1205–1211 (2021).

    Article  CAS  PubMed  Google Scholar 

  229. Sasaki, S. et al. Limited efficacy of inactivated influenza vaccine in elderly individuals is associated with decreased production of vaccine-specific antibodies. J. Clin. Invest. 121, 3109–3119 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  230. Chioato, A. et al. Treatment with the interleukin-17A-blocking antibody secukinumab does not interfere with the efficacy of influenza and meningococcal vaccinations in healthy subjects: results of an open-label, parallel-group, randomized single-center study. Clin. Vaccin. Immunol. 19, 1597–1602 (2012).

    Article  CAS  Google Scholar 

  231. Richi, P. et al. Secukinumab does not impair the immunogenic response to the influenza vaccine in patients. RMD Open 5, e001018 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  232. Doornekamp, L. et al. High immunogenicity to influenza vaccination in Crohn’s disease patients treated with ustekinumab. Vaccines 8, 3 (2020).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Y.v.S. researched data for the article and wrote the article. All authors contributed substantially to discussions of content and reviewed and/or edited the manuscript before submission.

Corresponding authors

Correspondence to Yannick van Sleen or Elisabeth Brouwer.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Rheumatology thanks M. Kapetanovic, A. Medeiros-Ribeiro and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

van Sleen, Y., van der Geest, K.S.M., Huckriede, A.L.W. et al. Effect of DMARDs on the immunogenicity of vaccines. Nat Rev Rheumatol 19, 560–575 (2023). https://doi.org/10.1038/s41584-023-00992-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41584-023-00992-8

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing