Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Bone marrow lesions: plugging the holes in our knowledge using animal models

Abstract

Bone marrow lesions (BMLs), which are early signs of osteoarthritis (OA) that are associated with the presence, onset and severity of pain, represent an emerging imaging biomarker and clinical target. Little is known, however, regarding their early spatial and temporal development, structural relationships or aetiopathogenesis, because of the sparsity of human early OA imaging and paucity of relevant tissue samples. The use of animal models is a logical approach to fill the gaps in our knowledge, and it can be informed by appraising models in which BMLs and closely related subchondral cysts have already been reported, including in spontaneous OA and pain models. The utility of these models in OA research, their relevance to clinical BMLs and practical considerations for their optimal deployment can also inform medical and veterinary clinicians and researchers alike.

Key points

  • Bone marrow lesions (BMLs) are early signs of osteoarthritis (OA) that are associated with pain onset and severity, and they therefore represent potential biomarkers of OA and therapeutic targets.

  • Human studies of BMLs are limited by long imaging intervals and lack of joint tissue availability, particularly in early-stage OA or pre-OA, whereas animal studies have no such restrictions.

  • Available animal models exhibiting BMLs (or closely related subchondral cysts) include induced models (with induction by joint destabilization, loading or chemical treatment) and spontaneous models.

  • Animal BML models can represent both fast-onset traumatic and slower-onset ‘naturally occurring’ OA, and the occurrence of BMLs before and after cartilage lesion development.

  • Collectively, animal models provide opportunities for exploring BML aetiopathogenesis and bone–cartilage crosstalk, elucidating structural associations longitudinally and trialling therapeutic interventions before back-translating the results to humans.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The two main theories of subchondral cyst formation in truly subchondral regions.
Fig. 2: The vascular ageing theory of subchondral cyst formation in non-weight-bearing regions.
Fig. 3: Features of a subchondral cyst in STR/ort mouse tibia.

Similar content being viewed by others

References

  1. Felson, D. T. et al. The association of bone marrow lesions with pain in knee osteoarthritis. Ann. Intern. Med. 134, 541–549 (2001).

    Article  CAS  PubMed  Google Scholar 

  2. Sowers, M. F. et al. Magnetic resonance-detected subchondral bone marrow and cartilage defect characteristics associated with pain and X-ray-defined knee osteoarthritis. Osteoarthritis Cartilage 11, 387–393 (2003).

    Article  CAS  PubMed  Google Scholar 

  3. Felson, D. T. et al. Correlation of the development of knee pain with enlarging bone marrow lesions on magnetic resonance imaging. Arthritis Rheum. 56, 2986–2992 (2007).

    Article  PubMed  Google Scholar 

  4. Driban, J. B. et al. Evaluation of bone marrow lesion volume as a knee osteoarthritis biomarker — longitudinal relationships with pain and structural changes: data from the Osteoarthritis Initiative. Arthritis Res. Ther. 15, R112 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Carrino, J. A., Blum, J., Parellada, J. A., Schweitzer, M. E. & Morrison, W. B. MRI of bone marrow edema-like signal in the pathogenesis of subchondral cysts. Osteoarthritis Cartilage 14, 1081–1085 (2006).

    Article  CAS  PubMed  Google Scholar 

  6. Hunter, D. J. et al. Increase in bone marrow lesions associated with cartilage loss: a longitudinal magnetic resonance imaging study of knee osteoarthritis. Arthritis Rheum. 54, 1529–1535 (2006).

    Article  PubMed  Google Scholar 

  7. Kuttapitiya, A. et al. Microarray analysis of bone marrow lesions in osteoarthritis demonstrates upregulation of genes implicated in osteochondral turnover, neurogenesis and inflammation. Ann. Rheum. Dis. 76, 1764–1773 (2017).

    Article  CAS  PubMed  Google Scholar 

  8. Conaghan, P. G. et al. Impact and therapy of osteoarthritis: the Arthritis Care OA Nation 2012 survey. Clin. Rheumatol. 34, 1581–1588 (2015).

    Article  PubMed  Google Scholar 

  9. Xu, L., Hayashi, D., Roemer, F. W., Felson, D. T. & Guermazi, A. Magnetic resonance imaging of subchondral bone marrow lesions in association with osteoarthritis. Semin. Arthritis Rheum. 42, 105–118 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Wilson, A. J., Murphy, W. A., Hardy, D. C. & Totty, W. G. Transient osteoporosis: transient bone marrow edema? Radiology 167, 757–760 (1988).

    Article  CAS  PubMed  Google Scholar 

  11. Roemer, F. W. et al. MRI-detected subchondral bone marrow signal alterations of the knee joint: terminology, imaging appearance, relevance and radiological differential diagnosis. Osteoarthritis Cartilage 17, 1115–1131 (2009).

    Article  CAS  PubMed  Google Scholar 

  12. Zanetti, M., Bruder, E., Romero, J. & Hodler, J. Bone marrow edema pattern in osteoarthritic knees: correlation between MR imaging and histologic findings. Radiology 215, 835–840 (2000).

    Article  CAS  PubMed  Google Scholar 

  13. Koushesh, S. et al. The osteoarthritis bone score (OABS): a new histological scoring system for the characterisation of bone marrow lesions in osteoarthritis. Osteoarthritis Cartilage 30, 746–755 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Hunter, D. J. et al. Evolution of semi-quantitative whole joint assessment of knee OA: MOAKS (MRI Osteoarthritis Knee Score). Osteoarthritis Cartilage 19, 990–1002 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Peterfy, C. G. et al. Whole-organ magnetic resonance imaging score (WORMS) of the knee in osteoarthritis. Osteoarthritis Cartilage 12, 177–190 (2004).

    Article  CAS  PubMed  Google Scholar 

  16. Bergman, A. G., Willen, H. K., Lindstrand, A. L. & Pettersson, H. T. Osteoarthritis of the knee: correlation of subchondral MR signal abnormalities with histopathologic and radiographic features. Skeletal Radiol. 23, 445–448 (1994).

    CAS  PubMed  Google Scholar 

  17. Kazakia, G. J. et al. Bone and cartilage demonstrate changes localized to bone marrow edema-like lesions within osteoarthritic knees. Osteoarthritis Cartilage 21, 94–101 (2013).

    Article  CAS  PubMed  Google Scholar 

  18. Zhang, Y. et al. Fluctuation of knee pain and changes in bone marrow lesions, effusions, and synovitis on magnetic resonance imaging. Arthritis Rheum. 63, 691–699 (2011).

    Article  PubMed  Google Scholar 

  19. Sun, Y. et al. Effects of a phosphocitrate analogue on osteophyte, subchondral bone advance, and bone marrow lesions in Hartley guinea pigs. Bone Joint Res. 7, 157–165 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Crema, M. D. et al. Contrast-enhanced MRI of subchondral cysts in patients with or at risk for knee osteoarthritis: the MOST study. Eur. J. Radiol. 75, e92–e96 (2010).

    Article  CAS  PubMed  Google Scholar 

  21. Gorbachova, T. et al. Nomenclature of subchondral nonneoplastic bone lesions. AJR Am. J. Roentgenol. 213, 963–982 (2019).

    Article  PubMed  Google Scholar 

  22. Resnick, D., Niwayama, G. & Coutts, R. D. Subchondral cysts (geodes) in arthritic disorders: pathologic and radiographic appearance of the hip joint. AJR Am. J. Roentgenol. 128, 799–806 (1977).

    Article  CAS  PubMed  Google Scholar 

  23. Crema, M. D. et al. Subchondral cystlike lesions develop longitudinally in areas of bone marrow edema-like lesions in patients with or at risk for knee osteoarthritis: detection with MR imaging — the MOST study. Radiology 256, 855–862 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Link, T. M. et al. Osteoarthritis: MR imaging findings in different stages of disease and correlation with clinical findings. Radiology 226, 373–381 (2003).

    Article  PubMed  Google Scholar 

  25. Hayes, C. W. et al. Osteoarthritis of the knee: comparison of MR imaging findings with radiographic severity measurements and pain in middle-aged women. Radiology 237, 998–1007 (2005).

    Article  PubMed  Google Scholar 

  26. Mennan, C. et al. The use of technology in the subcategorisation of osteoarthritis: a Delphi study approach. Osteoarthr. Cartil. Open. 2, 100081 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Roemer, F. W., Crema, M. D., Trattnig, S. & Guermazi, A. Advances in imaging of osteoarthritis and cartilage. Radiology 260, 332–354 (2011).

    Article  PubMed  Google Scholar 

  28. Barr, A. J. et al. A systematic review of the relationship between subchondral bone features, pain and structural pathology in peripheral joint osteoarthritis. Arthritis Res. Ther. 17, 228–228 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Dore, D. et al. Bone marrow lesions predict site-specific cartilage defect development and volume loss: a prospective study in older adults. Arthritis Res. Ther. 12, R222 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Davies-Tuck, M. L. et al. Development of bone marrow lesions is associated with adverse effects on knee cartilage while resolution is associated with improvement–a potential target for prevention of knee osteoarthritis: a longitudinal study. Arthritis Res. Ther. 12, R10 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Bowes, M. A. et al. Osteoarthritic bone marrow lesions almost exclusively colocate with denuded cartilage: a 3D study using data from the Osteoarthritis Initiative. Ann. Rheum. Dis. 75, 1852–1857 (2016).

    Article  PubMed  Google Scholar 

  32. Kumar, D. et al. Association of cartilage defects, and other MRI findings with pain and function in individuals with mild–moderate radiographic hip osteoarthritis and controls. Osteoarthritis Cartilage 21, 1685–1692 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Lim, Y. Z. et al. Association of obesity and systemic factors with bone marrow lesions at the knee: a systematic review. Semin. Arthritis Rheum. 43, 600–612 (2014).

    Article  PubMed  Google Scholar 

  34. Hayashi, D. et al. Knee malalignment is associated with an increased risk for incident and enlarging bone marrow lesions in the more loaded compartments: the MOST study. Osteoarthritis Cartilage 20, 1227–1233 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Wang, Y. et al. Meniscal extrusion predicts increases in subchondral bone marrow lesions and bone cysts and expansion of subchondral bone in osteoarthritic knees. Rheumatology 49, 997–1004 (2010).

    Article  PubMed  Google Scholar 

  36. Lim, Y. Z. et al. Are biomechanical factors, meniscal pathology, and physical activity risk factors for bone marrow lesions at the knee? A systematic review. Semin. Arthritis Rheum. 43, 187–194 (2013).

    Article  PubMed  Google Scholar 

  37. Beckwee, D. et al. The influence of joint loading on bone marrow lesions in the knee: a systematic review with meta-analysis. Am. J. Sports Med. 43, 3093–3107 (2015).

    Article  PubMed  Google Scholar 

  38. Burnett, W. D. et al. Knee osteoarthritis patients with more subchondral cysts have altered tibial subchondral bone mineral density. BMC Musculoskelet. Disord. 20, 14–14 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Audrey, H. X., Abd Razak, H. R. & Andrew, T. H. The truth behind subchondral cysts in osteoarthritis of the knee. Open. Orthop. J. 8, 7–10 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Wildi, L. M. et al. Relationship between bone marrow lesions, cartilage loss and pain in knee osteoarthritis: results from a randomised controlled clinical trial using MRI. Ann. Rheum. Dis. 69, 2118–2124 (2010).

    Article  PubMed  Google Scholar 

  41. Madan-Sharma, R. et al. Do MRI features at baseline predict radiographic joint space narrowing in the medial compartment of the osteoarthritic knee 2 years later? Skeletal Radiol. 37, 805–811 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Roemer, F. W. et al. Tibiofemoral joint osteoarthritis: risk factors for MR-depicted fast cartilage loss over a 30-month period in the multicenter osteoarthritis study. Radiology 252, 772–780 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Kubota, M. et al. A longitudinal study of the relationship between the status of bone marrow abnormalities and progression of knee osteoarthritis. J. Orthop. Sci. 15, 641–646 (2010).

    Article  PubMed  Google Scholar 

  44. Driban, J. B. et al. Bone marrow lesion volume reduction is not associated with improvement of other periarticular bone measures: data from the Osteoarthritis Initiative. Arthritis Res. Ther. 15, R153 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Deveza, L. A. et al. Knee osteoarthritis phenotypes and their relevance for outcomes: a systematic review. Osteoarthritis Cartilage 25, 1926–1941 (2017).

    Article  CAS  PubMed  Google Scholar 

  46. Karsdal, M. A. et al. Osteoarthritis — a case for personalized health care? Osteoarthritis Cartilage 22, 7–16 (2014).

    Article  CAS  PubMed  Google Scholar 

  47. Holla, J. F. M. et al. Three trajectories of activity limitations in early symptomatic knee osteoarthritis: a 5-year follow-up study. Ann. Rheum. Dis. 73, 1369 (2014).

    Article  PubMed  Google Scholar 

  48. Nicholls, E., Thomas, E., van der Windt, D. A., Croft, P. R. & Peat, G. Pain trajectory groups in persons with, or at high risk of, knee osteoarthritis: findings from the Knee Clinical Assessment Study and the Osteoarthritis Initiative. Osteoarthritis Cartilage 22, 2041–2050 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Walsh, D. A., Sofat, N., Guermazi, A. & Hunter, D. J. Osteoarthritis bone marrow lesions. Osteoarthritis Cartilage 31, 11–17 (2023).

    Article  CAS  PubMed  Google Scholar 

  50. National Institute for Health and Care Excellence. Osteoarthritis in over 16s: diagnosis and management (NG226) (2022).

  51. Yusuf, E., Kortekaas, M. C., Watt, I., Huizinga, T. W. & Kloppenburg, M. Do knee abnormalities visualised on MRI explain knee pain in knee osteoarthritis? A systematic review. Ann. Rheum. Dis. 70, 60–67 (2011).

    Article  PubMed  Google Scholar 

  52. Starr, A. M., Wessely, M. A., Albastaki, U., Pierre-Jerome, C. & Kettner, N. W. Bone marrow edema: pathophysiology, differential diagnosis, and imaging. Acta Radiol. 49, 771–786 (2008).

    Article  CAS  PubMed  Google Scholar 

  53. Kim, D. S. et al. Thrombospondin-4 contributes to spinal sensitization and neuropathic pain states. J. Neurosci. 32, 8977–8987 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Perry, T. A. et al. Association between bone marrow lesions & synovitis and symptoms in symptomatic knee osteoarthritis. Osteoarthritis Cartilage 28, 316–323 (2020).

    Article  CAS  PubMed  Google Scholar 

  55. Zhou, F. et al. Associations of osteoclastogenesis and nerve growth in subchondral bone marrow lesions with clinical symptoms in knee osteoarthritis. J. Orthop. Transl. 32, 69–76 (2022).

    Google Scholar 

  56. Taljanovic, M. S. et al. Bone marrow edema pattern in advanced hip osteoarthritis: quantitative assessment with magnetic resonance imaging and correlation with clinical examination, radiographic findings, and histopathology. Skeletal Radiol. 37, 423–431 (2008).

    Article  PubMed  Google Scholar 

  57. Muratovic, D. et al. Bone matrix microdamage and vascular changes characterize bone marrow lesions in the subchondral bone of knee osteoarthritis. Bone 108, 193–201 (2018).

    Article  CAS  PubMed  Google Scholar 

  58. Burr, D. B. & Hooser, M. Alterations to the en bloc basic fuchsin staining protocol for the demonstration of microdamage produced in vivo. Bone 17, 431–433 (1995).

    Article  CAS  PubMed  Google Scholar 

  59. Hernandez, C. J., Lambers, F. M., Widjaja, J., Chapa, C. & Rimnac, C. M. Quantitative relationships between microdamage and cancellous bone strength and stiffness. Bone 66, 205–213 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Lambers, F. M., Bouman, A. R., Rimnac, C. M. & Hernandez, C. J. Microdamage caused by fatigue loading in human cancellous bone: relationship to reductions in bone biomechanical performance. PLoS One 8, e83662 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Chan, P. B., Wen, C., Yang, W. C., Yan, C. & Chiu, K. Is subchondral bone cyst formation in non-load-bearing region of osteoarthritic knee a vascular problem? Med. Hypotheses 109, 80–83 (2017).

    Article  CAS  PubMed  Google Scholar 

  62. McCoy, A. M. Animal models of osteoarthritis: comparisons and key considerations. Vet. Pathol. 52, 803–818 (2015).

    Article  CAS  PubMed  Google Scholar 

  63. Alliston, T., Hernandez, C. J., Findlay, D. M., Felson, D. T. & Kennedy, O. D. Bone marrow lesions in osteoarthritis: what lies beneath. J. Orthop. Res. 36, 1818–1825 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Norman, R., Boyde, A., Chenu, C., Sofat, N. & Pitsillides, A. A. Characterisation of subchondral cysts in a murine model of spontaneous osteoarthritis. J Bone Miner Res 5, e10499 (2021).

    Google Scholar 

  65. Findlay, D. M. & Kuliwaba, J. S. Bone–cartilage crosstalk: a conversation for understanding osteoarthritis. Bone Res. 4, 16028 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Segal, N. A. et al. The multicenter osteoarthritis study: opportunities for rehabilitation research. PM R. 5, 647–654 (2013).

    Article  PubMed  Google Scholar 

  67. Eriksen, E. F. Treatment of bone marrow lesions (bone marrow edema). Bonekey Rep. 4, 755 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Scher, C., Craig, J. & Nelson, F. Bone marrow edema in the knee in osteoarthrosis and association with total knee arthroplasty within a three-year follow-up. Skeletal Radiol. 37, 609–617 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Baird, D. K. et al. Low-field magnetic resonance imaging of early subchondral cyst-like lesions in induced cranial cruciate ligament deficient dogs. Vet. Radiol. Ultrasound 39, 167–173 (1998).

    Article  CAS  PubMed  Google Scholar 

  70. Boileau, C. et al. Magnetic resonance imaging can accurately assess the long-term progression of knee structural changes in experimental dog osteoarthritis. Ann. Rheum. Dis. 67, 926–932 (2008).

    Article  CAS  PubMed  Google Scholar 

  71. d’Anjou, M. A. et al. Temporal assessment of bone marrow lesions on magnetic resonance imaging in a canine model of knee osteoarthritis: impact of sequence selection. Osteoarthritis Cartilage 16, 1307–1311 (2008).

    Article  PubMed  Google Scholar 

  72. Martig, S., Boisclair, J., Konar, M., Spreng, D. & Lang, J. MRI characteristics and histology of bone marrow lesions in dogs with experimentally induced osteoarthritis. Vet. Radiol. Ultrasound 48, 105–112 (2007).

    Article  PubMed  Google Scholar 

  73. Nolte-Ernsting, C. C., Adam, G., Buhne, M., Prescher, A. & Gunther, R. W. MRI of degenerative bone marrow lesions in experimental osteoarthritis of canine knee joints. Skeletal Radiol. 25, 413–420 (1996).

    Article  CAS  PubMed  Google Scholar 

  74. Raynauld, J. P. et al. Correlation between bone lesion changes and cartilage volume loss in patients with osteoarthritis of the knee as assessed by quantitative magnetic resonance imaging over a 24-month period. Ann. Rheum. Dis. 67, 683–688 (2008).

    Article  PubMed  Google Scholar 

  75. Bouchgua, M. et al. Use of routine clinical multimodality imaging in a rabbit model of osteoarthritis — part I. Osteoarthritis Cartilage 17, 188–196 (2009).

    Article  CAS  PubMed  Google Scholar 

  76. Jia, L. et al. Magnetic resonance imaging of osteophytic, chondral, and subchondral structures in a surgically-induced osteoarthritis rabbit model. PLoS One 9, e113707–e113707 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  77. Tsai, P. H. et al. Sequential change in T2* values of cartilage, meniscus, and subchondral bone marrow in a rat model of knee osteoarthritis. PLoS One 8, e76658 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Chavhan, G. B., Babyn, P. S., Thomas, B., Shroff, M. M. & Haacke, E. M. Principles, techniques, and applications of T2*-based MR imaging and its special applications. Radiographics 29, 1433–1449 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  79. McErlain, D. D. et al. An in vivo investigation of the initiation and progression of subchondral cysts in a rodent model of secondary osteoarthritis. Arthritis Res. Ther. 14, R26 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  80. Zhen, G. et al. Inhibition of TGF-β signaling in mesenchymal stem cells of subchondral bone attenuates osteoarthritis. Nat. Med. 19, 704–712 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Beamer, W. G., Donahue, L. R., Rosen, C. J. & Baylink, D. J. Genetic variability in adult bone density among inbred strains of mice. Bone 18, 397–403 (1996).

    Article  CAS  PubMed  Google Scholar 

  82. Brimmo, O. A. et al. Development of a novel canine model for posttraumatic osteoarthritis of the knee. J. Knee Surg. 29, 235–241 (2016).

    Article  PubMed  Google Scholar 

  83. Brimmo, O. A. et al. Subchondroplasty for the treatment of post-traumatic bone marrow lesions of the medial femoral condyle in a pre-clinical canine model. J. Orthop. Res. 36, 2709–2717 (2018).

    Article  CAS  PubMed  Google Scholar 

  84. Poulet, B. et al. Intermittent applied mechanical loading induces subchondral bone thickening that may be intensified locally by contiguous articular cartilage lesions. Osteoarthritis Cartilage 23, 940–948 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Matheny, J. B. et al. An in vivo model of a mechanically-induced bone marrow lesion. J. Biomech. 64, 258–261 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  86. Bowen, A. et al. Animal models of bone marrow lesions in osteoarthritis. J Bone Miner. Res. 6, e10609 (2022).

    Google Scholar 

  87. Ramme, A. J., Lendhey, M., Raya, J. G., Kirsch, T. & Kennedy, O. D. A novel rat model for subchondral microdamage in acute knee injury: a potential mechanism in post-traumatic osteoarthritis. Osteoarthritis Cartilage 24, 1776–1785 (2016).

    Article  CAS  PubMed  Google Scholar 

  88. Ko, F. C. et al. In vivo cyclic compression causes cartilage degeneration and subchondral bone changes in mouse tibiae. Arthritis Rheum. 65, 1569–1578 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Christiansen, B. A. et al. Musculoskeletal changes following non-invasive knee injury using a novel mouse model of post-traumatic osteoarthritis. Osteoarthritis Cartilage 20, 773–782 (2012).

    Article  CAS  PubMed  Google Scholar 

  90. Poulet, B., Hamilton, R. W., Shefelbine, S. & Pitsillides, A. A. Characterizing a novel and adjustable noninvasive murine joint loading model. Arthritis Rheum. 63, 137–147 (2011).

    Article  PubMed  Google Scholar 

  91. Ter Heegde, F. et al. Noninvasive mechanical joint loading as an alternative model for osteoarthritic pain. Arthritis Rheumatol. 71, 1078–1088 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  92. Christiansen, B. A. et al. Non-invasive mouse models of post-traumatic osteoarthritis. Osteoarthritis Cartilage 23, 1627–1638 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Vincent, T. L., Williams, R. O., Maciewicz, R., Silman, A. & Garside, P. Mapping pathogenesis of arthritis through small animal models. Rheumatology 51, 1931–1941 (2012).

    Article  PubMed  Google Scholar 

  94. Unger, M. D. et al. Clinical magnetic resonance-enabled characterization of mono-iodoacetate-induced osteoarthritis in a large animal species. PLoS One 13, e0201673 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  95. Pitcher, T., Sousa-Valente, J. & Malcangio, M. The monoiodoacetate model of osteoarthritis pain in the mouse. J. Vis. Exp. 111, 53746 (2016).

    Google Scholar 

  96. Bendele, A. M. & Hulman, J. F. Effects of body weight restriction on the development and progression of spontaneous osteoarthritis in guinea pigs. Arthritis Rheum. 34, 1180–1184 (1991).

    Article  CAS  PubMed  Google Scholar 

  97. Wei, L., Svensson, O. & Hjerpe, A. Correlation of morphologic and biochemical changes in the natural history of spontaneous osteoarthrosis in guinea pigs. Arthritis Rheum. 40, 2075–2083 (1997).

    Article  CAS  PubMed  Google Scholar 

  98. Watson, P. J., Hall, L. D., Malcolm, A. & Tyler, J. A. Degenerative joint disease in the guinea pig. Use of magnetic resonance imaging to monitor progression of bone pathology. Arthritis Rheum. 39, 1327–1337 (1996).

    Article  CAS  PubMed  Google Scholar 

  99. Tessier, J. J. et al. Characterisation of the guinea pig model of osteoarthritis by in vivo three-dimensional magnetic resonance imaging. Osteoarthritis Cartilage 11, 845–853 (2003).

    Article  CAS  PubMed  Google Scholar 

  100. de Bri, E., Jonsson, K., Reinholt, F. P. & Svensson, O. Focal destruction and remodeling in guinea pig arthrosis. Acta Orthop. Scand. 67, 498–504 (1996).

    Article  PubMed  Google Scholar 

  101. Chan, P. B., Yang, W., Wen, C., Yan, C. & Chiu, K. Spontaneously hypertensive rat as a novel model of co-morbid knee osteoarthritis. Osteoarthritis Cartilage 25, S319–S320 (2017).

    Article  Google Scholar 

  102. Walton, M. Degenerative joint disease in the mouse knee; radiological and morphological observations. J. Pathol. 123, 97–107 (1977).

    Article  CAS  PubMed  Google Scholar 

  103. Staines, K. A., Poulet, B., Wentworth, D. N. & Pitsillides, A. A. The STR/ort mouse model of spontaneous osteoarthritis — an update. Osteoarthritis Cartilage 25, 802–808 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Louka, P., Orriss, I. R. & Pitsillides, A. A. High bone mass in mice can be linked to lower osteoclast formation, resorptive capacity, and restricted in vitro sensitivity to inhibition by stable sulforaphane. Cell Biochem. Funct. 40, 683–693 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Hansen, B. D. Assessment of pain in dogs: veterinary clinical studies. ILAR J. 44, 197–205 (2003).

    Article  CAS  PubMed  Google Scholar 

  106. Deuis, J. R., Dvorakova, L. S. & Vetter, I. methods used to evaluate pain behaviors in rodents. Front. Mol. Neurosci. 10, 284–284 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  107. Hartwig, V. et al. Biological effects and safety in magnetic resonance imaging: a review. Int. J. Environ. Res. Public Health 6, 1778–1798 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  108. Ruder, T. D., Thali, M. J. & Hatch, G. M. Essentials of forensic post-mortem MR imaging in adults. Br. J. Radiol. 87, 20130567 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Muratovic, D. et al. Bone marrow lesions detected by specific combination of MRI sequences are associated with severity of osteochondral degeneration. Arthritis Res. Ther. 18, 54 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  110. Muratovic, D. et al. Bone marrow lesions in knee osteoarthritis: regional differences in tibial subchondral bone microstructure and their association with cartilage degeneration. Osteoarthritis Cartilage 27, 1653–1662 (2019).

    Article  CAS  PubMed  Google Scholar 

  111. Campbell, T. M. et al. Mesenchymal stem cell alterations in bone marrow lesions in patients with hip osteoarthritis. Arthritis Rheumatol. 68, 1648–1659 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Bolen, G. E., Haye, D., Dondelinger, R. F., Massart, L. & Busoni, V. Impact of successive freezing-thawing cycles on 3-T magnetic resonance images of the digits of isolated equine limbs. Am. J. Vet. Res. 72, 780–790 (2011).

    Article  PubMed  Google Scholar 

  113. van der Made, A. D., Maas, M., Beenen, L. F., Oostra, R. J. & Kerkhoffs, G. M. Postmortem imaging exposed: an aid in MR imaging of musculoskeletal structures. Skeletal Radiol. 42, 467–472 (2013).

    Article  PubMed  Google Scholar 

  114. Alanen, A. M. et al. The effects of the method of death and lapsed time on proton relaxation time T1 in autopsied muscle samples. Invest. Radiol. 28, 529–532 (1993).

    Article  CAS  PubMed  Google Scholar 

  115. Ruder, T. D. et al. The influence of body temperature on image contrast in post mortem MRI. Eur. J. Radiol. 81, 1366–1370 (2012).

    Article  PubMed  Google Scholar 

  116. Roemer, F. W., Hunter, D. J. & Guermazi, A. MRI-based semiquantitative assessment of subchondral bone marrow lesions in osteoarthritis research. Osteoarthritis Cartilage 17, 414–415 (2009).

    Article  CAS  PubMed  Google Scholar 

  117. Wang, H. H. et al. Pitfalls in interpreting rat knee joint magnetic resonance images and their histological correlation. Acta Radiol. 50, 1042–1048 (2009).

    Article  PubMed  Google Scholar 

  118. Rothbauer, M. et al. Monitoring tissue-level remodelling during inflammatory arthritis using a three-dimensional synovium-on-a-chip with non-invasive light scattering biosensing. Lab Chip 20, 1461–1471 (2020).

    Article  CAS  PubMed  Google Scholar 

  119. Occhetta, P. et al. Hyperphysiological compression of articular cartilage induces an osteoarthritic phenotype in a cartilage-on-a-chip model. Nat. Biomed. Eng. 3, 545–557 (2019).

    Article  CAS  PubMed  Google Scholar 

  120. Torisawa, Y.-s et al. Bone marrow–on–a–chip replicates hematopoietic niche physiology in vitro. Nat. Methods 11, 663–669 (2014).

    Article  CAS  PubMed  Google Scholar 

  121. Paggi, C. A., Teixeira, L. M., Le Gac, S. & Karperien, M. Joint-on-chip platforms: entering a new era of in vitro models for arthritis. Nat. Rev. Rheumatol. 18, 217–231 (2022).

    Article  PubMed  Google Scholar 

  122. Cope, P. J., Ourradi, K., Li, Y. & Sharif, M. Models of osteoarthritis: the good, the bad and the promising. Osteoarthritis Cartilage 27, 230–239 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Bellido, T. & Delgado-Calle, J. Ex vivo organ cultures as models to study bone biology. J Bone Miner. Res. 14, 10 (2020).

    Google Scholar 

  124. Amado, I. A novel osteochondral explant model to study bone and cartilage responses to damage in PTOA. Osteoarthritis Cartilage 29, S199–S200 (2021).

    Article  Google Scholar 

  125. Amado, I., Hodgkinson, T., Murphy, C. & Kennedy, O. The effect of chemical and mechanical damage in a novel osteochondral explant for post-traumatic osteoarthritis. Orthop. Proc. 103-B, 26 (2021).

    Google Scholar 

  126. Wang, J. et al. Association of patellar bone marrow lesions with knee pain, patellar cartilage defect and patellar cartilage volume loss in older adults: a cohort study. Osteoarthritis Cartilage 23, 1330–1336 (2015).

    Article  CAS  PubMed  Google Scholar 

  127. Staines, K. A., Brown, G. & Farquharson, C. The ex vivo organ culture of bone. Methods Mol. Biol. 1914, 199–215 (2019).

    Article  CAS  PubMed  Google Scholar 

  128. Meeson, R. L., Todhunter, R. J., Blunn, G., Nuki, G. & Pitsillides, A. A. Spontaneous dog osteoarthritis — a One Medicine vision. Nat. Rev. Rheumatol. 15, 273–287 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  129. Styczynska-Soczka, K., Amin, A. K., Simpson, A. H. W. & Hall, A. C. Optimization and validation of a human ex vivo femoral head model for preclinical cartilage research and regenerative therapies. Cartilage 13, 386S–397S (2021).

    Article  CAS  PubMed  Google Scholar 

  130. Olive, J., d’Anjou, M. A., Cabassu, J., Chailleux, N. & Blond, L. Fast presurgical magnetic resonance imaging of meniscal tears and concurrent subchondral bone marrow lesions. Study of dogs with naturally occurring cranial cruciate ligament rupture. Vet. Comp. Orthop. Traumatol. 27, 1–7 (2014).

    Article  CAS  PubMed  Google Scholar 

  131. De Guio, C., Ségard-Weisse, E., Thomas-Cancian, A. & Schramme, M. Bone marrow lesions of the distal condyles of the third metacarpal bone are common and not always related to lameness in sports and pleasure horses. Vet. Radiol. Ultrasound 60, 167–175 (2019).

    Article  PubMed  Google Scholar 

  132. Olive, J., Mair, T. S. & Charles, B. Use of standing low-field magnetic resonance imaging to diagnose middle phalanx bone marrow lesions in horses. Equine Vet. Educ. 21, 116–123 (2009).

    Article  Google Scholar 

  133. Biggi, M., Zani, D. D., De Zani, D. & Di Giancamillo, M. Magnetic resonance imaging findings of bone marrow lesions in the equine distal tarsus. Equine Vet. Educ. 24, 236–241 (2012).

    Article  Google Scholar 

  134. Freund, E. The pathological significance of intra-articular pressure. Edinb. Med. J. 47, 192–203 (1940).

    PubMed  PubMed Central  Google Scholar 

  135. Rogers, W. M. & Gladstone, H. Vascular foramina and arterial supply of the distal end of the femur. J. Bone Joint Surg. Am. 32 a, 867–874 (1950).

    Article  CAS  PubMed  Google Scholar 

  136. Rhaney, K. & Lamb, D. W. The cysts of osteoarthritis of the hip; a radiological and pathological study. J. Bone Joint Surg. Br. 37-b, 663–675 (1955).

    Article  CAS  PubMed  Google Scholar 

  137. Pouders, C. et al. Prevalence and MRI-anatomic correlation of bone cysts in osteoarthritic knees. AJR Am. J. Roentgenol. 190, 17–21 (2008).

    Article  PubMed  Google Scholar 

  138. Hatton, R., Stimpel, M. & Chambers, T. J. Angiotensin II is generated from angiotensin I by bone cells and stimulates osteoclastic bone resorption in vitro. J. Endocrinol. 152, 5–10 (1997).

    Article  CAS  PubMed  Google Scholar 

  139. Zhang, Y. M., Wang, J. & Liu, X. G. Association between hypertension and risk of knee osteoarthritis: a meta-analysis of observational studies. Medicine 96, e7584 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  140. Boyde, A., Felder, A. & Mills, D. New approach to increase information content in polarised light microscopy of skeletal and dental tissues. Proceedings of Microscience Microscopy Congress https://qmro.qmul.ac.uk/xmlui/handle/123456789/67119 (2019).

  141. Kornaat, P. R. et al. Osteoarthritis of the knee: association between clinical features and MR imaging findings. Radiology 239, 811–817 (2006).

    Article  PubMed  Google Scholar 

  142. Laslett, L. L. et al. Zoledronic acid reduces knee pain and bone marrow lesions over 1 year: a randomised controlled trial. Ann. Rheum. Dis. 71, 1322 (2012).

    Article  CAS  PubMed  Google Scholar 

  143. Pang, J. et al. Quantification of bone marrow lesion volume and volume change using semi-automated segmentation: data from the Osteoarthritis Initiative. BMC Musculoskelet. Disord. 14, 3 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  144. Jones, M. D. et al. In vivo microfocal computed tomography and micro-magnetic resonance imaging evaluation of antiresorptive and antiinflammatory drugs as preventive treatments of osteoarthritis in the rat. Arthritis Rheum. 62, 2726–2735 (2010).

    Article  PubMed  Google Scholar 

  145. Sowers, M., Karvonen-Gutierrez, C. A., Jacobson, J. A., Jiang, Y. & Yosef, M. Associations of anatomical measures from MRI with radiographically defined knee osteoarthritis score, pain, and physical functioning. J. Bone Joint Surg. Am. 93, 241–251 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  146. d’Anjou, M. A. et al. Response to the Letter to the Editor by Roemer and collaborators entitled “MRI based semi-quantitative assessment of subchondral bone marrow lesions in osteoarthritis research” concerning the article published by d’Anjou et al. entitled “Temporal assessment of bone marrow lesions on magnetic resonance imaging in a canine model of knee osteoarthritis: impact of sequence selection”. Osteoarthritis Cartilage 17, 416–417 (2009).

    Article  Google Scholar 

  147. Kornaat, P. R. et al. MRI assessment of knee osteoarthritis: Knee Osteoarthritis Scoring System (KOSS) — inter-observer and intra-observer reproducibility of a compartment-based scoring system. Skeletal Radiol. 34, 95–102 (2005).

    Article  PubMed  Google Scholar 

  148. Hunter, D. J. et al. The reliability of a new scoring system for knee osteoarthritis MRI and the validity of bone marrow lesion assessment: BLOKS (Boston Leeds Osteoarthritis Knee Score). Ann. Rheum. Dis. 67, 206–211 (2008).

    Article  CAS  PubMed  Google Scholar 

  149. Berenbaum, F. The OARSI histopathology initiative — the tasks and limitations. Osteoarthritis Cartilage 18, S1 (2010).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank B. Javaheri and P.M.B. Chan for their initial work in characterizing subchondral cysts in the STR/ort mouse, and A. Boyde of Queen Mary University, London, for producing polarized light microscopy images of subchondral cysts. We would also like to thank P. Louka and R. In’t Zandt of Lund University Bioimaging Centre for helping to guide appreciation of MRI. A.A.P. acknowledges research support from Versus Arthritis (grant number 21900).

Author information

Authors and Affiliations

Authors

Contributions

R.T.H. researched data for the article. A.A.P and R.T.H. contributed substantially to discussion of the content and wrote the article. All authors reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Andrew A. Pitsillides.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Rheumatology thanks A. Dao, C. Hernandez and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hansen, R.T., Chenu, C., Sofat, N. et al. Bone marrow lesions: plugging the holes in our knowledge using animal models. Nat Rev Rheumatol 19, 429–445 (2023). https://doi.org/10.1038/s41584-023-00971-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41584-023-00971-z

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing