Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Phenotypic heterogeneity in psoriatic arthritis: towards tissue pathology-based therapy

Abstract

Psoriatic arthritis (PsA) is a heterogeneous disease involving multiple potential tissue domains. Most outcome measures used so far in randomized clinical trials do not sufficiently reflect this domain heterogeneity. The concept that pathogenetic mechanisms might vary across tissues within a single disease, underpinning such phenotype diversity, could explain tissue-distinct levels of response to different therapies. In this Review, we discuss the tissue, cellular and molecular mechanisms that drive clinical heterogeneity in PsA phenotypes, and detail existing tissue-based research, including data generated using sophisticated interrogative technologies with single-cell precision. Finally, we discuss how these elements support the need for tissue-based therapy in PsA in the context of existing and new therapeutic modes of action, and the implications for future PsA trial outcomes and design.

Key points

  • Outcome measures used in psoriatic arthritis clinical trials do not sufficiently reflect phenotypical heterogeneity related to disease domains in a tissue-specific fashion.

  • Distinct pathogenetic mechanisms can explain tissue-distinct responses to different therapies in psoriatic disease.

  • Discrete tissue environments leading to specific tissue-based signatures should be approached in a distinct and complementary manner; this concept supports a paradigm shift in clinical trial design and clinical practice.

  • Understanding tissue-driven responses to therapies will help to facilitate a move towards a tissue-based precision medicine approach in psoriatic arthritis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Clinical spectrum of PsA with phenotypes and genetic and/or environmental triggers.
Fig. 2: Different tissue and prominent pathogenetic mechanisms and response to current drug mechanisms of action.
Fig. 3: A new cell-based therapeutic concept and emerging targets in PsA.

Similar content being viewed by others

References

  1. Scotti, L., Franchi, M., Marchesoni, A. & Corrao, G. Prevalence and incidence of psoriatic arthritis: a systematic review and meta-analysis. Semin. Arthritis Rheum. 48, 28–34 (2018).

    Article  PubMed  Google Scholar 

  2. Alinaghi, F. et al. Prevalence of psoriatic arthritis in patients with psoriasis: a systematic review and meta-analysis of observational and clinical studies. J. Am. Acad. Dermatol. 80, 251–265.e19 (2019).

    Article  PubMed  Google Scholar 

  3. Ritchlin, C. T., Colbert, R. A. & Gladman, D. D. Psoriatic arthritis. N. Engl. J. Med. 376, 2095–2096 (2017).

    Article  PubMed  Google Scholar 

  4. Zardin-Moraes, M. et al. Prevalence of psoriatic arthritis patients achieving minimal disease activity in real-world studies and randomized clinical trials: systematic review with metaanalysis. J. Rheumatol. 47, 839–846 (2020).

    Article  PubMed  Google Scholar 

  5. Smolen, J. S. et al. Effectiveness of IL-12/23 inhibition (ustekinumab) versus tumour necrosis factor inhibition in psoriatic arthritis: observational PsABio study results. Ann. Rheum. Dis. 80, 1419–1428 (2021).

    Article  CAS  PubMed  Google Scholar 

  6. Veale, D. J. & Fearon, U. The pathogenesis of psoriatic arthritis. Lancet 391, 2273–2284 (2018).

    Article  CAS  PubMed  Google Scholar 

  7. Ghoreschi, K., Balato, A., Enerbäck, C. & Sabat, R. Therapeutics targeting the IL-23 and IL-17 pathway in psoriasis. Lancet 397, 754–766 (2021).

    Article  CAS  PubMed  Google Scholar 

  8. Siebert, S., Millar, N. L. & McInnes, I. B. Why did IL-23p19 inhibition fail in AS: a tale of tissues, trials or translation? Ann. Rheum. Dis. 78, 1015–1018 (2019).

    Article  PubMed  Google Scholar 

  9. Jadon, D. R., Stober, C., Pennington, S. R. & FitzGerald, O. Applying precision medicine to unmet clinical needs in psoriatic disease. Nat. Rev. Rheumatol. 16, 609–627 (2020).

    Article  PubMed  Google Scholar 

  10. Scher, J. U., Ogdie, A., Merola, J. F. & Ritchlin, C. Preventing psoriatic arthritis: focusing on patients with psoriasis at increased risk of transition. Nat. Rev. Rheumatol. 15, 153–166 (2019).

    Article  PubMed  Google Scholar 

  11. Chandran, V. et al. Human leukocyte antigen alleles and susceptibility to psoriatic arthritis. Hum. Immunol. 74, 1333–1338 (2013).

    Article  CAS  PubMed  Google Scholar 

  12. Vecellio, M. et al. The IL-17/IL-23 axis and its genetic contribution to psoriatic arthritis. Front. Immunol. 11, 596086 (2020).

    Article  CAS  PubMed  Google Scholar 

  13. O’Rielly, D. D. & Rahman, P. Genetics of susceptibility and treatment response in psoriatic arthritis. Nat. Rev. Rheumatol. 7, 718–732 (2011).

    Article  PubMed  Google Scholar 

  14. O’Rielly, D. D. & Rahman, P. Genetics of psoriatic arthritis. Best Pract. Res. Clin. Rheumatol. 28, 673–685 (2014).

    Article  PubMed  Google Scholar 

  15. Eder, L., Chandran, V. & Gladman, D. D. What have we learned about genetic susceptibility in psoriasis and psoriatic arthritis? Curr. Opin. Rheumatol. 27, 91–98 (2015).

    Article  CAS  PubMed  Google Scholar 

  16. Rahman, P. & Elder, J. T. Genetics of psoriasis and psoriatic arthritis: a report from the GRAPPA 2010 annual meeting. J. Rheumatol. 39, 431–433 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Prinz, J. C. Human leukocyte antigen-class I alleles and the autoreactive T cell response in psoriasis pathogenesis. Front. Immunol. 9, 954 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  18. FitzGerald, O., Haroon, M., Giles, J. T. & Winchester, R. Concepts of pathogenesis in psoriatic arthritis: genotype determines clinical phenotype. Arthritis Res. Ther. 17, 115 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Winchester, R. & FitzGerald, O. The many faces of psoriatic arthritis: their genetic determinism. Rheumatology 59, i4–i9 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Winchester, R. & FitzGerald, O. MHC class I associations beyond HLA-B27: the peptide binding hypothesis of psoriatic arthritis and its implications for disease pathogenesis. Curr. Opin. Rheumatol. 32, 330–336 (2020).

    Article  CAS  PubMed  Google Scholar 

  21. Winchester, R. et al. HLA associations reveal genetic heterogeneity in psoriatic arthritis and in the psoriasis phenotype. Arthritis Rheum. 64, 1134–1144 (2012).

    Article  CAS  PubMed  Google Scholar 

  22. Haroon, M., Winchester, R., Giles, J. T., Heffernan, E. & FitzGerald, O. Certain class I HLA alleles and haplotypes implicated in susceptibility play a role in determining specific features of the psoriatic arthritis phenotype. Ann. Rheum. Dis. 75, 155–162 (2016).

    Article  CAS  PubMed  Google Scholar 

  23. Eastmond, C. J. Psoriatic arthritis. Genetics and HLA antigens. Baillieres Clin. Rheumatol. 8, 263–276 (1994).

    Article  CAS  PubMed  Google Scholar 

  24. Yago, T. et al. IL-23 and Th17 disease in inflammatory arthritis. J. Clin. Med. 6, 81 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Soomro, M. et al. Comparative genetic analysis of psoriatic arthritis and psoriasis for the discovery of genetic risk factors and risk prediction modelling. Arthritis Rheumatol. 74, 1535–1543 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Budu-Aggrey, A. et al. A rare coding allele in IFIH1 is protective for psoriatic arthritis. Ann. Rheum. Dis. 76, 1321–1324 (2017).

    Article  CAS  PubMed  Google Scholar 

  27. Chandran, V. & Raychaudhuri, S. P. Geoepidemiology and environmental factors of psoriasis and psoriatic arthritis. J. Autoimmun. 34, J314–J321 (2010).

    Article  CAS  PubMed  Google Scholar 

  28. Dopytalska, K., Ciechanowicz, P., Wiszniewski, K., Szymańska, E. & Walecka, I. The role of epigenetic factors in psoriasis. Int. J. Mol. Sci. 22, 9294 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Pollock, R. A., Abji, F. & Gladman, D. D. Epigenetics of psoriatic disease: a systematic review and critical appraisal. J. Autoimmun. 78, 29–38 (2017).

    Article  CAS  PubMed  Google Scholar 

  30. Wade, S. M., McGarry, T., Wade, S. C., Fearon, U. & Veale, D. J. Serum microRNA signature as a diagnostic and therapeutic marker in patients with psoriatic arthritis. J. Rheumatol. 47, 1760–1767 (2020).

    Article  CAS  PubMed  Google Scholar 

  31. Ovejero-Benito, M. C. et al. Histone modifications associated with biological drug response in moderate-to-severe psoriasis. Exp. Dermatol. 27, 1361–1371 (2018).

    Article  CAS  PubMed  Google Scholar 

  32. Eder, L. et al. The association between smoking and the development of psoriatic arthritis among psoriasis patients. Ann. Rheum. Dis. 71, 219–224 (2012).

    Article  PubMed  Google Scholar 

  33. Nguyen, U.-S. D. T. et al. Smoking paradox in the development of psoriatic arthritis among patients with psoriasis: a population-based study. Ann. Rheum. Dis. 77, 119–123 (2018).

    Article  PubMed  Google Scholar 

  34. Goupille, P., Soutif, D. & Valat, J. P. Psoriatic arthritis precipitated by physical trauma. J. Rheumatol. 18, 633 (1991).

    CAS  PubMed  Google Scholar 

  35. Pattison, E., Harrison, B. J., Griffiths, C. E. M., Silman, A. J. & Bruce, I. N. Environmental risk factors for the development of psoriatic arthritis: results from a case-control study. Ann. Rheum. Dis. 67, 672–676 (2008).

    Article  CAS  PubMed  Google Scholar 

  36. Thorarensen, S. M. et al. Physical trauma recorded in primary care is associated with the onset of psoriatic arthritis among patients with psoriasis. Ann. Rheum. Dis. 76, 521–525 (2017).

    Article  PubMed  Google Scholar 

  37. Hsieh, J., Kadavath, S. & Efthimiou, P. Can traumatic injury trigger psoriatic arthritis? A review of the literature. Clin. Rheumatol. 33, 601–608 (2014).

    Article  PubMed  Google Scholar 

  38. McGonagle, D., Benjamin, M. & Tan, A. L. The pathogenesis of psoriatic arthritis and associated nail disease: not autoimmune after all? Curr. Opin. Rheumatol. 21, 340–347 (2009).

    Article  CAS  PubMed  Google Scholar 

  39. Wardrop, P., Weller, R., Marais, J. & Kavanagh, G. Tonsillitis and chronic psoriasis. Clin. Otolaryngol. Allied Sci. 23, 67–68 (1998).

    Article  CAS  PubMed  Google Scholar 

  40. Telfer, N. R., Chalmers, R. J., Whale, K. & Colman, G. The role of streptococcal infection in the initiation of guttate psoriasis. Arch. Dermatol. 128, 39–42 (1992).

    Article  CAS  PubMed  Google Scholar 

  41. Thrastardottir, T. et al. Strong site-specific association of pharyngeal cultures with the onset of psoriatic arthritis and psoriasis, regardless of pathogen. Rheumatology https://doi.org/10.1093/rheumatology/keac253 (2022).

    Article  PubMed  Google Scholar 

  42. Scher, J. U. et al. Decreased bacterial diversity characterizes the altered gut microbiota in patients with psoriatic arthritis, resembling dysbiosis in inflammatory bowel disease. Arthritis Rheumatol. 67, 128–139 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Eirís, N. et al. Genetic variation at IL12B, IL23R and IL23A is associated with psoriasis severity, psoriatic arthritis and type 2 diabetes mellitus. J. Dermatol. Sci. 75, 167–172 (2014).

    Article  PubMed  Google Scholar 

  44. Kumthekar, A. & Ogdie, A. Obesity and psoriatic arthritis: a narrative review. Rheumatol. Ther. 7, 447–456 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Dal Bello, G., Gisondi, P., Idolazzi, L. & Girolomoni, G. Psoriatic arthritis and diabetes mellitus: a narrative review. Rheumatol. Ther. 7, 271–285 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Hotamisligil, G. S., Shargill, N. S. & Spiegelman, B. M. Adipose expression of tumor necrosis factor-alpha: direct role in obesity-linked insulin resistance. Science 259, 87–91 (1993).

    Article  CAS  PubMed  Google Scholar 

  47. Cawthorn, W. P. & Sethi, J. K. TNF-α and adipocyte biology. FEBS Lett. 582, 117–131 (2008).

    Article  CAS  PubMed  Google Scholar 

  48. Eder, L. et al. Serum adipokines in patients with psoriatic arthritis and psoriasis alone and their correlation with disease activity. Ann. Rheum. Dis. 72, 1956–1961 (2013).

    Article  CAS  PubMed  Google Scholar 

  49. Candia, R. et al. Risk of non-alcoholic fatty liver disease in patients with psoriasis: a systematic review and meta-analysis. J. Eur. Acad. Dermatol. Venereol. 29, 656–662 (2015).

    Article  CAS  PubMed  Google Scholar 

  50. Armstrong, A. W., Harskamp, C. T. & Armstrong, E. J. Psoriasis and metabolic syndrome: a systematic review and meta-analysis of observational studies. J. Am. Acad. Dermatol. 68, 654–662 (2013).

    Article  PubMed  Google Scholar 

  51. Labitigan, M. et al. Higher rates and clustering of abnormal lipids, obesity, and diabetes mellitus in psoriatic arthritis compared with rheumatoid arthritis. Arthritis Care Res. 66, 600–607 (2014).

    Article  CAS  Google Scholar 

  52. Ferguson, L. D., Siebert, S., McInnes, I. B. & Sattar, N. Cardiometabolic comorbidities in RA and PsA: lessons learned and future directions. Nat. Rev. Rheumatol. 15, 461–474 (2019).

    Article  PubMed  Google Scholar 

  53. Nestle, F. O., Di Meglio, P., Qin, J.-Z. & Nickoloff, B. J. Skin immune sentinels in health and disease. Nat. Rev. Immunol. 9, 679–691 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Barnas, J. L. & Ritchlin, C. T. Etiology and pathogenesis of psoriatic arthritis. Rheum. Dis. Clin. North Am. 41, 643–663 (2015).

    Article  PubMed  Google Scholar 

  55. Peterson, L. W. & Artis, D. Intestinal epithelial cells: regulators of barrier function and immune homeostasis. Nat. Rev. Immunol. 14, 141–153 (2014).

    Article  CAS  PubMed  Google Scholar 

  56. Crosnier, C., Stamataki, D. & Lewis, J. Organizing cell renewal in the intestine: stem cells, signals and combinatorial control. Nat. Rev. Genet. 7, 349–359 (2006).

    Article  CAS  PubMed  Google Scholar 

  57. Blander, J. M. & Sander, L. E. Beyond pattern recognition: five immune checkpoints for scaling the microbial threat. Nat. Rev. Immunol. 12, 215–225 (2012).

    Article  CAS  PubMed  Google Scholar 

  58. Lee, J. et al. Maintenance of colonic homeostasis by distinctive apical TLR9 signalling in intestinal epithelial cells. Nat. Cell Biol. 8, 1327–1336 (2006).

    Article  CAS  PubMed  Google Scholar 

  59. Chieppa, M., Rescigno, M., Huang, A. Y. C. & Germain, R. N. Dynamic imaging of dendritic cell extension into the small bowel lumen in response to epithelial cell TLR engagement. J. Exp. Med. 203, 2841–2852 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Tait Wojno, E. D. & Artis, D. Innate lymphoid cells: balancing immunity, inflammation, and tissue repair in the intestine. Cell Host Microbe 12, 445–457 (2012).

    Article  CAS  PubMed  Google Scholar 

  61. Walker, J. A., Barlow, J. L. & McKenzie, A. N. J. Innate lymphoid cells — how did we miss them? Nat. Rev. Immunol. 13, 75–87 (2013).

    Article  CAS  PubMed  Google Scholar 

  62. Buonocore, S. et al. Innate lymphoid cells drive interleukin-23-dependent innate intestinal pathology. Nature 464, 1371–1375 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Hepworth, M. R. et al. Innate lymphoid cells regulate CD4+ T cell responses to intestinal commensal bacteria. Nature 498, 113–117 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Geremia, A. et al. IL-23-responsive innate lymphoid cells are increased in inflammatory bowel disease. J. Exp. Med. 208, 1127–1133 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Jay, G. D., Britt, D. E. & Cha, C. J. Lubricin is a product of megakaryocyte stimulating factor gene expression by human synovial fibroblasts. J. Rheumatol. 27, 594–600 (2000).

    CAS  PubMed  Google Scholar 

  66. Jay, G. D. & Waller, K. A. The biology of lubricin: near frictionless joint motion. Matrix Biol. 39, 17–24 (2014).

    Article  CAS  PubMed  Google Scholar 

  67. Tu, J. et al. Ontology and function of fibroblast-like and macrophage-like synoviocytes: how do they talk to each other and can they be targeted for rheumatoid arthritis therapy? Front. Immunol. 9, 1467 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  68. ScienceDirect. Fibroblast-like synoviocyte — an overview. ScienceDirect Topics https://www.sciencedirect.com/topics/immunology-and-microbiology/fibroblast-like-synoviocyte (2016).

  69. Bartok, B. & Firestein, G. S. Fibroblast-like synoviocytes: key effector cells in rheumatoid arthritis. Immunol. Rev. 233, 233–255 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Buckley, C. D. Macrophages form a protective cellular barrier in joints. Nature 572, 590–592 (2019).

    Article  CAS  PubMed  Google Scholar 

  71. Watad, A., Cuthbert, R. J., Amital, H. & McGonagle, D. Enthesitis: much more than focal insertion point inflammation. Curr. Rheumatol. Rep. 20, 41 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  72. McGonagle, D., Aydin, S. Z. & Tan, A. L. The synovio-entheseal complex and its role in tendon and capsular associated inflammation. J. Rheumatol. Suppl. 89, 11–14 (2012).

    Article  PubMed  Google Scholar 

  73. Apostolakos, J. et al. The enthesis: a review of the tendon-to-bone insertion. Muscles Ligaments Tendons J. 4, 333–342 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Kaeley, G. S., Eder, L., Aydin, S. Z., Gutierrez, M. & Bakewell, C. Enthesitis: a hallmark of psoriatic arthritis. Semin. Arthritis Rheum. 48, 35–43 (2018).

    Article  PubMed  Google Scholar 

  75. Benjamin, M. & McGonagle, D. Entheses: tendon and ligament attachment sites. Scand. J. Med. Sci. Sports 19, 520–527 (2009).

    Article  CAS  PubMed  Google Scholar 

  76. Benjamin, M. et al. The ‘enthesis organ’ concept: why enthesopathies may not present as focal insertional disorders. Arthritis Rheum. 50, 3306–3313 (2004).

    Article  CAS  PubMed  Google Scholar 

  77. Schett, G. et al. Enthesitis: from pathophysiology to treatment. Nat. Rev. Rheumatol. 13, 731–741 (2017).

    Article  CAS  PubMed  Google Scholar 

  78. Taurog, J. D. et al. The germfree state prevents development of gut and joint inflammatory disease in HLA-B27 transgenic rats. J. Exp. Med. 180, 2359–2364 (1994).

    Article  CAS  PubMed  Google Scholar 

  79. Chen, L. et al. Skin and gut microbiome in psoriasis: gaining insight into the pathophysiology of it and finding novel therapeutic strategies. Front. Microbiol. 11, 589726 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  80. Lewis, D. J., Chan, W. H., Hinojosa, T., Hsu, S. & Feldman, S. R. Mechanisms of microbial pathogenesis and the role of the skin microbiome in psoriasis: a review. Clin. Dermatol. 37, 160–166 (2019).

    Article  PubMed  Google Scholar 

  81. Zhang, M. et al. Interactions between intestinal microbiota and host immune response in inflammatory bowel disease. Front. Immunol. 8, 942 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  82. Metwaly, A., Reitmeier, S. & Haller, D. Microbiome risk profiles as biomarkers for inflammatory and metabolic disorders. Nat. Rev. Gastroenterol. Hepatol. 19, 383–397 (2022).

    Article  PubMed  Google Scholar 

  83. Read, E., Curtis, M. A. & Neves, J. F. The role of oral bacteria in inflammatory bowel disease. Nat. Rev. Gastroenterol. Hepatol. 18, 731–742 (2021).

    Article  PubMed  Google Scholar 

  84. Boyapati, R., Satsangi, J. & Ho, G.-T. Pathogenesis of Crohn’s disease. F1000Prime Rep. 7, 44 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  85. Olejniczak-Staruch, I. et al. Alterations of the skin and gut microbiome in psoriasis and psoriatic arthritis. Int. J. Mol. Sci. 22, 3998 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Breban, M. Gut microbiota and inflammatory joint diseases. Joint Bone Spine 83, 645–649 (2016).

    Article  PubMed  Google Scholar 

  87. Eppinga, H., Konstantinov, S. R., Peppelenbosch, M. P. & Thio, H. B. The microbiome and psoriatic arthritis. Curr. Rheumatol. Rep. 16, 407 (2014).

    Article  PubMed  Google Scholar 

  88. Yang, K. L., Lejeune, A., Chang, G., Scher, J. U. & Koralov, S. B. Microbial-derived antigens and metabolites in spondyloarthritis. Semin. Immunopathol. 43, 163–172 (2021).

    Article  CAS  PubMed  Google Scholar 

  89. Chen, L. et al. Microbiota metabolite butyrate differentially regulates Th1 and Th17 cells’ differentiation and function in induction of colitis. Inflamm. Bowel Dis. 25, 1450–1461 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  90. Łukasik, Z., Gracey, E., Venken, K., Ritchlin, C. & Elewaut, D. Crossing the boundaries: IL-23 and its role in linking inflammation of the skin, gut and joints. Rheumatology 60, iv16–iv27 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  91. Rumpret, M. et al. Functional categories of immune inhibitory receptors. Nat. Rev. Immunol. 20, 771–780 (2020).

    Article  CAS  PubMed  Google Scholar 

  92. Schett, G., McInnes, I. B. & Neurath, M. F. Reframing immune-mediated inflammatory diseases through signature cytokine hubs. N. Engl. J. Med. 385, 628–639 (2021).

    Article  CAS  PubMed  Google Scholar 

  93. Mackern-Oberti, J. P. et al. Role of dendritic cells in the initiation, progress and modulation of systemic autoimmune diseases. Autoimmun. Rev. 14, 127–139 (2015).

    Article  CAS  PubMed  Google Scholar 

  94. Lande, R. et al. Plasmacytoid dendritic cells sense self-DNA coupled with antimicrobial peptide. Nature 449, 564–569 (2007).

    Article  CAS  PubMed  Google Scholar 

  95. Schön, M. P. Adaptive and innate immunity in psoriasis and other inflammatory disorders. Front. Immunol. 10, 1764 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  96. Griffiths, C. E. M., Armstrong, A. W., Gudjonsson, J. E. & Barker, J. N. W. N. Psoriasis. Lancet 397, 1301–1315 (2021).

    Article  CAS  PubMed  Google Scholar 

  97. Greb, J. E. et al. Psoriasis. Nat. Rev. Dis. Primers 2, 16082 (2016).

    Article  PubMed  Google Scholar 

  98. Cai, Y. et al. Pivotal role of dermal IL-17-producing γδ T cells in skin inflammation. Immunity 35, 596–610 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Nash, P. et al. Ixekizumab for the treatment of patients with active psoriatic arthritis and an inadequate response to tumour necrosis factor inhibitors: results from the 24-week randomised, double-blind, placebo-controlled period of the SPIRIT-P2 phase 3 trial. Lancet 389, 2317–2327 (2017).

    Article  CAS  PubMed  Google Scholar 

  100. Ten Bergen, L. L., Petrovic, A., Krogh Aarebrot, A. & Appel, S. The TNF/IL-23/IL-17 axis — head-to-head trials comparing different biologics in psoriasis treatment. Scand. J. Immunol. 92, e12946 (2020).

    PubMed  Google Scholar 

  101. Leijten, E. F. et al. Tissue-resident memory CD8+ T cells from skin differentiate psoriatic arthritis from psoriasis. Arthritis Rheumatol. 73, 1220–1232 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Prendergast, C. T. et al. Dissecting the molecular control of immune cell accumulation in the inflamed joint. JCI Insight 7, e151281 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  103. Jongbloed, S. L. et al. Enumeration and phenotypical analysis of distinct dendritic cell subsets in psoriatic arthritis and rheumatoid arthritis. Arthritis Res. Ther. 8, R15 (2006).

    Article  PubMed  Google Scholar 

  104. Candia, L., Marquez, J., Hernandez, C., Zea, A. H. & Espinoza, L. R. Toll-like receptor-2 expression is upregulated in antigen-presenting cells from patients with psoriatic arthritis: a pathogenic role for innate immunity? J. Rheumatol. 34, 374–379 (2007).

    CAS  PubMed  Google Scholar 

  105. Goedkoop, A. Y. et al. Early effects of tumour necrosis factor alpha blockade on skin and synovial tissue in patients with active psoriasis and psoriatic arthritis. Ann. Rheum. Dis. 63, 769–773 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Alivernini, S. et al. Synovial features of patients with rheumatoid arthritis and psoriatic arthritis in clinical and ultrasound remission differ under anti-TNF therapy: a clue to interpret different chances of relapse after clinical remission? Ann. Rheum. Dis. 76, 1228–1236 (2017).

    Article  CAS  PubMed  Google Scholar 

  107. van Kuijk, A. W. R., Reinders‐Blankert, P., Smeets, T. J. M., Dijkmans, B. A. C. & Tak, P. P. Detailed analysis of the cell infiltrate and the expression of mediators of synovial inflammation and joint destruction in the synovium of patients with psoriatic arthritis: implications for treatment. Ann. Rheum. Dis. 65, 1551–1557 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  108. Nerviani, A. et al. IL-23 skin and joint profiling in psoriatic arthritis: novel perspectives in understanding clinical responses to IL-23 inhibitors. Ann. Rheum. Dis. 80, 591–597 (2021).

    Article  CAS  PubMed  Google Scholar 

  109. Alivernini, S. et al. Differential synovial tissue biomarkers among psoriatic arthritis and rheumatoid factor/anti-citrulline antibody-negative rheumatoid arthritis. Arthritis Res. Ther. 21, 116 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  110. Bartlett, H. S. & Million, R. P. Targeting the IL-17–TH17 pathway. Nat. Rev. Drug Discov. 14, 11–12 (2015).

    Article  CAS  PubMed  Google Scholar 

  111. Kirkham, B. W., Kavanaugh, A. & Reich, K. Interleukin-17A: a unique pathway in immune-mediated diseases: psoriasis, psoriatic arthritis and rheumatoid arthritis. Immunology 141, 133–142 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Lories, R. J., Luyten, F. P. & de Vlam, K. Progress in spondylarthritis. Mechanisms of new bone formation in spondyloarthritis. Arthritis Res. Ther. 11, 221 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  113. McGonagle, D. G., McInnes, I. B., Kirkham, B. W., Sherlock, J. & Moots, R. The role of IL-17A in axial spondyloarthritis and psoriatic arthritis: recent advances and controversies. Ann. Rheum. Dis. 78, 1167–1178 (2019).

    Article  CAS  PubMed  Google Scholar 

  114. Menon, B. et al. Interleukin-17+CD8+ T cells are enriched in the joints of patients with psoriatic arthritis and correlate with disease activity and joint damage progression. Arthritis Rheumatol. 66, 1272–1281 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Steel, K. J. A. et al. Polyfunctional, proinflammatory, tissue-resident memory phenotype and function of synovial interleukin-17A+CD8+ T cells in psoriatic arthritis. Arthritis Rheumatol. 72, 435–447 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Wade, S. M. et al. Association of synovial tissue polyfunctional T-cells with DAPSA in psoriatic arthritis. Ann. Rheum. Dis. 78, 350–354 (2019).

    Article  CAS  PubMed  Google Scholar 

  117. Takaki-Kuwahara, A. et al. CCR6+ group 3 innate lymphoid cells accumulate in inflamed joints in rheumatoid arthritis and produce Th17 cytokines. Arthritis Res. Ther. 21, 198 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  118. Mitra, A., Raychaudhuri, S. K. & Raychaudhuri, S. P. Functional role of IL-22 in psoriatic arthritis. Arthritis Res. Ther. 14, R65 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Fiocco, U. et al. Synovial effusion and synovial fluid biomarkers in psoriatic arthritis to assess intraarticular tumor necrosis factor-α blockade in the knee joint. Arthritis Res. Ther. 12, R148 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  120. Benham, H. et al. Th17 and Th22 cells in psoriatic arthritis and psoriasis. Arthritis Res. Ther. 15, R136 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  121. Fiechter, R. H. et al. IL-12p40/IL-23p40 blockade with ustekinumab decreases the synovial inflammatory infiltrate through modulation of multiple signaling pathways including MAPK-ERK and Wnt. Front. Immunol. 12, 611656 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. van Mens, L. J. J. et al. Brief report: interleukin-17 blockade with secukinumab in peripheral spondyloarthritis impacts synovial immunopathology without compromising systemic immune responses. Arthritis Rheumatol. 70, 1994–2002 (2018).

    Article  PubMed  Google Scholar 

  123. Rosine, N. & Miceli-Richard, C. Innate cells: the alternative source of IL-17 in axial and peripheral spondyloarthritis? Front. Immunol. 11, 553742 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  124. Gracey, E. et al. IL-7 primes IL-17 in mucosal-associated invariant T (MAIT) cells, which contribute to the Th17-axis in ankylosing spondylitis. Ann. Rheum. Dis. 75, 2124–2132 (2016).

    Article  CAS  PubMed  Google Scholar 

  125. de Matos, C. T. et al. Activating and inhibitory receptors on synovial fluid natural killer cells of arthritis patients: role of CD94/NKG2A in control of cytokine secretion. Immunology 122, 291–301 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  126. Guggino, G. et al. Interleukin (IL)-9/IL-9R axis drives γδ T cells activation in psoriatic arthritis patients. Clin. Exp. Immunol. 186, 277–283 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Belasco, J. et al. Comparative genomic profiling of synovium versus skin lesions in psoriatic arthritis. Arthritis Rheumatol. 67, 934–944 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Teunissen, M. B. M. et al. The IL-17A-producing CD8+ T-cell population in psoriatic lesional skin comprises mucosa-associated invariant T cells and conventional T cells. J. Invest. Dermatol. 134, 2898–2907 (2014).

    Article  CAS  PubMed  Google Scholar 

  129. Ciccia, F. et al. Type 3 innate lymphoid cells producing IL-17 and IL-22 are expanded in the gut, in the peripheral blood, synovial fluid and bone marrow of patients with ankylosing spondylitis. Ann. Rheum. Dis. 74, 1739–1747 (2015).

    Article  CAS  PubMed  Google Scholar 

  130. Mauro, D., Macaluso, F., Fasano, S., Alessandro, R. & Ciccia, F. ILC3 in axial spondyloarthritis: the gut angle. Curr. Rheumatol. Rep. 21, 37 (2019).

    Article  PubMed  Google Scholar 

  131. Sherlock, J. P. et al. IL-23 induces spondyloarthropathy by acting on ROR-γt+ CD3+CD4CD8 entheseal resident T cells. Nat. Med. 18, 1069–1076 (2012).

    Article  CAS  PubMed  Google Scholar 

  132. Bridgewood, C. et al. Identification of myeloid cells in the human enthesis as the main source of local IL-23 production. Ann. Rheum. Dis. 78, 929–933 (2019).

    Article  CAS  PubMed  Google Scholar 

  133. Adamopoulos, I. E. et al. IL-17A gene transfer induces bone loss and epidermal hyperplasia associated with psoriatic arthritis. Ann. Rheum. Dis. 74, 1284–1292 (2015).

    Article  CAS  PubMed  Google Scholar 

  134. Russell, T. et al. IL-17A and TNF modulate normal human spinal entheseal bone and soft tissue mesenchymal stem cell osteogenesis, adipogenesis, and stromal function. Cells 10, 341 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Mandour, M., Chen, S. & van de Sande, M. G. H. The role of the IL-23/IL-17 axis in disease initiation in spondyloarthritis: lessons learned from animal models. Front. Immunol. 12, 618581 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Najm, A. & McInnes, I. B. IL-23 orchestrating immune cell activation in arthritis. Rheumatology 60, iv4–iv15 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. van Tok, M. N. et al. The initiation, but not the persistence, of experimental spondyloarthritis is dependent on interleukin-23 signaling. Front. Immunol. 9, 1550 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  138. van Tok, M. N. et al. Interleukin-17A inhibition diminishes inflammation and new bone formation in experimental spondyloarthritis. Arthritis Rheumatol. 71, 612–625 (2019).

    Article  PubMed  Google Scholar 

  139. Cuthbert, R. J. et al. Evidence that tissue resident human enthesis γδT-cells can produce IL-17A independently of IL-23R transcript expression. Ann. Rheum. Dis. 78, 1559–1565 (2019).

    Article  CAS  PubMed  Google Scholar 

  140. McGonagle, D. & Tan, A. L. The enthesis in psoriatic arthritis. Clin. Exp. Rheumatol. 33 (Suppl. 93), S36–S39 (2015).

    PubMed  Google Scholar 

  141. Yoshiga. Invariant NKT cells produce IL-17 through IL-23-dependent and -independent pathways with potential modulation of Th17 response in collagen-induced arthritis. Int. J. Mol. Med. 22, 369–374 (1998).

    Google Scholar 

  142. Baeten, D. et al. Risankizumab, an IL-23 inhibitor, for ankylosing spondylitis: results of a randomised, double-blind, placebo-controlled, proof-of-concept, dose-finding phase 2 study. Ann. Rheum. Dis. 77, 1295–1302 (2018).

    Article  CAS  PubMed  Google Scholar 

  143. Deodhar, A. et al. Three multicenter, randomized, double-blind, placebo-controlled studies evaluating the efficacy and safety of ustekinumab in axial spondyloarthritis. Arthritis Rheumatol. 71, 258–270 (2019).

    Article  CAS  PubMed  Google Scholar 

  144. Kavanaugh, A. et al. Ustekinumab, an anti-IL-12/23 p40 monoclonal antibody, inhibits radiographic progression in patients with active psoriatic arthritis: results of an integrated analysis of radiographic data from the phase 3, multicentre, randomised, double-blind, placebo-controlled PSUMMIT-1 and PSUMMIT-2 trials. Ann. Rheum. Dis. 73, 1000–1006 (2014).

    Article  CAS  PubMed  Google Scholar 

  145. Mease, P. J. et al. Efficacy of guselkumab on axial involvement in patients with active psoriatic arthritis and sacroiliitis: a post-hoc analysis of the phase 3 DISCOVER-1 and DISCOVER-2 studies. Lancet Rheumatol. 3, e715–e723 (2021).

    Article  CAS  Google Scholar 

  146. Braun, J. & Landewé, R. B. No efficacy of anti-IL-23 therapy for axial spondyloarthritis in randomised controlled trials but in post-hoc analyses of psoriatic arthritis-related ‘physician-reported spondylitis’? Ann. Rheum. Dis. 81, 466–468 (2022).

    Article  CAS  PubMed  Google Scholar 

  147. McGonagle, D., Tan, A. L., Watad, A. & Helliwell, P. Pathophysiology, assessment and treatment of psoriatic dactylitis. Nat. Rev. Rheumatol. 15, 113–122 (2019).

    Article  PubMed  Google Scholar 

  148. Tinazzi, I. et al. ‘Deep Koebner’ phenomenon of the flexor tendon-associated accessory pulleys as a novel factor in tenosynovitis and dactylitis in psoriatic arthritis. Ann. Rheum. Dis. 77, 922–925 (2018).

    Article  CAS  PubMed  Google Scholar 

  149. Khmaladze, I. et al. Mannan induces ROS-regulated, IL-17A-dependent psoriasis arthritis-like disease in mice. Proc. Natl Acad. Sci. USA 111, E3669–E3678 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Cheung, P., Khatri, P., Utz, P. J. & Kuo, A. J. Single-cell technologies — studying rheumatic diseases one cell at a time. Nat. Rev. Rheumatol. 15, 340–354 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  151. Cheng, J. B. et al. Transcriptional programming of normal and inflamed human epidermis at single-cell resolution. Cell Rep. 25, 871–883 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Qie, C. et al. Single-cell RNA-Seq reveals the transcriptional landscape and heterogeneity of skin macrophages in Vsir−/− murine psoriasis. Theranostics 10, 10483–10497 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Nakamizo, S. et al. Single-cell analysis of human skin identifies CD14+ type 3 dendritic cells co-producing IL1B and IL23A in psoriasis. J. Exp. Med. 218, e20202345 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Gao, Y. et al. Single cell transcriptional zonation of human psoriasis skin identifies an alternative immunoregulatory axis conducted by skin resident cells. Cell Death Dis. 12, 450 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Liu, J. et al. Single-cell RNA sequencing of psoriatic skin identifies pathogenic Tc17 cell subsets and reveals distinctions between CD8+ T cells in autoimmunity and cancer. J. Allergy Clin. Immunol. 147, 2370–2380 (2021).

    Article  CAS  PubMed  Google Scholar 

  156. Penkava, F. et al. Single-cell sequencing reveals clonal expansions of pro-inflammatory synovial CD8 T cells expressing tissue-homing receptors in psoriatic arthritis. Nat. Commun. 11, 4767 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Miyagawa, I. et al. Precision medicine using different biological DMARDs based on characteristic phenotypes of peripheral T helper cells in psoriatic arthritis. Rheumatology 58, 336–344 (2019).

    Article  CAS  PubMed  Google Scholar 

  158. Simone, D. et al. Single cell analysis of spondyloarthritis regulatory T cells identifies distinct synovial gene expression patterns and clonal fates. Commun. Biol. 4, 1395 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Yager, N. et al. Ex vivo mass cytometry analysis reveals a profound myeloid proinflammatory signature in psoriatic arthritis synovial fluid. Ann. Rheum. Dis. 80, 1559–1567 (2021).

    Article  CAS  PubMed  Google Scholar 

  160. Floudas, A. et al. Distinct stromal and immune cell interactions shape the pathogenesis of rheumatoid and psoriatic arthritis. Ann. Rheum. Dis. https://doi.org/10.1136/annrheumdis-2021-221761 (2022).

    Article  PubMed  Google Scholar 

  161. Akbar, M. et al. Single cell and spatial transcriptomics in human tendon disease indicate dysregulated immune homeostasis. Ann. Rheum. Dis. 80, 1494–1497 (2021).

    Article  CAS  PubMed  Google Scholar 

  162. Matzinger, P. & Kamala, T. Tissue-based class control: the other side of tolerance. Nat. Rev. Immunol. 11, 221–230 (2011).

    Article  CAS  PubMed  Google Scholar 

  163. Bolt, J. W., van Ansenwoude, C. M. J., Hammoura, I., van de Sande, M. G. & van Baarsen, L. G. M. Translational research studies unraveling the origins of psoriatic arthritis: moving beyond skin and joints. Front. Med. 8, 711823 (2021).

    Article  Google Scholar 

  164. Pournara, E. et al. Clinically relevant patient clusters identified by machine learning from the clinical development programme of secukinumab in psoriatic arthritis. RMD Open 7, e001845 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  165. Gedebjerg, A., Johansen, C., Kragballe, K. & Iversen, L. IL-20, IL-21 and p40: potential biomarkers of treatment response for ustekinumab. Acta Derm. Venereol. 93, 150–155 (2013).

    Article  CAS  PubMed  Google Scholar 

  166. Pontifex, E. K. et al. Change in CD3 positive T-cell expression in psoriatic arthritis synovium correlates with change in DAS28 and magnetic resonance imaging synovitis scores following initiation of biologic therapy — a single centre, open-label study. Arthritis Res. Ther. 13, R7 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  167. Collins, E. S. et al. A clinically based protein discovery strategy to identify potential biomarkers of response to anti-TNF-α treatment of psoriatic arthritis. Prot. Clin. Appl. 10, 645–662 (2016).

    Article  CAS  Google Scholar 

  168. Ademowo, O. S. et al. Discovery and confirmation of a protein biomarker panel with potential to predict response to biological therapy in psoriatic arthritis. Ann. Rheum. Dis. 75, 234–241 (2016).

    Article  CAS  PubMed  Google Scholar 

  169. Cibrian, D., de la Fuente, H. & Sánchez-Madrid, F. Metabolic pathways that control skin homeostasis and inflammation. Trends Mol. Med. 26, 975–986 (2020).

    Article  CAS  PubMed  Google Scholar 

  170. Cohen, S., Barer, F., Itzhak, I., Silverman, M. H. & Fishman, P. Inhibition of IL-17 and IL-23 in human keratinocytes by the A3 adenosine receptor agonist piclidenoson. J. Immunol. Res. 2018, e2310970 (2018).

    Article  Google Scholar 

  171. David, M. et al. Treatment of plaque-type psoriasis with oral CF101: data from an exploratory randomized phase 2 clinical trial. J. Eur. Acad. Dermatol. Venereol. 26, 361–367 (2012).

    Article  CAS  PubMed  Google Scholar 

  172. Schaper, K., Kietzmann, M. & Bäumer, W. Sphingosine-1-phosphate differently regulates the cytokine production of IL-12, IL-23 and IL-27 in activated murine bone marrow derived dendritic cells. Mol. Immunol. 59, 10–18 (2014).

    Article  CAS  PubMed  Google Scholar 

  173. Tönük, Ş. B. & Yorgancıoğlu, Z. R. Biomechanical factors in psoriatic disease: defective repair exertion as a potential cause. hypothesis presentation and literature review. ACR Open. Rheumatol. 1, 452–461 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  174. Coates, L. C. et al. GRAPPA treatment recommendations: 2021 update. J. Rheumatol. 49 (Suppl. 1), 52–54 (2022).

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors researched data for the article and made a substantial contribution to discussion of the content, writing and review and/or editing of the manuscript before submission.

Corresponding author

Correspondence to Stefan Siebert.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Rheumatology thanks V. Chandran, M. Chimenti, E. Soriano and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Najm, A., Goodyear, C.S., McInnes, I.B. et al. Phenotypic heterogeneity in psoriatic arthritis: towards tissue pathology-based therapy. Nat Rev Rheumatol 19, 153–165 (2023). https://doi.org/10.1038/s41584-022-00874-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41584-022-00874-5

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research