Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Mechanosignalling in cartilage: an emerging target for the treatment of osteoarthritis

Abstract

Mechanical stimuli have fundamental roles in articular cartilage during health and disease. Chondrocytes respond to the physical properties of the cartilage extracellular matrix (ECM) and the mechanical forces exerted on them during joint loading. In osteoarthritis (OA), catabolic processes degrade the functional ECM and the composition and viscoelastic properties of the ECM produced by chondrocytes are altered. The abnormal loading environment created by these alterations propagates cell dysfunction and inflammation. Chondrocytes sense their physical environment via an array of mechanosensitive receptors and channels that activate a complex network of downstream signalling pathways to regulate several cell processes central to OA pathology. Advances in understanding the complex roles of specific mechanosignalling mechanisms in healthy and OA cartilage have highlighted molecular processes that can be therapeutically targeted to interrupt pathological feedback loops. The potential for combining these mechanosignalling targets with the rapidly expanding field of smart mechanoresponsive biomaterials and delivery systems is an emerging paradigm in OA treatment. The continued advances in this field have the potential to enable restoration of healthy mechanical microenvironments and signalling through the development of precision therapeutics, mechanoregulated biomaterials and drug systems in the near future.

Key points

  • Mechanical forces are a critical environmental factor for maintaining joint homeostasis, determining cell phenotype, inflammatory responses and the tightly regulated anabolic–catabolic signalling axis essential for cartilage homeostasis.

  • Chondrocytes sense their mechanical environment through numerous direct and indirect mechanisms that regulate cell function in health and degenerative diseases, such as osteoarthritis.

  • Targeted inhibition of mechanoinflammatory signalling pathways or restoration of functional chondroprotective extracellular matrix environments in osteoarthritis could prevent extracellular matrix degradation and promote reparative anabolic processes.

  • Development of self-regulating and mechanically responsive biomaterials and drug delivery systems offer advanced ‘on-demand’ therapeutic approaches for the treatment of osteoarthritis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Articular cartilage composition and structure.
Fig. 2: Growth factor signalling in chondrocytes.
Fig. 3: Chondrocyte mechanosignalling.
Fig. 4: Mechanoinflammation signalling pathways in chondrocytes in osteoarthritis.
Fig. 5: Mechanoresponsive therapeutics for the treatment of osteoarthritis.

Similar content being viewed by others

References

  1. Vincent, T. L. & Wann, A. K. Mechanoadaptation: articular cartilage through thick and thin. J. Physiol. 597, 1271–1281 (2019).

    Article  CAS  PubMed  Google Scholar 

  2. Chang, S. H. et al. Excessive mechanical loading promotes osteoarthritis through the gremlin-1–NF-κB pathway. Nat. Commun. 10, 1442 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Goldring, S. R. & Goldring, M. B. Changes in the osteochondral unit during osteoarthritis: structure, function and cartilage–bone crosstalk. Nat. Rev. Rheumatol. 12, 632–644 (2016).

    Article  PubMed  Google Scholar 

  4. Pap, T. & Korb-Pap, A. Cartilage damage in osteoarthritis and rheumatoid arthritis — two unequal siblings. Nat. Rev. Rheumatol. 11, 606–615 (2015).

    Article  PubMed  Google Scholar 

  5. Burr, D. B. & Gallant, M. A. Bone remodelling in osteoarthritis. Nat. Rev. Rheumatol. 8, 665–673 (2012).

    Article  CAS  PubMed  Google Scholar 

  6. Collins, K. H. et al. Adipose tissue is a critical regulator of osteoarthritis. Proc. Natl Acad. Sci. USA 118, e2021096118 (2021).

    Article  CAS  PubMed  Google Scholar 

  7. Watt, F. E. Posttraumatic osteoarthritis: what have we learned to advance osteoarthritis? Curr. Opin. Rheumatol. 33, 74–83 (2021).

    Article  CAS  PubMed  Google Scholar 

  8. Greene, M. A. & Loeser, R. F. Aging-related inflammation in osteoarthritis. Osteoarthritis Cartilage 23, 1966–1971 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. McNulty, M. A. et al. Histopathology of naturally occurring and surgically induced osteoarthritis in mice. Osteoarthritis Cartilage 20, 949–956 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Lotz, M. & Loeser, R. F. Effects of aging on articular cartilage homeostasis. Bone 51, 241–248 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Loeser, R. F. et al. Microarray analysis reveals age‐related differences in gene expression during the development of osteoarthritis in mice. Arthritis Rheum. 64, 705–717 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Thomas, A. C., Hubbard-Turner, T., Wikstrom, E. A. & Palmieri-Smith, R. M. Epidemiology of posttraumatic osteoarthritis. J. Athlet. Train. 52, 491–496 (2017).

    Article  Google Scholar 

  13. Glasson, S. S. et al. Deletion of active ADAMTS5 prevents cartilage degradation in a murine model of osteoarthritis. Nature 434, 644–648 (2005).

    Article  CAS  PubMed  Google Scholar 

  14. Burleigh, A. et al. Joint immobilization prevents murine osteoarthritis and reveals the highly mechanosensitive nature of protease expression in vivo. Arthritis Rheum. 64, 2278–2288 (2012).

    Article  CAS  PubMed  Google Scholar 

  15. Ismail, H. M. et al. Interleukin‐1 acts via the JNK‐2 signaling pathway to induce aggrecan degradation by human chondrocytes. Arthritis Rheumatol. 67, 1826–1836 (2015).

    Article  CAS  PubMed  Google Scholar 

  16. Zhang, M. et al. Induced superficial chondrocyte death reduces catabolic cartilage damage in murine posttraumatic osteoarthritis. J. Clin. Invest. 126, 2893–2902 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Gilbert, S. J. & Blain, E. J. in Mechanobiology in Health and Disease (ed. Verbruggen, S. W.) 99–126 (Elsevier, 2018).

  18. Guilak, F., Nims, R. J., Dicks, A., Wu, C.-L. & Meulenbelt, I. Osteoarthritis as a disease of the cartilage pericellular matrix. Matrix Biol. 71–72, 40–50 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Vincent, T. L. Targeting mechanotransduction pathways in osteoarthritis: a focus on the pericellular matrix. Curr. Opin. Pharmacol. 13, 449–454 (2013).

    Article  CAS  PubMed  Google Scholar 

  20. Agarwal, P. et al. A dysfunctional TRPV4–GSK3β pathway prevents osteoarthritic chondrocytes from sensing changes in extracellular matrix viscoelasticity. Nat. Biomed. Eng. 5, 1472–1484 (2021).

    Article  CAS  PubMed  Google Scholar 

  21. Nims, R. J. et al. A synthetic mechanogenetic gene circuit for autonomous drug delivery in engineered tissues. Sci. Adv. 7, eabd9858 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Deng, Y. et al. Reciprocal inhibition of YAP/TAZ and NF-κB regulates osteoarthritic cartilage degradation. Nat. Commun. 9, 4564 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Eckstein, F. et al. Intra-articular sprifermin reduces cartilage loss in addition to increasing cartilage gain independent of location in the femorotibial joint: post-hoc analysis of a randomised, placebo-controlled phase II clinical trial. Ann. Rheum. Dis. 79, 525–528 (2020).

    Article  PubMed  Google Scholar 

  24. Peredo, A. P. et al. Mechano-activated biomolecule release in regenerating load-bearing tissue microenvironments. Biomaterials 265, 120255 (2021).

    Article  CAS  PubMed  Google Scholar 

  25. Nims, R. J., Pferdehirt, L. & Guilak, F. Mechanogenetics: harnessing mechanobiology for cellular engineering. Curr. Opin. Biotechnol. 73, 374–379 (2022).

    Article  CAS  Google Scholar 

  26. Poole, A. R. et al. Composition and structure of articular cartilage: a template for tissue repair. Clin. Orthop. Relat. Res. 391, S26–S33 (2001).

    Article  Google Scholar 

  27. Mow, V. C., Ratcliffe, A. & Poole, A. R. Cartilage and diarthrodial joints as paradigms for hierarchical materials and structures. Biomaterials 13, 67–97 (1992).

    Article  CAS  PubMed  Google Scholar 

  28. Schätti, O. R., Marková, M., Torzilli, P. A. & Gallo, L. M. Mechanical loading of cartilage explants with compression and sliding motion modulates gene expression of lubricin and catabolic enzymes. Cartilage 6, 185–193 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Melrose, J., Hayes, A. J., Whitelock, J. M. & Little, C. B. Perlecan, the “jack of all trades” proteoglycan of cartilaginous weight‐bearing connective tissues. Bioessays 30, 457–469 (2008).

    Article  CAS  PubMed  Google Scholar 

  30. Poole, C. A. Articular cartilage chondrons: form, function and failure. J. Anat. 191, 1–13 (1997).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Schinagl, R. M., Gurskis, D., Chen, A. C. & Sah, R. L. Depth‐dependent confined compression modulus of full‐thickness bovine articular cartilage. J. Ortho Res. 15, 499–506 (1997).

    Article  CAS  Google Scholar 

  32. Xia, Y., Moody, J. B., Alhadlaq, H. & Hu, J. Imaging the physical and morphological properties of a multi‐zone young articular cartilage at microscopic resolution. J. Mag. Reson. Imaging 17, 365–374 (2003).

    Article  Google Scholar 

  33. Ratcliffe, A., Fryer, P. R. & Hardingham, T. E. The distribution of aggregating proteoglycans in articular cartilage: comparison of quantitative immunoelectron microscopy with radioimmunoassay and biochemical analysis. J. Histochem. Cytochem. 32, 193–201 (1984).

    Article  CAS  PubMed  Google Scholar 

  34. Maroudas, A., Muir, H. & Wingham, J. The correlation of fixed negative charge with glycosaminoglycan content of human articular cartilage. Biochim. Biophys. Acta 177, 492–500 (1969).

    Article  CAS  PubMed  Google Scholar 

  35. Wilusz, R. E., Zauscher, S. & Guilak, F. Micromechanical mapping of early osteoarthritic changes in the pericellular matrix of human articular cartilage. Osteoarthritis Cartilage 21, 1895–1903 (2013).

    Article  CAS  PubMed  Google Scholar 

  36. Chery, D. R. et al. Early changes in cartilage pericellular matrix micromechanobiology portend the onset of post-traumatic osteoarthritis. Acta Biomater. 111, 267–278 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Simon, W. H. Scale effects in animal joints. I. Articular cartilage thickness and compressive stress. Arthritis Rheum. 13, 244–255 (1970).

    Article  CAS  PubMed  Google Scholar 

  38. Loeser, R. F. Integrins and cell signaling in chondrocytes. Biorheology 39, 119–124 (2002).

    CAS  PubMed  Google Scholar 

  39. Millward-Sadler, S. J. & Salter, D. M. Integrin-dependent signal cascades in chondrocyte mechanotransduction. Ann. Biomed. Eng. 32, 435–446 (2004).

    Article  CAS  PubMed  Google Scholar 

  40. Ross, T. D. et al. Integrins in mechanotransduction. Curr. Opin. Cell Biol. 25, 613–618 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Blain, E. J. Involvement of the cytoskeletal elements in articular cartilage homeostasis and pathology. Int. J. Exp. Pathol. 90, 1–15 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Barrett-Jolley, R., Lewis, R., Fallman, R. & Mobasheri, A. The emerging chondrocyte channelome. Front. Physiol. 1, 135 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Matta, C., Zákány, R. & Mobasheri, A. Voltage-dependent calcium channels in chondrocytes: roles in health and disease. Curr. Rheumatol. Rep. 17, 43 (2015).

    Article  PubMed  Google Scholar 

  44. Mobasheri, A. et al. The chondrocyte channelome: a narrative review. Jt. Bone Spine 86, 29–35 (2019).

    Article  CAS  Google Scholar 

  45. Ruhlen, R. & Marberry, K. The chondrocyte primary cilium. Osteoarthritis Cartilage 22, 1071–1076 (2014).

    Article  CAS  PubMed  Google Scholar 

  46. Tao, F., Jiang, T., Tao, H., Cao, H. & Xiang, W. Primary cilia: versatile regulator in cartilage development. Cell Prolif. 53, e12765 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Guilak, F. et al. The pericellular matrix as a transducer of biomechanical and biochemical signals in articular cartilage. Ann. N. Y. Acad. Sci. 1068, 498–512 (2006).

    Article  CAS  PubMed  Google Scholar 

  48. Youn, I., Choi, J., Cao, L., Setton, L. & Guilak, F. Zonal variations in the three-dimensional morphology of the chondron measured in situ using confocal microscopy. Osteoarthritis Cartilage 14, 889–897 (2006).

    Article  CAS  PubMed  Google Scholar 

  49. Martin, J., Miller, B., Scherb, M., Lembke, L. & Buckwalter, J. Co-localization of insulin-like growth factor binding protein 3 and fibronectin in human articular cartilage. Osteoarthritis Cartilage 10, 556–563 (2002).

    Article  CAS  PubMed  Google Scholar 

  50. Vincent, T., Hermansson, M., Bolton, M., Wait, R. & Saklatvala, J. Basic FGF mediates an immediate response of articular cartilage to mechanical injury. Proc. Natl Acad. Sci. USA 99, 8259–8264 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Vincent, T. L., Hermansson, M. A., Hansen, U. N., Amis, A. A. & Saklatvala, J. Basic fibroblast growth factor mediates transduction of mechanical signals when articular cartilage is loaded. Arthritis Rheum. 50, 526–533 (2004).

    Article  CAS  PubMed  Google Scholar 

  52. Vincent, T. L., McLean, C. J., Full, L. E., Peston, D. & Saklatvala, J. FGF-2 is bound to perlecan in the pericellular matrix of articular cartilage, where it acts as a chondrocyte mechanotransducer. Osteoarthritis Cartilage 15, 752–763 (2007).

    Article  CAS  PubMed  Google Scholar 

  53. Vincent, T. L. Fibroblast growth factor 2: good or bad guy in the joint? Arthritis Res. Ther. 13, 127 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Xie, Y., Zinkle, A., Chen, L. & Mohammadi, M. Fibroblast growth factor signalling in osteoarthritis and cartilage repair. Nat. Rev. Rheumatol. 16, 547–564 (2020).

    Article  CAS  PubMed  Google Scholar 

  55. Makarenkova, H. P. et al. Differential interactions of FGFs with heparan sulfate control gradient formation and branching morphogenesis. Sci. Signal. 2, ra55 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Eckstein, F., Wirth, W., Guermazi, A., Maschek, S. & Aydemir, A. Brief report: intraarticular sprifermin not only increases cartilage thickness, but also reduces cartilage loss: location‐independent post hoc analysis using magnetic resonance imaging. Arthritis Rheumatol. 67, 2916–2922 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Lohmander, L. S. et al. Intraarticular sprifermin (recombinant human fibroblast growth factor 18) in knee osteoarthritis: a randomized, double‐blind, placebo‐controlled trial. Arthritis Rheumatol. 66, 1820–1831 (2014).

    Article  CAS  PubMed  Google Scholar 

  58. Hochberg, M. C. et al. Effect of intra-articular sprifermin vs placebo on femorotibial joint cartilage thickness in patients with osteoarthritis: the FORWARD randomized clinical trial. JAMA 322, 1360–1370 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Zhen, G. et al. Mechanical stress determines the configuration of TGFβ activation in articular cartilage. Nat. Commun. 12, 1706 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Kechagia, J. Z., Ivaska, J. & Roca-Cusachs, P. Integrins as biomechanical sensors of the microenvironment. Nat. Rev. Mol. Cell Biol. 20, 457–473 (2019).

    Article  CAS  PubMed  Google Scholar 

  61. Seetharaman, S. & Etienne‐Manneville, S. Integrin diversity brings specificity in mechanotransduction. Biol. Cell 110, 49–64 (2018).

    Article  CAS  PubMed  Google Scholar 

  62. Cantini, M., Donnelly, H., Dalby, M. J. & Salmeron‐Sanchez, M. The plot thickens: the emerging role of matrix viscosity in cell mechanotransduction. Adv. Healthc. Mater. 9, 1901259 (2020).

    Article  CAS  Google Scholar 

  63. Parsons, J. T., Horwitz, A. R. & Schwartz, M. A. Cell adhesion: integrating cytoskeletal dynamics and cellular tension. Nat. Rev. Mol. Cell Biol. 11, 633–643 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Puklin-Faucher, E. & Sheetz, M. P. The mechanical integrin cycle. J. Cell Sci. 122, 179–186 (2009).

    Article  CAS  PubMed  Google Scholar 

  65. Elosegui-Artola, A. et al. Mechanical regulation of a molecular clutch defines force transmission and transduction in response to matrix rigidity. Nat. Cell Biol. 18, 540–548 (2016).

    Article  CAS  PubMed  Google Scholar 

  66. Elosegui-Artola, A. et al. Rigidity sensing and adaptation through regulation of integrin types. Nat. Mater. 13, 631–637 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Franz, F., Daday, C. & Gräter, F. Advances in molecular simulations of protein mechanical properties and function. Curr. Opin. Struct. Biol. 61, 132–138 (2020).

    Article  CAS  PubMed  Google Scholar 

  68. Gouttenoire, J. et al. BMP-2 and TGF-β1 differentially control expression of type II procollagen and α10 and α11 integrins in mouse chondrocytes. Eur. J. Cell Biol. 89, 307–314 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Salter, D., Hughes, D., Simpson, R. & Gardner, D. Integrin expression by human articular chondrocytes. Rheumatology 31, 231–234 (1992).

    Article  CAS  Google Scholar 

  70. Zhang, W.-M. et al. Analysis of the human integrin α11 gene (ITGA11) and its promoter. Matrix Biol. 21, 513–523 (2002).

    Article  CAS  PubMed  Google Scholar 

  71. Loeser, R. F. Integrins and chondrocyte–matrix interactions in articular cartilage. Matrix Biol. 39, 11–16 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Orazizadeh, M. et al. CD47 associates with alpha 5 integrin and regulates responses of human articular chondrocytes to mechanical stimulation in an in vitro model. Arthritis Res. Ther. 10, R4 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Ostergaard, K. et al. Expression of α and β subunits of the integrin superfamily in articular cartilage from macroscopically normal and osteoarthritic human femoral heads. Ann. Rheum. Dis. 57, 303–308 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Lucchinetti, E., Bhargava, M. M. & Torzilli, P. A. The effect of mechanical load on integrin subunits α5 and β1 in chondrocytes from mature and immature cartilage explants. Cell Tissue Res. 315, 385–391 (2004).

    Article  CAS  PubMed  Google Scholar 

  75. Millward-Sadler, S. et al. Integrin-regulated secretion of interleukin 4: a novel pathway of mechanotransduction in human articular chondrocytes. J. Cell Biol. 145, 183–189 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Millward‐Sadler, S., Wright, M., Davies, L., Nuki, G. & Salter, D. Mechanotransduction via integrins and interleukin‐4 results in altered aggrecan and matrix metalloproteinase 3 gene expression in normal, but not osteoarthritic, human articular chondrocytes. Arthritis Rheum. 43, 2091–2099 (2000).

    Article  PubMed  Google Scholar 

  77. Steward, A. et al. Cell–matrix interactions regulate mesenchymal stem cell response to hydrostatic pressure. Acta Biomater. 8, 2153–2159 (2012).

    Article  CAS  PubMed  Google Scholar 

  78. Jablonski, C. L., Ferguson, S., Pozzi, A. & Clark, A. L. Integrin α1β1 participates in chondrocyte transduction of osmotic stress. Biochem. Biophys. Res. Commun. 445, 184–190 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Wright, M. et al. Hyperpolarisation of cultured human chondrocytes following cyclical pressure‐induced strain: evidence of a role for α5β1 integrin as a chondrocyte mechanoreceptor. J. Ortho Res. 15, 742–747 (1997).

    Article  CAS  Google Scholar 

  80. Camper, L., Hellman, U. & Lundgren-Åkerlund, E. Isolation, cloning, and sequence analysis of the integrin subunit α10, a β1-associated collagen binding integrin expressed on chondrocytes. J. Biol. Chem. 273, 20383–20389 (1998).

    Article  CAS  PubMed  Google Scholar 

  81. Bengtsson, T., Camper, L., Schneller, M. & Lundgren-Åkerlund, E. Characterization of the mouse integrin subunit α10 gene and comparison with its human homologue: genomic structure, chromosomal localization and identification of splice variants. Matrix Biol. 20, 565–576 (2001).

    Article  CAS  PubMed  Google Scholar 

  82. Lehnert, K. et al. Cloning, sequence analysis, and chromosomal localization of the novel human integrin α11 subunit (ITGA11). Genomics 60, 179–187 (1999).

    Article  CAS  PubMed  Google Scholar 

  83. Varas, L. et al. α10 integrin expression is up-regulated on fibroblast growth factor-2-treated mesenchymal stem cells with improved chondrogenic differentiation potential. Stem Cell Dev. 16, 965–978 (2007).

    Article  CAS  Google Scholar 

  84. Delco, M. L. et al. Integrin α10β1-selected mesenchymal stem cells mitigate the progression of osteoarthritis in an equine talar impact model. Am. J. Sports Med. 48, 612–623 (2020).

    Article  PubMed  Google Scholar 

  85. Hirose, N. et al. Protective effects of cilengitide on inflammation in chondrocytes under excessive mechanical stress. Cell Biol. Int. 44, 966–974 (2020).

    Article  CAS  PubMed  Google Scholar 

  86. Chao, P. H., West, A. C. & Hung, C. T. Chondrocyte intracellular calcium, cytoskeletal organization, and gene expression responses to dynamic osmotic loading. Am. J. Physiol. Cell Physiol. 291, 718–725 (2006).

    Article  Google Scholar 

  87. Erickson, G. R., Northrup, D. L. & Guilak, F. Hypo-osmotic stress induces calcium-dependent actin reorganization in articular chondrocytes. Osteoarthritis Cartilage 11, 187–197 (2003).

    Article  CAS  PubMed  Google Scholar 

  88. Grodzinsky, A. J., Levenston, M. E., Jin, M. & Frank, E. H. Cartilage tissue remodeling in response to mechanical forces. Annu. Rev. Biomed. Eng. 2, 691–713 (2000).

    Article  CAS  PubMed  Google Scholar 

  89. Guilak, F. Compression-induced changes in the shape and volume of the chondrocyte nucleus. J. Biomech. 28, 1529–1541 (1995).

    Article  CAS  PubMed  Google Scholar 

  90. Blain, E. J., Mason, D. J. & Duance, V. C. The effect of thymosin β4 on articular cartilage chondrocyte matrix metalloproteinase expression. Biochem. Soc. Trans. 30, 879–882 (2002).

    Article  CAS  PubMed  Google Scholar 

  91. Fioravanti, A., Nerucci, F., Annefeld, M., Collodel, G. & Marcolongo, R. Morphological and cytoskeletal aspects of cultivated normal and osteoarthritic human articular chondrocytes after cyclical pressure: a pilot study. Clin. Exp. Rheumatol. 21, 739–746 (2003).

    CAS  PubMed  Google Scholar 

  92. Fioravanti, A., Benetti, D., Coppola, G. & Collodel, G. Effect of continuous high hydrostatic pressure on the morphology and cytoskeleton of normal and osteoarthritic human chondrocytes cultivated in alginate gels. Clin. Exp. Rheumatol. 23, 847–853 (2005).

    CAS  PubMed  Google Scholar 

  93. Isermann, P. & Lammerding, J. Nuclear mechanics and mechanotransduction in health and disease. Curr. Biol. 23, R1113–R1121 (2013).

    Article  CAS  PubMed  Google Scholar 

  94. Khilan, A. A., Al-Maslamani, N. A. & Horn, H. F. Cell stretchers and the LINC complex in mechanotransduction. Arch. Biochem. Biophys. 702, 108829 (2021).

    Article  CAS  PubMed  Google Scholar 

  95. Lee, D. A. et al. Chondrocyte deformation within compressed agarose constructs at the cellular and sub-cellular levels. J. Biomech. 33, 81–95 (2000).

    Article  CAS  PubMed  Google Scholar 

  96. Irianto, J. et al. Osmotic challenge drives rapid and reversible chromatin condensation in chondrocytes. Biophys. J. 104, 759–769 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Hopewell, B. & Urban, J. P. Adaptation of articular chondrocytes to changes in osmolality. Biorheology 40, 73–77 (2003).

    CAS  PubMed  Google Scholar 

  98. Hung, C. T. et al. Disparate aggrecan gene expression in chondrocytes subjected to hypotonic and hypertonic loading in 2D and 3D culture. Biorheology 40, 61–72 (2003).

    CAS  PubMed  Google Scholar 

  99. Killaars, A. R., Walker, C. J. & Anseth, K. S. Nuclear mechanosensing controls MSC osteogenic potential through HDAC epigenetic remodeling. Proc. Natl Acad. Sci. USA 117, 21258 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Elosegui-Artola, A. et al. Force triggers YAP nuclear entry by regulating transport across nuclear pores. Cell 171, 1397–1410 (2017).

    Article  CAS  PubMed  Google Scholar 

  101. Delco, M. L. & Bonassar, L. J. Targeting calcium-related mechanotransduction in early OA. Nat. Rev. Rheumatol. 17, 445–446 (2021).

    Article  CAS  PubMed  Google Scholar 

  102. O’Conor, C. J., Leddy, H. A., Benefield, H. C., Liedtke, W. B. & Guilak, F. TRPV4-mediated mechanotransduction regulates the metabolic response of chondrocytes to dynamic loading. Proc. Natl Acad. Sci. USA 111, 1316–1321 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  103. Phan, M. N. et al. Functional characterization of TRPV4 as an osmotically sensitive ion channel in porcine articular chondrocytes. Arthritis Rheum. 60, 3028–3037 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Clark, A. L., Votta, B. J., Kumar, S., Liedtke, W. & Guilak, F. Chondroprotective role of the osmotically sensitive ion channel transient receptor potential vanilloid 4: age- and sex-dependent progression of osteoarthritis in Trpv4-deficient mice. Arthritis Rheum. 62, 2973–2983 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. O’Conor, C. J. et al. Cartilage-specific knockout of the mechanosensory ion channel TRPV4 decreases age-related osteoarthritis. Sci. Rep. 6, 29053 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  106. Drexler, S. K., Wann, A. K. T. & Vincent, T. L. Are cellular mechanosensors potential therapeutic targets in osteoarthritis. Int. J. Clin. Rheumatol. 9, 155–167 (2014).

    Article  CAS  Google Scholar 

  107. Lee, W., Guilak, F. & Liedtke, W. Role of Piezo channels in joint health and injury. Curr. Top. Membr. 79, 263–273 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Sun, Y. et al. Mechanism of abnormal chondrocyte proliferation induced by Piezo1-siRNA exposed to mechanical stretch. BioMed. Res. Int. 2020, 8538463 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  109. Lee, W. et al. Synergy between Piezo1 and Piezo2 channels confers high-strain mechanosensitivity to articular cartilage. Proc. Natl Acad. Sci. USA 111, E5114–E5122 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Gnanasambandam, R. et al. GsMTx4: mechanism of inhibiting mechanosensitive ion channels. Biophys. J. 112, 31–45 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Suchyna, T. M. Piezo channels and GsMTx4: two milestones in our understanding of excitatory mechanosensitive channels and their role in pathology. Prog. Biophys. Mol. Biol. 130, 244–253 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Xiao, W. F., Li, Y. S., Deng, A., Yang, Y. T. & He, M. Functional role of hedgehog pathway in osteoarthritis. Cell Biochem. Funct. 38, 122–129 (2020).

    Article  CAS  PubMed  Google Scholar 

  113. McGlashan, S. R., Cluett, E. C., Jensen, C. G. & Poole, C. A. Primary cilia in osteoarthritic chondrocytes: from chondrons to clusters. Dev. Dyn. 237, 2013–2020 (2008).

    Article  CAS  PubMed  Google Scholar 

  114. McGlashan, S. R., Jensen, C. G. & Poole, C. A. Localization of extracellular matrix receptors on the chondrocyte primary cilium. J. Histochem. Cytochem. 54, 1005–1014 (2006).

    Article  CAS  PubMed  Google Scholar 

  115. Chang, C. F., Ramaswamy, G. & Serra, R. Depletion of primary cilia in articular chondrocytes results in reduced Gli3 repressor to activator ratio, increased Hedgehog signaling, and symptoms of early osteoarthritis. Osteoarthritis Cartilage 20, 152–161 (2012).

    Article  PubMed  Google Scholar 

  116. Irianto, J., Ramaswamy, G., Serra, R. & Knight, M. M. Depletion of chondrocyte primary cilia reduces the compressive modulus of articular cartilage. J. Biomech. 47, 579–582 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  117. Wann, A. K. T. et al. Primary cilia mediate mechanotransduction through control of ATP-induced Ca2+ signaling in compressed chondrocytes. FASEB J. 26, 1663–1671 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Shao, Y. Y., Wang, L., Welter, J. F. & Ballock, R. T. Primary cilia modulate Ihh signal transduction in response to hydrostatic loading of growth plate chondrocytes. Bone 50, 79–84 (2012).

    Article  CAS  PubMed  Google Scholar 

  119. Pingguan‐Murphy, B., El‐Azzeh, M., Bader, D. & Knight, M. Cyclic compression of chondrocytes modulates a purinergic calcium signalling pathway in a strain rate‐and frequency‐dependent manner. J. Cell Physiol. 209, 389–397 (2006).

    Article  PubMed  Google Scholar 

  120. Zhang, J. et al. Connexin43 hemichannels mediate small molecule exchange between chondrocytes and matrix in biomechanically-stimulated temporomandibular joint cartilage. Osteoarthritis Cartilage 22, 822–830 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Garcia, M. & Knight, M. M. Cyclic loading opens hemichannels to release ATP as part of a chondrocyte mechanotransduction pathway. J. Orthop. Res. 28, 510–515 (2010).

    CAS  PubMed  Google Scholar 

  122. Chowdhury, T. & Knight, M. Purinergic pathway suppresses the release of NO and stimulates proteoglycan synthesis in chondrocyte/agarose constructs subjected to dynamic compression. J. Cell Physiol. 209, 845–853 (2006).

    Article  CAS  PubMed  Google Scholar 

  123. Huang, C., Holfeld, J., Schaden, W., Orgill, D. & Ogawa, R. Mechanotherapy: revisiting physical therapy and recruiting mechanobiology for a new era in medicine. Trends Mol. Med. 19, 555–564 (2013).

    Article  PubMed  Google Scholar 

  124. Thompson, W. R., Scott, A., Loghmani, M. T., Ward, S. R. & Warden, S. J. Understanding mechanobiology: physical therapists as a force in mechanotherapy and musculoskeletal regenerative rehabilitation. Phys. Ther. 96, 560–569 (2016).

    Article  PubMed  Google Scholar 

  125. Dell’Accio, F., De Bari, C., Eltawil, N. M., Vanhummelen, P. & Pitzalis, C. Identification of the molecular response of articular cartilage to injury, by microarray screening: Wnt-16 expression and signaling after injury and in osteoarthritis. Arthritis Rheum. 58, 1410–1421 (2008).

    Article  PubMed  Google Scholar 

  126. Loeser, R. F., Erickson, E. A. & Long, D. L. Mitogen-activated protein kinases as therapeutic targets in osteoarthritis. Curr. Opin. Rheumatol. 20, 581–586 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Fanning, P. J. et al. Mechanical regulation of mitogen-activated protein kinase signaling in articular cartilage. J. Biol. Chem. 278, 50940–50948 (2003).

    Article  CAS  PubMed  Google Scholar 

  128. Forsyth, C. B., Pulai, J. & Loeser, R. F. Fibronectin fragments and blocking antibodies to α2β1 and α5β1 integrins stimulate mitogen‐activated protein kinase signaling and increase collagenase 3 (matrix metalloproteinase 13) production by human articular chondrocytes. Arthritis Rheum. 46, 2368–2376 (2002).

    Article  CAS  PubMed  Google Scholar 

  129. Im, H.-J. et al. Inhibitory effects of insulin-like growth factor-1 and osteogenic protein-1 on fibronectin fragment- and interleukin-1β-stimulated matrix metalloproteinase-13 expression in human chondrocytes. J. Biol. Chem. 278, 25386–25394 (2003).

    Article  CAS  PubMed  Google Scholar 

  130. Loeser, R. F., Forsyth, C. B., Samarel, A. M. & Im, H.-J. Fibronectin fragment activation of proline-rich tyrosine kinase PYK2 mediates integrin signals regulating collagenase-3 expression by human chondrocytes through a protein kinase C-dependent pathway. J. Biol. Chem. 278, 24577–24585 (2003).

    Article  CAS  PubMed  Google Scholar 

  131. Pulai, J. I. et al. NF-κB mediates the stimulation of cytokine and chemokine expression by human articular chondrocytes in response to fibronectin fragments. J. Immunol. 174, 5781–5788 (2005).

    Article  CAS  PubMed  Google Scholar 

  132. Del Carlo, M., Schwartz, D., Erickson, E. A. & Loeser, R. F. Endogenous production of reactive oxygen species is required for stimulation of human articular chondrocyte matrix metalloproteinase production by fibronectin fragments. Free. Radic. Biol. Med. 42, 1350–1358 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  133. Long, D. L., Willey, J. S. & Loeser, R. F. Rac1 is required for matrix metalloproteinase 13 production by chondrocytes in response to fibronectin fragments. Arthritis Rheum. 65, 1561–1568 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Gemba, T., Valbracht, J., Alsalameh, S. & Lotz, M. Focal adhesion kinase and mitogen-activated protein kinases are involved in chondrocyte activation by the 29-kDa amino-terminal fibronectin fragment. J. Biol. Chem. 277, 907–911 (2002).

    Article  CAS  PubMed  Google Scholar 

  135. Ding, L., Guo, D. & Homandberg, G. The cartilage chondrolytic mechanism of fibronectin fragments involves MAP kinases: comparison of three fragments and native fibronectin. Osteoarthritis Cartilage 16, 1253–1262 (2008).

    Article  CAS  PubMed  Google Scholar 

  136. Ding, L., Guo, D. & Homandberg, G. Fibronectin fragments mediate matrix metalloproteinase upregulation and cartilage damage through proline rich tyrosine kinase 2, c-src, NF-κB and protein kinase Cδ. Osteoarthritis Cartilage 17, 1385–1392 (2009).

    Article  CAS  PubMed  Google Scholar 

  137. Fitzgerald, J. B. et al. Shear- and compression-induced chondrocyte transcription requires MAPK activation in cartilage explants. J. Biol. Chem. 283, 6735–6743 (2008).

    Article  CAS  PubMed  Google Scholar 

  138. Zhang, J., Shen, B. & Lin, A. Novel strategies for inhibition of the p38 MAPK pathway. Trends Pharmacol. Sci. 28, 286–295 (2007).

    Article  PubMed  Google Scholar 

  139. González-Vázquez, A. et al. Accelerating bone healing in vivo by harnessing the age-altered activation of c-Jun N-terminal kinase 3. Biomaterials 268, 120540 (2021).

    Article  PubMed  Google Scholar 

  140. Agarwal, S. et al. A central role for the nuclear factor-κB pathway in anti-inflammatory and proinflammatory actions of mechanical strain. FASEB J. 17, 899–901 (2003).

    Article  CAS  PubMed  Google Scholar 

  141. Yang, Y. et al. Mechanical stress protects against osteoarthritis via regulation of the AMPK/NF-κB signaling pathway. J. Cell Physiol. 234, 9156–9167 (2019).

    Article  CAS  PubMed  Google Scholar 

  142. Vincent, T. L. Mechanoflammation in osteoarthritis pathogenesis. Semin. Arthritis Rheum. 49, S36–S38 (2019).

    Article  PubMed  Google Scholar 

  143. Ismail, H. M., Didangelos, A., Vincent, T. L. & Saklatvala, J. Rapid activation of transforming growth factor β-activated kinase 1 in chondrocytes by phosphorylation and K(63)-linked polyubiquitination upon injury to animal articular cartilage. Arthritis Rheumatol. 69, 565–575 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Lee, W. et al. Inflammatory signaling sensitizes Piezo1 mechanotransduction in articular chondrocytes as a pathogenic feed-forward mechanism in osteoarthritis. Proc. Natl Acad. Sci. USA 118, e2001611118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Nam, S. et al. Cell cycle progression in confining microenvironments is regulated by a growth-responsive TRPV4-PI3K/Akt-p27(Kip1) signaling axis. Sci. Adv. 5, eaaw6171 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Lee, H. P., Gu, L., Mooney, D. J., Levenston, M. E. & Chaudhuri, O. Mechanical confinement regulates cartilage matrix formation by chondrocytes. Nat. Mater. 16, 1243–1251 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Miller, J. R. The Wnts. Genome Biol. 3, reviews3001.1 (2001).

    Article  Google Scholar 

  148. Blom, A. B. et al. Involvement of the Wnt signaling pathway in experimental and human osteoarthritis: prominent role of Wnt‐induced signaling protein 1. Arthritis Rheum. 60, 501–512 (2009).

    Article  CAS  PubMed  Google Scholar 

  149. De Santis, M. et al. The role of Wnt pathway in the pathogenesis of OA and its potential therapeutic implications in the field of regenerative medicine. BioMed. Res. Int. 2018, 7402947 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  150. Dell’Accio, F. et al. Activation of WNT and BMP signaling in adult human articular cartilage following mechanical injury. Arthritis Res. Ther. 8, R139 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  151. Bougault, C. et al. Protective role of frizzled-related protein B on matrix metalloproteinase induction in mouse chondrocytes. Arthritis Res. Ther. 16, R137 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  152. Nalesso, G. et al. WNT16 antagonises excessive canonical WNT activation and protects cartilage in osteoarthritis. Ann. Rheum. Dis. 76, 218–226 (2017).

    Article  CAS  PubMed  Google Scholar 

  153. Wang, Y., Fan, X., Xing, L. & Tian, F. Wnt signaling: a promising target for osteoarthritis therapy. Cell Commun. Signal. 17, 97 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  154. Lories, R. J. & Monteagudo, S. Review article: is Wnt signaling an attractive target for the treatment of osteoarthritis? Rheumatol. Ther. 7, 259–270 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  155. Monteagudo, S. & Lories, R. J. Cushioning the cartilage: a canonical Wnt restricting matter. Nat. Rev. Rheumatol. 13, 670–681 (2017).

    Article  CAS  PubMed  Google Scholar 

  156. Deshmukh, V. et al. A small-molecule inhibitor of the Wnt pathway (SM04690) as a potential disease modifying agent for the treatment of osteoarthritis of the knee. Osteoarthritis Cartilage 26, 18–27 (2018).

    Article  CAS  PubMed  Google Scholar 

  157. Yazici, Y. et al. A phase 2b randomized trial of lorecivivint, a novel intra-articular CLK2/DYRK1A inhibitor and Wnt pathway modulator for knee osteoarthritis. Osteoarthritis Cartilage 29, 654–666 (2021).

    Article  CAS  PubMed  Google Scholar 

  158. Deshmukh, V. et al. Modulation of the Wnt pathway through inhibition of CLK2 and DYRK1A by lorecivivint as a novel, potentially disease-modifying approach for knee osteoarthritis treatment. Osteoarthritis Cartilage 27, 1347–1360 (2019).

    Article  CAS  PubMed  Google Scholar 

  159. Monteagudo, S. et al. DOT1L safeguards cartilage homeostasis and protects against osteoarthritis. Nat. Commun. 8, 15889 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Cornelis, F. M. F. et al. Increased susceptibility to develop spontaneous and post-traumatic osteoarthritis in Dot1l-deficient mice. Osteoarthritis Cartilage 27, 513–525 (2019).

    Article  CAS  PubMed  Google Scholar 

  161. Castaño Betancourt, M. C. et al. Genome-wide association and functional studies identify the DOT1L gene to be involved in cartilage thickness and hip osteoarthritis. Proc. Natl Acad. Sci. USA 109, 8218–8223 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  162. Deng, Y. et al. Yap1 regulates multiple steps of chondrocyte differentiation during skeletal development and bone repair. Cell Rep. 14, 2224–2237 (2016).

    Article  CAS  PubMed  Google Scholar 

  163. Gumbiner, B. M. & Kim, N.-G. The Hippo-YAP signaling pathway and contact inhibition of growth. J. Cell Sci. 127, 709–717 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Dupont, S. et al. Role of YAP/TAZ in mechanotransduction. Nature 474, 179–183 (2011).

    Article  CAS  PubMed  Google Scholar 

  165. Baker, B. M. & Chen, C. S. Deconstructing the third dimension–how 3D culture microenvironments alter cellular cues. J. Cell Sci. 125, 3015–3024 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  166. Caliari, S. R., Vega, S. L., Kwon, M., Soulas, E. M. & Burdick, J. A. Dimensionality and spreading influence MSC YAP/TAZ signaling in hydrogel environments. Biomaterials 103, 314–323 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Karystinou, A. et al. Yes-associated protein (YAP) is a negative regulator of chondrogenesis in mesenchymal stem cells. Arthritis Res. Ther. 17, 147 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  168. Mobasheri, A. et al. The role of metabolism in the pathogenesis of osteoarthritis. Nat. Rev. Rheumatol. 13, 302–311 (2017).

    Article  CAS  PubMed  Google Scholar 

  169. Salinas, D., Mumey, B. M. & June, R. K. Physiological dynamic compression regulates central energy metabolism in primary human chondrocytes. Biomech. Model. Mechanobiol. 18, 69–77 (2019).

    Article  PubMed  Google Scholar 

  170. Lehtinen, M. K. et al. A conserved MST-FOXO signaling pathway mediates oxidative-stress responses and extends life span. Cell 125, 987–1001 (2006).

    Article  CAS  PubMed  Google Scholar 

  171. Niehoff, A. et al. Dynamic and static mechanical compression affects Akt phosphorylation in porcine patellofemoral joint cartilage. J. Orthop. Res. 26, 616–623 (2008).

    Article  CAS  PubMed  Google Scholar 

  172. Holledge, M. M., Millward-Sadler, S. J., Nuki, G. & Salter, D. M. Mechanical regulation of proteoglycan synthesis in normal and osteoarthritic human articular chondrocytes–roles for α5 and αVβ5 integrins. Biorheology 45, 275–288 (2008).

    Article  PubMed  Google Scholar 

  173. Delco, M. L., Bonnevie, E. D., Bonassar, L. J. & Fortier, L. A. Mitochondrial dysfunction is an acute response of articular chondrocytes to mechanical injury. J. Orthop. Res. 36, 739–750 (2018).

    CAS  PubMed  Google Scholar 

  174. Waller, K. A., Zhang, L. X. & Jay, G. D. Friction-induced mitochondrial dysregulation contributes to joint deterioration in Prg4 knockout mice. Int. J. Mol. Sci. 18, 1252 (2017).

    Article  PubMed Central  Google Scholar 

  175. Bartell, L. R. et al. Mitoprotective therapy prevents rapid, strain-dependent mitochondrial dysfunction after articular cartilage injury. J. Orthop. Res. 38, 1257–1267 (2020).

    Article  CAS  PubMed  Google Scholar 

  176. Jutila, A. A. et al. Candidate mediators of chondrocyte mechanotransduction via targeted and untargeted metabolomic measurements. Arch. Biochem. Biophys. 545, 116–123 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Zignego, D. L., Jutila, A. A., Gelbke, M. K., Gannon, D. M. & June, R. K. The mechanical microenvironment of high concentration agarose for applying deformation to primary chondrocytes. J. Biomech. 47, 2143–2148 (2014).

    Article  PubMed  Google Scholar 

  178. Hodgkinson, T. et al. The use of nanovibration to discover specific and potent bioactive metabolites that stimulate osteogenic differentiation in mesenchymal stem cells. Sci. Adv. 7, eabb7921 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Bonnevie, E. D. et al. Microscale frictional strains determine chondrocyte fate in loaded cartilage. J. Biomech. 74, 72–78 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  180. Irwin, R. M. et al. Distinct tribological endotypes of pathological human synovial fluid reveal characteristic biomarkers and variation in efficacy of viscosupplementation at reducing local strains in articular cartilage. Osteoarthritis Cartilage 28, 492–501 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Xie, R. et al. Biomimetic cartilage-lubricating polymers regenerate cartilage in rats with early osteoarthritis. Nat. Biomed. Eng. 5, 1189–1201 (2021).

    Article  PubMed  Google Scholar 

  182. Grither, W. R. & Longmore, G. D. Inhibition of tumor-microenvironment interaction and tumor invasion by small-molecule allosteric inhibitor of DDR2 extracellular domain. Proc. Natl Acad. Sci. USA 115, E7786–E7794 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Kumar, A., Choudhury, M. D., Ghosh, P. & Palit, P. Discoidin domain receptor 2: an emerging pharmacological drug target for prospective therapy against osteoarthritis. Pharmacol. Rep. 71, 399–408 (2019).

    Article  CAS  PubMed  Google Scholar 

  184. Occhetta, P. et al. Hyperphysiological compression of articular cartilage induces an osteoarthritic phenotype in a cartilage-on-a-chip model. Nat. Biomed. Eng. 3, 545–557 (2019).

    Article  CAS  PubMed  Google Scholar 

  185. Lee, J. et al. Combinatorial screening of biochemical and physical signals for phenotypic regulation of stem cell-based cartilage tissue engineering. Sci. Adv. 6, eaaz5913 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Wang, J., Lü, D., Mao, D. & Long, M. Mechanomics: an emerging field between biology and biomechanics. Protein Cell 5, 518–531 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  187. Gabriel, S. E., Crowson, C. S. & O’Fallon, W. M. Comorbidity in arthritis. J. Rheumatol. 26, 2475–2479 (1999).

    CAS  PubMed  Google Scholar 

  188. Shi, S., Man, Z., Li, W., Sun, S. & Zhang, W. Silencing of Wnt5a prevents interleukin-1β-induced collagen type II degradation in rat chondrocytes. Exp. Ther. Med. 12, 3161–3166 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Yan, H. et al. Suppression of NF-κB activity via nanoparticle-based siRNA delivery alters early cartilage responses to injury. Proc. Natl Acad. Sci. USA 113, E6199–E6208 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Rai, M. F. et al. Applications of RNA interference in the treatment of arthritis. Transl. Res. 214, 1–16 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Cheleschi, S. et al. Hydrostatic pressure regulates microRNA expression levels in osteoarthritic chondrocyte cultures via the Wnt/β-catenin pathway. Int. J. Mol. Sci. 18, 133 (2017).

    Article  PubMed Central  Google Scholar 

  192. De Palma, A. et al. Hydrostatic pressure as epigenetic modulator in chondrocyte cultures: a study on miRNA-155, miRNA-181a and miRNA-223 expression levels. J. Biomech. 66, 165–169 (2018).

    Article  PubMed  Google Scholar 

  193. Yang, X. et al. Mechanical and IL-1β responsive miR-365 contributes to osteoarthritis development by targeting histone deacetylase 4. Int. J. Mol. Sci. 17, 436 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  194. Stadnik, P. S. et al. Regulation of microRNA-221, -222, -21 and -27 in articular cartilage subjected to abnormal compressive forces. J. Physiol. 599, 143–155 (2021).

    Article  CAS  PubMed  Google Scholar 

  195. Dunn, W., DuRaine, G. & Reddi, A. H. Profiling microRNA expression in bovine articular cartilage and implications for mechanotransduction. Arthritis Rheum. 60, 2333–2339 (2009).

    Article  PubMed  Google Scholar 

  196. Iliopoulos, D., Malizos, K. N., Oikonomou, P. & Tsezou, A. Integrative microRNA and proteomic approaches identify novel osteoarthritis genes and their collaborative metabolic and inflammatory networks. PLoS ONE 3, e3740 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  197. Song, J. et al. MicroRNA-222 regulates MMP-13 via targeting HDAC-4 during osteoarthritis pathogenesis. BBA Clin. 3, 79–89 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  198. Hecht, N., Johnstone, B., Angele, P., Walker, T. & Richter, W. Mechanosensitive MiRs regulated by anabolic and catabolic loading of human cartilage. Osteoarthritis Cartilage 27, 1208–1218 (2019).

    Article  CAS  PubMed  Google Scholar 

  199. Lolli, A., Colella, F., De Bari, C. & van Osch, G. J. V. M. Targeting anti-chondrogenic factors for the stimulation of chondrogenesis: a new paradigm in cartilage repair. J. Orthop. Res. 37, 12–22 (2019).

    Article  PubMed  Google Scholar 

  200. Mohanraj, B. et al. Mechanically activated microcapsules for “on-demand” drug delivery in dynamically loaded musculoskeletal tissues. Adv. Funct. Mater. 29, 1807909 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  201. Cambré, I. et al. Mechanical strain determines the site-specific localization of inflammation and tissue damage in arthritis. Nat. Commun. 9, 4613 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  202. Lin, X., Bai, Y., Zhou, H. & Yang, L. Mechano-active biomaterials for tissue repair and regeneration. J. Mater. Sci. Technol. 59, 227–233 (2020).

    Article  Google Scholar 

  203. Zhang, Y., Yu, J., Bomba, H. N., Zhu, Y. & Gu, Z. Mechanical force-triggered drug delivery. Chem. Rev. 116, 12536–12563 (2016).

    Article  CAS  PubMed  Google Scholar 

  204. Xiao, L. et al. Hyaluronic acid-based hydrogels containing covalently integrated drug depots: implication for controlling inflammation in mechanically stressed tissues. Biomacromolecules 14, 3808–3819 (2013).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

T.H. is in receipt of a Marie Skłodowska-Curie Individual Fellowship from the European Commission through the Horizon 2020 project ChondroCONNECT (project ID: 894837). The work of D.C.K. is funded by Science Foundation Ireland under the European Regional Development Fund CÚRAM (13/RC/2073) and the Irish Research Council Government of Ireland Postgraduate Programme (GOIPG/2018/371). C.M.C. recognizes funding from the Irish Health Research Board (ILP-POR-2019-023 and ILP-POR-2017-032). F.J.O'B. acknowledges funding from the European Commission Horizon 2020 research and innovation programme under the European Research Council Advanced Grant (agreement ID: 788753, ReCaP) and from the Irish Health Research Board (ILP-POR-2017-032).

Author information

Authors and Affiliations

Authors

Contributions

T.H. and D.C.K. wrote the manuscript. All authors researched data for the article, made a substantial contribution to discussion of content and reviewed or edited the manuscript before submission.

Corresponding author

Correspondence to Fergal J. O’Brien.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Rheumatology thanks L. Bonassar, F. Guilak and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Shear

A force or stress that is applied coplanar with the cross-section of the tissue.

Stretch

Deformation resulting in the final length of a material being greater than the initial length.

Pressure

A force applied acting inwards normal to any surface divided by the area of the surface.

Strain

The deformation of a material from stress.

F-actin rarefication

A process resulting in a reduction in F-actin abundance within a cell.

Tribology

The science and engineering of interacting surfaces (wear, friction and lubrication) and how they behave in relative motion.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hodgkinson, T., Kelly, D.C., Curtin, C.M. et al. Mechanosignalling in cartilage: an emerging target for the treatment of osteoarthritis. Nat Rev Rheumatol 18, 67–84 (2022). https://doi.org/10.1038/s41584-021-00724-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41584-021-00724-w

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research