Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Targeting interferon-γ in hyperinflammation: opportunities and challenges

Abstract

Interferon-γ (IFNγ) is a pleiotropic cytokine with multiple effects on the inflammatory response and on innate and adaptive immunity. Overproduction of IFNγ underlies several, potentially fatal, hyperinflammatory or immune-mediated diseases. Several data from animal models and/or from translational research in patients point to a role of IFNγ in hyperinflammatory diseases, such as primary haemophagocytic lymphohistiocytosis, various forms of secondary haemophagocytic lymphohistiocytosis, including macrophage activation syndrome, and cytokine release syndrome, all of which are often managed by rheumatologists or in consultation with rheumatologists. Given the effects of IFNγ on B cells and T follicular helper cells, a role for IFNγ in systemic lupus erythematosus pathogenesis is emerging. To improve our understanding of the role of IFNγ in human disease, IFNγ-related biomarkers that are relevant for the management of hyperinflammatory diseases are progressively being identified and studied, especially because circulating levels of IFNγ do not always reflect its overproduction in tissue. These biomarkers include STAT1 (specifically the phosphorylated form), neopterin and the chemokine CXCL9. IFNγ-neutralizing agents have shown efficacy in the treatment of primary haemophagocytic lymphohistiocytosis in clinical trials and initial promising results have been obtained in various forms of secondary haemophagocytic lymphohistiocytosis, including macrophage activation syndrome. In clinical practice, there is a growing body of evidence supporting the usefulness of circulating CXCL9 levels as a biomarker reflecting IFNγ production.

Key points

  • Hyperinflammation is characterized by excessive systemic inflammation resulting from an exaggerated immune response to physiological stimuli, which eventually leads to tissue damage.

  • Haemaphagocytic lymphohistiocytoses (HLHs) are hyperinflammatory diseases and are considered canonical cytokine release syndromes.

  • Studies of interferon-γ (IFNγ) biology have shed light on the role of this immune modulator in various hyperinflammatory diseases, such as the different forms of HLH, and also in other immune-mediated diseases.

  • IFNγ hyperproduction is a feature of the different forms of HLH, and IFNγ neutralization decreases disease severity and reverts lethality in mouse models of HLH.

  • As serum IFNγ levels do not always reflect IFNγ overproduction in tissue in patients, efforts are underway to identify biomarkers that are easily measurable in blood and reflect tissue IFNγ activity.

  • Therapeutic IFNγ neutralization shows promising results in early clinical trials in patients with various forms of HLH.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The IFNγ signalling pathway.
Fig. 2: Sources and roles of IFNγ in health and disease.

Similar content being viewed by others

References

  1. Kastner, D. L., Aksentijevich, I. & Goldbach-Mansky, R. Autoinflammatory disease reloaded: a clinical perspective. Cell 140, 784–790 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Martinez-Quiles, N. & Goldbach-Mansky, R. Updates on autoinflammatory diseases. Curr. Opin. Immunol. 55, 97–105 (2018).

    Article  CAS  PubMed  Google Scholar 

  3. Henderson, L. A. et al. On the alert for cytokine storm: Immunopathology in COVID-19. Arthritis Rheumatol. 72, 1059–1063 (2020).

    Article  CAS  PubMed  Google Scholar 

  4. Schoenborn, J. R. & Wilson, C. B. Regulation of interferon-gamma during innate and adaptive immune responses. Adv. Immunol. 96, 41–101 (2007).

    Article  CAS  PubMed  Google Scholar 

  5. Darwich, L. et al. Secretion of interferon-gamma by human macrophages demonstrated at the single-cell level after costimulation with interleukin (IL)-12 plus IL-18. Immunology 126, 386–393 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Zhu, J. et al. The transcription factor T-bet is induced by multiple pathways and prevents an endogenous Th2 cell program during Th1 cell responses. Immunity 37, 660–673 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Suarez-Ramirez, J. E., Tarrio, M. L., Kim, K., Demers, D. A. & Biron, C. A. CD8 T cells in innate immune responses: using STAT4-dependent but antigen-independent pathways to gamma interferon during viral infection. mBio 5, e01978-01914 (2014).

    Article  CAS  Google Scholar 

  8. Kannan, Y. et al. IκBζ augments IL-12- and IL-18-mediated IFN-γ production in human NK cells. Blood 117, 2855–2863 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Nakanishi, K. Unique action of interleukin-18 on T cells and other immune cells. Front. Immunol. 9, 763 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. de Weerd, N. A. & Nguyen, T. The interferons and their receptors — distribution and regulation. Immunol. Cell Biol. 90, 483–491 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Chistiakov, D. A., Myasoedova, V. A., Revin, V. V., Orekhov, A. N. & Bobryshev, Y. V. The impact of interferon-regulatory factors to macrophage differentiation and polarization into M1 and M2. Immunobiology 223, 101–111 (2018).

    Article  CAS  PubMed  Google Scholar 

  12. Martinez, F. O. & Gordon, S. The M1 and M2 paradigm of macrophage activation: time for reassessment. F1000Prime Rep. 6, 13 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Sica, A. & Mantovani, A. Macrophage plasticity and polarization: in vivo veritas. J. Clin. Invest. 122, 787–795 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Wu, C. et al. IFN-γ primes macrophage activation by increasing phosphatase and tensin homolog via downregulation of miR-3473b. J. Immunol. 193, 3036–3044 (2014).

    Article  CAS  PubMed  Google Scholar 

  15. Asano, M., Nakane, A. & Minagawa, T. Endogenous gamma interferon is essential in granuloma formation induced by glycolipid-containing mycolic acid in mice. Infect. Immun. 61, 2872–2878 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Jaczewska, J. et al. TNF-α and IFN-γ promote lymphocyte adhesion to endothelial junctional regions facilitating transendothelial migration. J. Leukoc. Biol. 95, 265–274 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Metzemaekers, M., Vanheule, V., Janssens, R., Struyf, S. & Proost, P. Overview of the mechanisms that may contribute to the non-redundant activities of interferon-inducible CXC chemokine receptor 3 ligands. Front. Immunol. 8, 1970 (2017).

    Article  PubMed  CAS  Google Scholar 

  18. Pearl, J. E., Saunders, B., Ehlers, S., Orme, I. M. & Cooper, A. M. Inflammation and lymphocyte activation during mycobacterial infection in the interferon-gamma-deficient mouse. Cell Immunol. 211, 43–50 (2001).

    Article  CAS  PubMed  Google Scholar 

  19. Swindle, E. J., Brown, J. M., Rådinger, M., DeLeo, F. R. & Metcalfe, D. D. Interferon-γ enhances both the anti-bacterial and the pro-inflammatory response of human mast cells to Staphylococcus aureus. Immunology 146, 470–485 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Lee, S. K. et al. Interferon-γ excess leads to pathogenic accumulation of follicular helper T cells and germinal centers. Immunity 37, 880–892 (2012).

    Article  CAS  PubMed  Google Scholar 

  21. Fang, D. et al. Transient T-bet expression functionally specifies a distinct T follicular helper subset. J. Exp. Med. 215, 2705–2714 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Jackson, S. W. et al. B cell IFN-γ receptor signaling promotes autoimmune germinal centers via cell-intrinsic induction of BCL-6. J. Exp. Med. 213, 733–750 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Peng, S. L., Szabo, S. J. & Glimcher, L. H. T-bet regulates IgG class switching and pathogenic autoantibody production. Proc. Natl Acad. Sci. USA 99, 5545–5550 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Canna, S. W. & Marsh, R. A. Pediatric hemophagocytic lymphohistiocytosis. Blood 135, 1332–1343 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Bhatt, N. S., Oshrine, B. & An Talano, J. Hemophagocytic lymphohistiocytosis in adults. Leuk. Lymphoma 60, 19–28 (2019).

    Article  PubMed  Google Scholar 

  26. Henter, J. I. et al. HLH-2004: diagnostic and therapeutic guidelines for hemophagocytic lymphohistiocytosis. Pediatr. Blood Cancer 48, 124–131 (2007).

    Article  PubMed  Google Scholar 

  27. Emile, J. F. et al. Revised classification of histiocytoses and neoplasms of the macrophage-dendritic cell lineages. Blood 127, 2672–2681 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Grom, A. A., Horne, A. & De Benedetti, F. Macrophage activation syndrome in the era of biologic therapy. Nat. Rev. Rheumatol. 12, 259–268 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Bracaglia, C., Prencipe, G. & De Benedetti, F. Macrophage activation syndrome: different mechanisms leading to a one clinical syndrome. Pediatr. Rheumatol. Online J. 15, 5 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Ravelli, A. et al. 2016 classification criteria for macrophage activation syndrome complicating systemic juvenile idiopathic arthritis: a European League Against Rheumatism/American College of Rheumatology/Paediatric Rheumatology International Trials Organisation Collaborative Initiative. Ann. Rheum. Dis. 75, 481–489 (2016).

    Article  CAS  PubMed  Google Scholar 

  31. Bergsten, E. et al. Confirmed efficacy of etoposide and dexamethasone in HLH treatment: long-term results of the cooperative HLH-2004 study. Blood 130, 2728–2738 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Henter, J. I. et al. Hypercytokinemia in familial hemophagocytic lymphohistiocytosis. Blood 78, 2918–2922 (1991).

    Article  CAS  PubMed  Google Scholar 

  33. Imashuku, S. et al. Biomarker and morphological characteristics of Epstein-Barr virus-related hemophagocytic lymphohistiocytosis. Med. Pediatr. Oncol. 31, 131–137 (1998).

    Article  CAS  PubMed  Google Scholar 

  34. Schneider, E. M. et al. Hemophagocytic lymphohistiocytosis is associated with deficiencies of cellular cytolysis but normal expression of transcripts relevant to killer-cell-induced apoptosis. Blood 100, 2891–2898 (2002).

    Article  CAS  PubMed  Google Scholar 

  35. Billiau, A. D., Roskams, T., Van Damme-Lombaerts, R., Matthys, P. & Wouters, C. Macrophage activation syndrome: characteristic findings on liver biopsy illustrating the key role of activated, IFN-gamma-producing lymphocytes and IL-6- and TNF-alpha-producing macrophages. Blood 105, 1648–1651 (2005).

    Article  CAS  PubMed  Google Scholar 

  36. Xu, X. J. et al. Diagnostic accuracy of a specific cytokine pattern in hemophagocytic lymphohistiocytosis in children. J. Pediatr. 160, 984–990.e1 (2012).

    Article  CAS  PubMed  Google Scholar 

  37. Prencipe, G. et al. The interferon-gamma pathway is selectively up-regulated in the liver of patients with secondary hemophagocytic lymphohistiocytosis. PLoS ONE 14, e0226043 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Yang, S. L. et al. Associations between inflammatory cytokines and organ damage in pediatric patients with hemophagocytic lymphohistiocytosis. Cytokine 85, 14–17 (2016).

    Article  CAS  PubMed  Google Scholar 

  39. Buatois, V. et al. Use of a mouse model to identify a blood biomarker for IFNγ activity in pediatric secondary hemophagocytic lymphohistiocytosis. Transl. Res. 180, 37–52.e2 (2017).

    Article  CAS  PubMed  Google Scholar 

  40. Bracaglia, C. et al. Elevated circulating levels of interferon-γ and interferon-γ-induced chemokines characterise patients with macrophage activation syndrome complicating systemic juvenile idiopathic arthritis. Ann. Rheum. Dis. 76, 166–172 (2017).

    Article  CAS  PubMed  Google Scholar 

  41. Jordan, M. B., Hildeman, D., Kappler, J. & Marrack, P. An animal model of hemophagocytic lymphohistiocytosis (HLH): CD8+ T cells and interferon gamma are essential for the disorder. Blood 104, 735–743 (2004).

    Article  CAS  PubMed  Google Scholar 

  42. Rood, J. E. et al. ST2 contributes to T-cell hyperactivation and fatal hemophagocytic lymphohistiocytosis in mice. Blood 127, 426–435 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Kögl, T. et al. Hemophagocytic lymphohistiocytosis in syntaxin-11-deficient mice: T-cell exhaustion limits fatal disease. Blood 121, 604–613 (2013).

    Article  PubMed  CAS  Google Scholar 

  44. Pachlopnik Schmid, J. et al. Neutralization of IFNγ defeats haemophagocytosis in LCMV-infected perforin- and Rab27a-deficient mice. EMBO Mol. Med. 1, 112–124 (2009).

    Article  PubMed  CAS  Google Scholar 

  45. Zoller, E. E. et al. Hemophagocytosis causes a consumptive anemia of inflammation. J. Exp. Med. 208, 1203–1214 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. van Dommelen, S. L. et al. Perforin and granzymes have distinct roles in defensive immunity and immunopathology. Immunity 25, 835–848 (2006).

    Article  PubMed  CAS  Google Scholar 

  47. Humblet-Baron, S. et al. IFN-γ and CD25 drive distinct pathologic features during hemophagocytic lymphohistiocytosis. J. Allergy Clin. Immunol. 143, 2215–2226.e7 (2019).

    Article  CAS  PubMed  Google Scholar 

  48. Burn, T. N. et al. Genetic deficiency of interferon-gamma reveals interferon-gamma-independent manifestations of murine hemophagocytic lymphohistiocytosis. Arthritis Rheumatol. 72, 335–347 (2020).

    Article  CAS  PubMed  Google Scholar 

  49. Tesi, B. et al. Hemophagocytic lymphohistiocytosis in 2 patients with underlying IFN-gamma receptor deficiency. J. Allergy Clin. Immunol. 135, 1638–1641 (2015).

    Article  PubMed  Google Scholar 

  50. Behrens, E. M. et al. Repeated TLR9 stimulation results in macrophage activation syndrome-like disease in mice. J. Clin. Invest. 121, 2264–2277 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Weaver, L. K., Chu, N. & Behrens, E. M. Brief report: interferon-γ-mediated immunopathology potentiated by toll-like receptor 9 activation in a murine model of macrophage activation syndrome. Arthritis Rheumatol. 71, 161–168 (2019).

    Article  CAS  PubMed  Google Scholar 

  52. Brisse, E. et al. Mouse cytomegalovirus infection in BALB/c mice resembles virus-associated secondary hemophagocytic lymphohistiocytosis and shows a pathogenesis distinct from primary hemophagocytic lymphohistiocytosis. J. Immunol. 196, 3124–3134 (2016).

    Article  CAS  PubMed  Google Scholar 

  53. Brisse, E. et al. Lytic viral replication and immunopathology in a cytomegalovirus-induced mouse model of secondary hemophagocytic lymphohistiocytosis. Virol. J. 14, 240 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. de Benedetti, F. et al. Correlation of serum interleukin-6 levels with joint involvement and thrombocytosis in systemic juvenile rheumatoid arthritis. Arthritis Rheum. 34, 1158–1163 (1991).

    Article  PubMed  Google Scholar 

  55. De Benedetti, F. et al. Randomized trial of tocilizumab in systemic juvenile idiopathic arthritis. N. Engl. J. Med. 367, 2385–2395 (2012).

    Article  PubMed  CAS  Google Scholar 

  56. Strippoli, R. et al. Amplification of the response to Toll-like receptor ligands by prolonged exposure to interleukin-6 in mice: implication for the pathogenesis of macrophage activation syndrome. Arthritis Rheum. 64, 1680–1688 (2012).

    Article  CAS  PubMed  Google Scholar 

  57. Prencipe, G. et al. Neutralization of IFN-γ reverts clinical and laboratory features in a mouse model of macrophage activation syndrome. J. Allergy Clin. Immunol. 141, 1439–1449 (2018).

    Article  CAS  PubMed  Google Scholar 

  58. Weiss, E. S. et al. Interleukin-18 diagnostically distinguishes and pathogenically promotes human and murine macrophage activation syndrome. Blood 131, 1442–1455 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Yasin, S. et al. IL-18 as a biomarker linking systemic juvenile idiopathic arthritis and macrophage activation syndrome. Rheumatology 59, 361–366 (2020).

    Article  CAS  PubMed  Google Scholar 

  60. Girard-Guyonvarc’h, C. et al. Unopposed IL-18 signaling leads to severe TLR9-induced macrophage activation syndrome in mice. Blood 131, 1430–1441 (2018).

    Article  PubMed  CAS  Google Scholar 

  61. Tsoukas, P. et al. Interleukin-18 and cytotoxic impairment are independent and synergistic causes of murine virus-induced hyperinflammation. Blood 136, 2162–2174 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Canna, S. W. et al. Proceedings from the 2nd next gen therapies for systemic juvenile idiopathic arthritis and macrophage activation syndrome symposium held on October 3–4, 2019. Pediatr. Rheumatol. Online J. 18, 53 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Schulert, G. S. et al. Systemic juvenile idiopathic arthritis-associated lung disease: characterization and risk factors. Arthritis Rheumatol. 71, 1943–1954 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Saper, V. E. et al. Emergent high fatality lung disease in systemic juvenile arthritis. Ann. Rheum. Dis. 78, 1722–1731 (2019).

    Article  CAS  PubMed  Google Scholar 

  65. Iriguchi, S. et al. T-cell-restricted T-bet overexpression induces aberrant hematopoiesis of myeloid cells and impairs function of macrophages in the lung. Blood 125, 370–382 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Gao, D. K. et al. IFN-γ is essential for alveolar macrophage driven pulmonary inflammation in macrophage activation syndrome. JCI Insight 6, 147593 (2021).

    Article  PubMed  Google Scholar 

  67. Neelapu, S. S. et al. Chimeric antigen receptor T-cell therapy — assessment and management of toxicities. Nat. Rev. Clin. Oncol. 15, 47–62 (2018).

    Article  CAS  PubMed  Google Scholar 

  68. Teachey, D. T. et al. Cytokine release syndrome after blinatumomab treatment related to abnormal macrophage activation and ameliorated with cytokine-directed therapy. Blood 121, 5154–5157 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Brady, J. L. et al. Preclinical screening for acute toxicity of therapeutic monoclonal antibodies in a hu-SCID model. Clin. Transl. Immunol. 3, e29 (2014).

    Article  CAS  Google Scholar 

  70. Oved, J. H., Barrett, D. M. & Teachey, D. T. Cellular therapy: immune-related complications. Immunol. Rev. 290, 114–126 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Teachey, D. T. et al. Identification of predictive biomarkers for cytokine release syndrome after chimeric antigen receptor T-cell therapy for acute lymphoblastic leukemia. Cancer Discov. 6, 664–679 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Wouters, C. H., Maes, A., Foley, K. P., Bertin, J. & Rose, C. D. Blau syndrome, the prototypic auto-inflammatory granulomatous disease. Pediatr. Rheumatol. Online J. 12, 33 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Takada, S. et al. Pluripotent stem cell models of Blau syndrome reveal an IFN-γ-dependent inflammatory response in macrophages. J. Allergy Clin. Immunol. 141, 339–349.e11 (2018).

    Article  CAS  PubMed  Google Scholar 

  74. Rosenzweig, H. L. et al. Nucleotide oligomerization domain-2 (NOD2)-induced uveitis: dependence on IFN-gamma. Invest. Ophthalmol. Vis. Sci. 50, 1739–1745 (2009).

    Article  PubMed  Google Scholar 

  75. Janssen, C. E. et al. Morphologic and immunohistochemical characterization of granulomas in the nucleotide oligomerization domain 2-related disorders Blau syndrome and Crohn disease. J. Allergy Clin. Immunol. 129, 1076–1084 (2012).

    Article  CAS  PubMed  Google Scholar 

  76. Sarens, I. L. et al. Blau syndrome-associated uveitis: preliminary results from an international prospective interventional case series. Am. J. Ophthalmol. 187, 158–166 (2018).

    Article  PubMed  Google Scholar 

  77. Seery, J. P. et al. A central role for alpha beta T cells in the pathogenesis of murine lupus. J. Immunol. 162, 7241–7248 (1999).

    CAS  PubMed  Google Scholar 

  78. Enghard, P., Langnickel, D. & Riemekasten, G. T cell cytokine imbalance towards production of IFN-gamma and IL-10 in NZB/W F1 lupus-prone mice is associated with autoantibody levels and nephritis. Scand. J. Rheumatol. 35, 209–216 (2006).

    Article  CAS  PubMed  Google Scholar 

  79. Jacob, C. O., van der Meide, P. H. & McDevitt, H. O. In vivo treatment of (NZB X NZW)F1 lupus-like nephritis with monoclonal antibody to gamma interferon. J. Exp. Med. 166, 798–803 (1987).

    Article  CAS  PubMed  Google Scholar 

  80. Ozmen, L. et al. Experimental therapy of systemic lupus erythematosus: the treatment of NZB/W mice with mouse soluble interferon-gamma receptor inhibits the onset of glomerulonephritis. Eur. J. Immunol. 25, 6–12 (1995).

    Article  CAS  PubMed  Google Scholar 

  81. Haas, C. & Ryffel, B. & Le Hir, M. IFN-γ receptor deletion prevents autoantibody production and glomerulonephritis in lupus-prone (NZB × NZW)F1 mice. J. Immunol. 160, 3713–3718 (1998).

    CAS  PubMed  Google Scholar 

  82. Balomenos, D., Rumold, R. & Theofilopoulos, A. N. Interferon-gamma is required for lupus-like disease and lymphoaccumulation in MRL-lpr mice. J. Clin. Invest. 101, 364–371 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Domeier, P. P. et al. IFN-γ receptor and STAT1 signaling in B cells are central to spontaneous germinal center formation and autoimmunity. J. Exp. Med. 213, 715–732 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Rana, A. et al. Gene expression of cytokines (TNF-α, IFN-γ), serum profiles of IL-17 and IL-23 in paediatric systemic lupus erythematosus. Lupus 21, 1105–1112 (2012).

    Article  CAS  PubMed  Google Scholar 

  85. Lyn-Cook, B. D. et al. Increased expression of Toll-like receptors (TLRs) 7 and 9 and other cytokines in systemic lupus erythematosus (SLE) patients: ethnic differences and potential new targets for therapeutic drugs. Mol. Immunol. 61, 38–43 (2014).

    Article  CAS  PubMed  Google Scholar 

  86. Kokic, V. et al. Relationship between vitamin D, IFN-γ, and E2 levels in systemic lupus erythematosus. Lupus 25, 282–288 (2016).

    Article  CAS  PubMed  Google Scholar 

  87. Munroe, M. E. et al. Altered type II interferon precedes autoantibody accrual and elevated type I interferon activity prior to systemic lupus erythematosus classification. Ann. Rheum. Dis. 75, 2014–2021 (2016).

    Article  CAS  PubMed  Google Scholar 

  88. Chiche, L., Jourde-Chiche, N., Pascual, V. & Chaussabel, D. Current perspectives on systems immunology approaches to rheumatic diseases. Arthritis Rheum. 65, 1407–1417 (2013).

    Article  CAS  PubMed  Google Scholar 

  89. Zhu, J., Huang, X. & Yang, Y. A critical role for type I IFN-dependent NK cell activation in innate immune elimination of adenoviral vectors in vivo. Mol. Ther. 16, 1300–1307 (2008).

    Article  CAS  PubMed  Google Scholar 

  90. Fava, A. et al. Integrated urine proteomics and renal single-cell genomics identify an IFN-γ response gradient in lupus nephritis. JCI Insight 5, e138345 (2020).

    Article  PubMed Central  Google Scholar 

  91. Morand, E. F. et al. Trial of anifrolumab in active systemic lupus erythematosus. N. Engl. J. Med. 382, 211–221 (2020).

    Article  CAS  PubMed  Google Scholar 

  92. Furie, R. A. et al. Type I interferon inhibitor anifrolumab in active systemic lupus erythematosus (TULIP-1): a randomised, controlled, phase 3 trial. Lancet Rheumatol. 1, e208–e219 (2019).

    Article  Google Scholar 

  93. Lortat-Jacob, H., Baltzer, F. & Grimaud, J. A. Heparin decreases the blood clearance of interferon-gamma and increases its activity by limiting the processing of its carboxyl-terminal sequence. J. Biol. Chem. 271, 16139–16143 (1996).

    Article  CAS  PubMed  Google Scholar 

  94. Rutenfranz, I. & Kirchner, H. Pharmacokinetics of recombinant murine interferon-gamma in mice. J. Interferon Res. 8, 573–580 (1988).

    Article  CAS  PubMed  Google Scholar 

  95. Pascarella, A. et al. Monocytes from patients with macrophage activation syndrome and secondary hemophagocytic lymphohistiocytosis are hyperresponsive to interferon gamma. Front. Immunol. 12, 801 (2021).

    Article  CAS  Google Scholar 

  96. Hu, X., Li, W. P., Meng, C. & Ivashkiv, L. B. Inhibition of IFN-γ signaling by glucocorticoids. J. Immunol. 170, 4833–4839 (2003).

    Article  CAS  PubMed  Google Scholar 

  97. Ibarra, M. F. et al. Serum neopterin levels as a diagnostic marker of hemophagocytic lymphohistiocytosis syndrome. Clin. Vaccin. Immunol. 18, 609–614 (2011).

    Article  CAS  Google Scholar 

  98. Wada, T. et al. Cytokine profiles in children with primary Epstein-Barr virus infection. Pediatr. Blood Cancer 60, E46–E48 (2013).

    Article  CAS  PubMed  Google Scholar 

  99. Shimizu, M. et al. Distinct cytokine profiles of systemic-onset juvenile idiopathic arthritis-associated macrophage activation syndrome with particular emphasis on the role of interleukin-18 in its pathogenesis. Rheumatology 49, 1645–1653 (2010).

    Article  CAS  PubMed  Google Scholar 

  100. Mizuta, M. et al. Comparison of serum cytokine profiles in macrophage activation syndrome complicating different background rheumatic diseases in children. Rheumatology https://doi.org/10.1093/rheumatology/keaa299 (2020).

    Article  PubMed  Google Scholar 

  101. de Matteis, A. et al. Traditional laboratory parameters and new biomarkers in macrophage activation syndrome and secondary hemophagocytic lymphohistiocytosis. Arthritis Rheumatol. 72 (suppl 4). https://acrabstracts.org/abstract/traditional-laboratory-parameters-and-new-biomarkers-in-macrophage-activation-syndrome-and-secondary-hemophagocytic-lymphohistiocytosis/ (2020).

  102. Lim, K. L., Jones, A. C., Brown, N. S. & Powell, R. J. Urine neopterin as a parameter of disease activity in patients with systemic lupus erythematosus: comparisons with serum sIL-2R and antibodies to dsDNA, erythrocyte sedimentation rate, and plasma C3, C4, and C3 degradation products. Ann. Rheum. Dis. 52, 429–435 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Whyte, M. P. et al. Unique variant of NOD2 pediatric granulomatous arthritis with severe 1,25-dihydroxyvitamin D-mediated hypercalcemia and generalized osteosclerosis. J. Bone Min. Res. 33, 2071–2080 (2018).

    Article  CAS  Google Scholar 

  104. Groom, J. R. & Luster, A. D. CXCR3 ligands: redundant, collaborative and antagonistic functions. Immunol. Cell Biol. 89, 207–215 (2011).

    Article  CAS  PubMed  Google Scholar 

  105. Mizuta, M., Shimizu, M., Inoue, N., Nakagishi, Y. & Yachie, A. Clinical significance of serum CXCL9 levels as a biomarker for systemic juvenile idiopathic arthritis associated macrophage activation syndrome. Cytokine 119, 182–187 (2019).

    Article  CAS  PubMed  Google Scholar 

  106. My, L. T. et al. Comprehensive analyses and characterization of haemophagocytic lymphohistiocytosis in Vietnamese children. Br. J. Haematol. 148, 301–310 (2010).

    Article  PubMed  Google Scholar 

  107. Takada, H. et al. Increased serum levels of interferon-gamma-inducible protein 10 and monokine induced by gamma interferon in patients with haemophagocytic lymphohistiocytosis. Clin. Exp. Immunol. 133, 448–453 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Han, J. H. et al. Elevated circulating levels of the interferon-γ-induced chemokines are associated with disease activity and cutaneous manifestations in adult-onset Still’s disease. Sci. Rep. 7, 46652 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  109. Takakura, M. et al. Comparison of serum biomarkers for the diagnosis of macrophage activation syndrome complicating systemic juvenile idiopathic arthritis. Clin. Immunol. 208, 108252 (2019).

    Article  CAS  PubMed  Google Scholar 

  110. Schulert, G. S. et al. Monocyte and bone marrow macrophage transcriptional phenotypes in systemic juvenile idiopathic arthritis reveal TRIM8 as a mediator of IFN-γ hyper-responsiveness and risk for macrophage activation syndrome. Ann. Rheum. Dis. 80, 617–625 (2021).

    Article  CAS  PubMed  Google Scholar 

  111. Carvalheiro, T. et al. Tolerogenic versus inflammatory activity of peripheral blood monocytes and dendritic cells subpopulations in systemic lupus erythematosus. Clin. Dev. Immunol. 2012, 934161 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  112. Ferreira, G. A., Teixeira, A. L. & Sato, E. I. Atorvastatin therapy reduces interferon-regulated chemokine CXCL9 plasma levels in patients with systemic lupus erythematosus. Lupus 19, 927–934 (2010).

    Article  CAS  PubMed  Google Scholar 

  113. Locatelli, F. et al. Emapalumab in children with primary hemophagocytic lymphohistiocytosis. N. Engl. J. Med. 382, 1811–1822 (2020).

    Article  PubMed  Google Scholar 

  114. Lounder, D. T., Bin, Q., de Min, C. & Jordan, M. B. Treatment of refractory hemophagocytic lymphohistiocytosis with emapalumab despite severe concurrent infections. Blood Adv. 3, 47–50 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Bracaglia, C. et al. IFNg neutralization in patients with NRLC4- and CDC42-associated autoinflammatory disease characterized by recurrent and severe HLH. Pediatr. Blood Cancer 67 (Suppl 1), e28077 (2019).

    Google Scholar 

  116. Lam, M. T. et al. A novel disorder involving dyshematopoiesis, inflammation, and HLH due to aberrant CDC42 function. J. Exp. Med. 216, 2778–2799 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. De Benedetti, F. et al. Emapalumab (anti-interferon-gamma monoclonal antibody) in patients with macrophage activation syndrome (MAS) complicating systemic juvenile idiopathic arthritis (sJIA). Ann. Rheum. Dis. 79, 180 (2020).

    Article  Google Scholar 

  118. Gabr, J. B. et al. Successful treatment of secondary macrophage activation syndrome with emapalumab in a patient with newly diagnosed adult-onset Still’s disease: case report and review of the literature. Ann. Transl. Med. 8, 887 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  119. Boedigheimer, M. J. et al. Safety, pharmacokinetics and pharmacodynamics of AMG 811, an anti-interferon-γ monoclonal antibody, in SLE subjects without or with lupus nephritis. Lupus Sci. Med. 4, e000226 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  120. Chen, P. et al. Pharmacokinetic and pharmacodynamic relationship of AMG 811, an anti-IFN-gamma IgG1 monoclonal antibody, in patients with systemic lupus erythematosus. Pharm. Res. 32, 640–653 (2015).

    Article  CAS  PubMed  Google Scholar 

  121. Bozza, S. et al. Pentraxin 3 protects from MCMV infection and reactivation through TLR sensing pathways leading to IRF3 activation. Blood 108, 3387–3396 (2006).

    Article  CAS  PubMed  Google Scholar 

  122. Presti, R. M., Pollock, J. L., Dal Canto, A. J., O’Guin, A. K. & Virgin, H. W. T. Interferon gamma regulates acute and latent murine cytomegalovirus infection and chronic disease of the great vessels. J. Exp. Med. 188, 577–588 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Bao, S., Beagley, K. W., France, M. P., Shen, J. & Husband, A. J. Interferon-gamma plays a critical role in intestinal immunity against Salmonella typhimurium infection. Immunology 99, 464–472 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Fidan, I., Yesilyurt, E., Gurelik, F. C., Erdal, B. & Imir, T. Effects of recombinant interferon-gamma on cytokine secretion from monocyte-derived macrophages infected with Salmonella typhi. Comp. Immunol. Microbiol. Infect. Dis. 31, 467–475 (2008).

    Article  PubMed  Google Scholar 

  125. Salat, J., Jelinek, J., Chmelar, J. & Kopecky, J. Efficacy of gamma interferon and specific antibody for treatment of microsporidiosis caused by Encephalitozoon cuniculi in SCID mice. Antimicrob. Agents Chemother. 52, 2169–2174 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Sumaria, N. et al. The roles of interferon-gamma and perforin in antiviral immunity in mice that differ in genetically determined NK-cell-mediated antiviral activity. Immunol. Cell Biol. 87, 559–566 (2009).

    Article  CAS  PubMed  Google Scholar 

  127. Dorman, S. E. et al. Viral infections in interferon-gamma receptor deficiency. J. Pediatr. 135, 640–643 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Tran, D. Q. Susceptibility to mycobacterial infections due to interferon-gamma and interleukin-12 pathway defects. Allergy Asthma Proc. 26, 418–421 (2005).

    CAS  PubMed  Google Scholar 

  129. Kampmann, B. et al. Acquired predisposition to mycobacterial disease due to autoantibodies to IFN-gamma. J. Clin. Invest. 115, 2480–2488 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Wongkulab, P., Wipasa, J., Chaiwarith, R. & Supparatpinyo, K. Autoantibody to interferon-gamma associated with adult-onset immunodeficiency in non-HIV individuals in Northern Thailand. PLoS ONE 8, e76371 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Sologuren, I. et al. Partial recessive IFN-γR1 deficiency: genetic, immunological and clinical features of 14 patients from 11 kindreds. Hum. Mol. Genet. 20, 1509–1523 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Lammas, D. A., Casanova, J. L. & Kumararatne, D. S. Clinical consequences of defects in the IL-12-dependent interferon-gamma (IFN-gamma) pathway. Clin. Exp. Immunol. 121, 417–425 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Doffinger, R. et al. Autoantibodies to interferon-gamma in a patient with selective susceptibility to mycobacterial infection and organ-specific autoimmunity. Clin. Infect. Dis. 38, e10–e14 (2004).

    Article  PubMed  Google Scholar 

  134. Poulin, S. et al. Fatal Mycobacterium colombiense/cytomegalovirus coinfection associated with acquired immunodeficiency due to autoantibodies against interferon gamma: a case report. BMC Infect. Dis. 13, 24 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  135. Hommes, D. W. et al. Fontolizumab, a humanised anti-interferon gamma antibody, demonstrates safety and clinical activity in patients with moderate to severe Crohn’s disease. Gut 55, 1131–1137 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Reinisch, W. et al. Fontolizumab in moderate to severe Crohn’s disease: a phase 2, randomized, double-blind, placebo-controlled, multiple-dose study. Inflamm. Bowel Dis. 16, 233–242 (2010).

    Article  PubMed  Google Scholar 

  137. US Food and Drug Administration. Center for Drug Evaluation Research. BLA Multi-Disciplinary Review and Evaluation. BLA 761107. GAMIFANT(emapalumab), https://www.accessdata.fda.gov/drugsatfda_docs/nda/2018/761107Orig1s000MultidisciplineR.pdf (2018).

  138. Tucci, F. et al. Treatment with emapalumab in an ADA-SCID patient with refractory hemophagocytic lymphohistiocytosis-related graft failure and disseminated BCGitis. Haematologica 106, 641–646 (2021).

    Article  PubMed  Google Scholar 

  139. Put, K. et al. Inflammatory gene expression profile and defective interferon-gamma and granzyme K in natural killer cells from systemic juvenile idiopathic arthritis patients. Arthritis Rheumatol. 69, 213–224 (2017).

    Article  CAS  PubMed  Google Scholar 

  140. Reinisch, W. et al. A dose escalating, placebo controlled, double blind, single dose and multidose, safety and tolerability study of fontolizumab, a humanised anti-interferon γ antibody, in patients with moderate to severe Crohn’s disease. Gut 55, 1138–1144 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Werth, V. P. et al. Brief report: pharmacodynamics, safety, and clinical efficacy of AMG 811, a human anti-interferon-gamma antibody, in patients with discoid lupus erythematosus. Arthritis Rheumatol. 69, 1028–1034 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Cristina de Min for her expert interèretation of the clinical trials with anti-IFNγ therapies and for critically revising the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Fabrizio De Benedetti.

Ethics declarations

Competing interests

F.D.B. has received research grants from AbbVie, Novartis, Pfizer, Roche, Sanofi, Novimmune and Sobi. A.A.G. has served as a consultant for Sobi, AB2Bio, Juno and Novartis, and has received research support from Novartis, Sobi and AB2Bio. G.P., C.B. and E.M. declare no competing interests.

Additional information

Peer review information

Nature Reviews Rheumatology thanks E. Brisse, who co-reviewed with P. Matthys, R. Planas, who co-reviewed with J. Pachlopnik Schmid, and R. Badolato for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

De Benedetti, F., Prencipe, G., Bracaglia, C. et al. Targeting interferon-γ in hyperinflammation: opportunities and challenges. Nat Rev Rheumatol 17, 678–691 (2021). https://doi.org/10.1038/s41584-021-00694-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41584-021-00694-z

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research