Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Importance of lymphocyte–stromal cell interactions in autoimmune and inflammatory rheumatic diseases

Abstract

Interactions between lymphocytes and stromal cells have an important role in immune cell development and responses. During inflammation, stromal cells contribute to inflammation, from induction to chronicity or resolution, through direct cell interactions and through the secretion of pro-inflammatory and anti-inflammatory mediators. Stromal cells are imprinted with tissue-specific phenotypes and contribute to site-specific lymphocyte recruitment. During chronic inflammation, the modified pro-inflammatory microenvironment leads to changes in the stromal cells, which acquire a pathogenic phenotype. At the site of inflammation, infiltrating B cells and T cells interact with stromal cells. These interactions induce a plasma cell-like phenotype in B cells and T cells, associated with secretion of immunoglobulins and inflammatory cytokines, respectively. B cells and T cells also influence the stromal cells, inducing cell proliferation, molecular changes and cytokine production. This positive feedback loop contributes to disease chronicity. This Review describes the importance of these cell interactions in chronic inflammation, with a focus on human disease, using three selected autoimmune and inflammatory diseases: rheumatoid arthritis, psoriatic arthritis (and psoriasis) and systemic lupus erythematosus. Understanding the importance and disease specificity of these interactions could provide new therapeutic options.

Key points

  • During chronic inflammation, the pro-inflammatory environment leads to changes in stromal cells, and these altered phenotypes contribute to disease induction and chronicity.

  • At inflammatory sites, infiltrating B cells and T cells interact with pathogenic stromal cells, promoting inflammation that in turn induces and maintains the pathogenic phenotype of stromal cells.

  • Interactions with stromal cells induce accumulation, activation and survival of T lymphocytes and B lymphocytes, through direct cell contact and soluble factors.

  • Despite common characteristics such as the involvement of the T helper 17 axis, inflammatory diseases differ, such as in affected sites and types and phenotypes of stromal cells.

  • These differences can affect immune cell–stromal cell interactions and their resulting effects on cell activation, proliferation and cytokine production.

  • A better understanding of lymphocyte–stromal cell interactions is needed to determine how heterogeneity among these cells, including pathogenic cell subsets, could be used to stratify patients and be targeted more specifically.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Synoviocyte heterogeneity in RA.
Fig. 2: Important stromal cell–immune cell interactions during autoimmune and inflammatory diseases.
Fig. 3: Targeting of cell interactions.

Similar content being viewed by others

References

  1. Nagasawa, T. Microenvironmental niches in the bone marrow required for B-cell development. Nat. Rev. Immunol. 6, 107–116 (2006).

    Article  CAS  PubMed  Google Scholar 

  2. Takahama, Y., Ohigashi, I., Baik, S. & Anderson, G. Generation of diversity in thymic epithelial cells. Nat. Rev. Immunol. 17, 295–305 (2017).

    Article  CAS  PubMed  Google Scholar 

  3. Roozendaal, R. & Mebius, R. E. Stromal cell-immune cell interactions. Annu. Rev. Immunol. 29, 23–43 (2011).

    Article  CAS  PubMed  Google Scholar 

  4. Vestweber, D. How leukocytes cross the vascular endothelium. Nat. Rev. Immunol. 15, 692–704 (2015).

    Article  CAS  PubMed  Google Scholar 

  5. Aloisi, F. & Pujol-Borrell, R. Lymphoid neogenesis in chronic inflammatory diseases. Nat. Rev. Immunol. 6, 205–217 (2006).

    Article  CAS  PubMed  Google Scholar 

  6. Garrood, T., Lee, L. & Pitzalis, C. Molecular mechanisms of cell recruitment to inflammatory sites: general and tissue-specific pathways. Rheumatology 45, 250–260 (2006).

    Article  CAS  PubMed  Google Scholar 

  7. Berg, E. L. et al. The cutaneous lymphocyte antigen is a skin lymphocyte homing receptor for the vascular lectin endothelial cell-leukocyte adhesion molecule 1. J. Exp. Med. 174, 1461–1466 (1991).

    Article  CAS  PubMed  Google Scholar 

  8. Bevilacqua, M. P., Pober, J. S., Mendrick, D. L., Cotran, R. S. & Gimbrone, M. A. Jr Identification of an inducible endothelial-leukocyte adhesion molecule. Proc. Natl Acad. Sci. USA 84, 9238–9242 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Parsonage, G. et al. A stromal address code defined by fibroblasts. Trends Immunol. 26, 150–156 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Savill, J. & Fadok, V. Corpse clearance defines the meaning of cell death. Nature 407, 784–788 (2000).

    Article  CAS  PubMed  Google Scholar 

  11. Ayala, A., Chung, C. S., Grutkoski, P. S. & Song, G. Y. Mechanisms of immune resolution. Crit. Care Med. 31, S558–S571 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Strasser, A., Jost, P. J. & Nagata, S. The many rolesof FAS receptor signaling in the immune system. Immunity 30, 180–192 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Zhang, H. & Xu, X. Mutation-promoting molecular networks of uncontrolled inflammation. Tumour Biol. 39, 1010428317701310 (2017).

    PubMed  Google Scholar 

  14. Ai, R. et al. Comprehensive epigenetic landscape of rheumatoid arthritis fibroblast-like synoviocytes. Nat. Commun. 9, 1921 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Nakano, K., Boyle, D. L. & Firestein, G. S. Regulation of DNA methylation in rheumatoid arthritis synoviocytes. J. Immunol. 190, 1297–1303 (2013).

    Article  CAS  PubMed  Google Scholar 

  16. Buckley, C. D. et al. Fibroblasts regulate the switch from acute resolving to chronic persistent inflammation. Trends Immunol. 22, 199–204 (2001).

    Article  CAS  PubMed  Google Scholar 

  17. Brouty-Boye, D., Pottin-Clemenceau, C., Doucet, C., Jasmin, C. & Azzarone, B. Chemokines and CD40 expression in human fibroblasts. Eur. J. Immunol. 30, 914–919 (2000).

    Article  CAS  PubMed  Google Scholar 

  18. Pap, T., Muller-Ladner, U., Gay, R. E. & Gay, S. Fibroblast biology. Role of synovial fibroblasts in the pathogenesis of rheumatoid arthritis. Arthritis Res. 2, 361–367 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Buckley, C. D., Barone, F., Nayar, S., Benezech, C. & Caamano, J. Stromal cells in chronic inflammation and tertiary lymphoid organ formation. Annu. Rev. Immunol. 33, 715–745 (2015).

    Article  CAS  PubMed  Google Scholar 

  20. Muller-Ladner, U., Ospelt, C., Gay, S., Distler, O. & Pap, T. Cells of the synovium in rheumatoid arthritis. synovial fibroblasts. Arthritis Res. Ther. 9, 223 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. McInnes, I. B. & Schett, G. The pathogenesis of rheumatoid arthritis. N. Engl. J. Med. 365, 2205–2219 (2011).

    Article  CAS  PubMed  Google Scholar 

  22. Dakin, S. G. et al. Pathogenic stromal cells as therapeutic targets in joint inflammation. Nat. Rev. Rheumatol. 14, 714–726 (2018).

    Article  PubMed  Google Scholar 

  23. Mohr, W., Beneke, G. & Mohing, W. Proliferation of synovial lining cells and fibroblasts. Ann. Rheum. Dis. 34, 219–224 (1975).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Yan, Y. et al. Comparative study of normal and rheumatoid arthritis fibroblast-like synoviocytes proliferation under cyclic mechanical stretch: role of prostaglandin E2. Connect. Tissue Res. 53, 246–254 (2011).

    Article  PubMed  CAS  Google Scholar 

  25. Baier, A., Meineckel, I., Gay, S. & Pap, T. Apoptosis in rheumatoid arthritis. Curr. Opin. Rheumatol. 15, 274–279 (2003).

    Article  CAS  PubMed  Google Scholar 

  26. Korb, A., Pavenstadt, H. & Pap, T. Cell death in rheumatoid arthritis. Apoptosis 14, 447–454 (2009).

    Article  PubMed  Google Scholar 

  27. Nygaard, G. & Firestein, G. S. Restoring synovial homeostasis in rheumatoid arthritis by targeting fibroblast-like synoviocytes. Nat. Rev. Rheumatol. 16, 316–333 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Tolboom, T. C. et al. Invasive properties of fibroblast-like synoviocytes: correlation with growth characteristics and expression of MMP-1, MMP-3, and MMP-10. Ann. Rheum. Dis. 61, 975–980 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Firestein, G. S. et al. Apoptosis in rheumatoid arthritis: p53 overexpression in rheumatoid arthritis synovium. Am. J. Pathol. 149, 2143–2151 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Firestein, G. S., Echeverri, F., Yeo, M., Zvaifler, N. J. & Green, D. R. Somatic mutations in the p53 tumor suppressor gene in rheumatoid arthritis synovium. Proc. Natl Acad. Sci. USA 94, 10895–10900 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Franz, J. K. et al. Expression of sentrin, a novel antiapoptotic molecule, at sites of synovial invasion in rheumatoid arthritis. Arthritis Rheum. 43, 599–607 (2000).

    Article  CAS  PubMed  Google Scholar 

  32. Toh, M. L. et al. Role of interleukin 17 in arthritis chronicity through survival of synoviocytes via regulation of synoviolin expression. PLoS ONE 5, e13416 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Muller-Ladner, U. et al. Synovial fibroblasts of patients with rheumatoid arthritis attach to and invade normal human cartilage when engrafted into SCID mice. Am. J. Pathol. 149, 1607–1615 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Lefevre, S. et al. Synovial fibroblasts spread rheumatoid arthritis to unaffected joints. Nat. Med. 15, 1414–1420 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Zhang, F. et al. Defining inflammatory cell states in rheumatoid arthritis joint synovial tissues by integrating single-cell transcriptomics and mass cytometry. Nat. Immunol. 20, 928–942 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Orange, D. E. et al. Identification of three rheumatoid arthritis disease subtypes by machine learning integration of synovial histologic features and RNA sequencing data. Arthritis Rheumatol. 70, 690–701 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Wei, K. et al. Notch signalling drives synovial fibroblast identity and arthritis pathology. Nature 582, 259–264 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Mizoguchi, F. et al. Functionally distinct disease-associated fibroblast subsets in rheumatoid arthritis. Nat. Commun. 9, 789 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Noack, M., Ndongo-Thiam, N. & Miossec, P. Interaction among activated lymphocytes and mesenchymal cells through podoplanin is critical for a high IL-17 secretion. Arthritis Res. Ther. 18, 148 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Croft, A. P. et al. Distinct fibroblast subsets drive inflammation and damage in arthritis. Nature 570, 246–251 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Humby, F. et al. Synovial cellular and molecular signatures stratify clinical response to csDMARD therapy and predict radiographic progression in early rheumatoid arthritis patients. Ann. Rheum. Dis. 78, 761–772 (2019).

    Article  CAS  PubMed  Google Scholar 

  42. Nerviani, A. et al. A pauci-immune synovial pathotype predicts inadequate response to TNFalpha-blockade in rheumatoid arthritis patients. Front. Immunol. 11, 845 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Lewis, M. J. et al. Molecular portraits of early rheumatoid arthritis identify clinical and treatment response phenotypes. Cell Rep. 28, 2455–2470.e5 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Humby, F. et al. Rituximab versus tocilizumab in anti-TNF inadequate responder patients with rheumatoid arthritis (R4RA): 16-week outcomes of a stratified, biopsy-driven, multicentre, open-label, phase 4 randomised controlled trial. Lancet 397, 305–317 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Yoshitomi, H. Regulation of immune responses and chronic inflammation by fibroblast-like synoviocytes. Front. Immunol. 10, 1395 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Fox, D. A., Gizinski, A., Morgan, R. & Lundy, S. K. Cell-cell interactions in rheumatoid arthritis synovium. Rheum. Dis. Clin. North. Am. 36, 311–323 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Bradfield, P. F. et al. Rheumatoid fibroblast-like synoviocytes overexpress the chemokine stromal cell-derived factor 1 (CXCL12), which supports distinct patterns and rates of CD4+ and CD8+ T cell migration within synovial tissue. Arthritis Rheum. 48, 2472–2482 (2003).

    Article  CAS  PubMed  Google Scholar 

  48. Buckley, C. D. et al. Persistent induction of the chemokine receptor CXCR4 by TGF-beta 1 on synovial T cells contributes to their accumulation within the rheumatoid synovium. J. Immunol. 165, 3423–3429 (2000).

    Article  CAS  PubMed  Google Scholar 

  49. McGettrick, H. M. et al. Fibroblasts from different sites may promote or inhibit recruitment of flowing lymphocytes by endothelial cells. Eur. J. Immunol. 39, 113–125 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. McGettrick, H. M., Buckley, C. D., Filer, A., Rainger, G. E. & Nash, G. B. Stromal cells differentially regulate neutrophil and lymphocyte recruitment through the endothelium. Immunology 131, 357–370 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Kobayashi, S. et al. TGF-β induces the differentiation of human CXCL13-producing CD4+ T cells. Eur. J. Immunol. 46, 360–371 (2016).

    Article  CAS  PubMed  Google Scholar 

  52. Ivanov, I. I. et al. The orphan nuclear receptor RORγt directs the differentiation program of proinflammatory IL-17+ T helper cells. Cell 126, 1121–1133 (2006).

    Article  CAS  PubMed  Google Scholar 

  53. Petrasca, A. et al. Targeting bioenergetics prevents CD4 T cell-mediated activation of synovial fibroblasts in rheumatoid arthritis. Rheumatology 59, 2816–2828 (2020).

    Article  CAS  PubMed  Google Scholar 

  54. Mori, M. et al. Cell-contact-dependent activation of CD4+ T cells by adhesion molecules on synovial fibroblasts. Mod. Rheumatol. 27, 448–456 (2017).

    Article  CAS  PubMed  Google Scholar 

  55. Page, G. et al. Plasma cell-like morphology of Th1-cytokine-producing cells associated with the loss of CD3 expression. Am. J. Pathol. 164, 409–417 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Sawai, H., Park, Y. W., He, X., Goronzy, J. J. & Weyand, C. M. Fractalkine mediates T cell-dependent proliferation of synovial fibroblasts in rheumatoid arthritis. Arthritis Rheum. 56, 3215–3225 (2007).

    Article  CAS  PubMed  Google Scholar 

  57. Nanki, T. et al. Migration of CX3CR1-positive T cells producing type 1 cytokines and cytotoxic molecules into the synovium of patients with rheumatoid arthritis. Arthritis Rheum. 46, 2878–2883 (2002).

    Article  CAS  PubMed  Google Scholar 

  58. Lebre, M. C. et al. Synovial IL-21/TNF-producing CD4+ T cells induce joint destruction in rheumatoid arthritis by inducing matrix metalloproteinase production by fibroblast-like synoviocytes. J. Leukoc. Biol. 101, 775–783 (2017).

    Article  CAS  PubMed  Google Scholar 

  59. Nanki, T. et al. Stromal cell-derived factor-1-CXC chemokine receptor 4 interactions play a central role in CD4+ T cell accumulation in rheumatoid arthritis synovium. J. Immunol. 165, 6590–6598 (2000).

    Article  CAS  PubMed  Google Scholar 

  60. Bartok, B. & Firestein, G. S. Fibroblast-like synoviocytes: key effector cells in rheumatoid arthritis. Immunol. Rev. 233, 233–255 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Chabaud, M., Page, G. & Miossec, P. Enhancing effect of IL-1, IL-17, and TNF-α on macrophage inflammatory protein-3α production in rheumatoid arthritis: regulation by soluble receptors and Th2 cytokines. J. Immunol. 167, 6015–6020 (2001).

    Article  CAS  PubMed  Google Scholar 

  62. Tanida, S. et al. CCL20 produced in the cytokine network of rheumatoid arthritis recruits CCR6+ mononuclear cells and enhances the production of IL-6. Cytokine 47, 112–118 (2009).

    Article  CAS  PubMed  Google Scholar 

  63. Mitra, A., Raychaudhuri, S. K. & Raychaudhuri, S. P. Functional role of IL-22 in psoriatic arthritis. Arthritis Res. Ther. 14, R65 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Tran, C. N. et al. Molecular interactions between T cells and fibroblast-like synoviocytes: role of membrane tumor necrosis factor-alpha on cytokine-activated T cells. Am. J. Pathol. 171, 1588–1598 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Bombara, M. P. et al. Cell contact between T cells and synovial fibroblasts causes induction of adhesion molecules and cytokines. J. Leukoc. Biol. 54, 399–406 (1993).

    Article  CAS  PubMed  Google Scholar 

  66. Nguyen, H. N. et al. Autocrine loop involving IL-6 family member LIF, LIF receptor, and STAT4 drives sustained fibroblast production of inflammatory mediators. Immunity 46, 220–232 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. van Hamburg, J. P. et al. Th17 cells, but not Th1 cells, from patients with early rheumatoid arthritis are potent inducers of matrix metalloproteinases and proinflammatory cytokines upon synovial fibroblast interaction, including autocrine interleukin-17A production. Arthritis Rheum. 63, 73–83 (2011).

    Article  PubMed  CAS  Google Scholar 

  68. Tak, P. P. et al. Analysis of the synovial cell infiltrate in early rheumatoid synovial tissue in relation to local disease activity. Arthritis Rheum. 40, 217–225 (1997).

    Article  CAS  PubMed  Google Scholar 

  69. Dechanet, J., Merville, P., Durand, I., Banchereau, J. & Miossec, P. The ability of synoviocytes to support terminal differentiation of activated B cells may explain plasma cell accumulation in rheumatoid synovium. J. Clin. Invest. 95, 456–463 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Wang, Q., Ma, Y., Liu, D., Zhang, L. & Wei, W. The roles of B cells and their interactions with fibroblast-like synoviocytes in the pathogenesis of rheumatoid arthritis. Int. Arch. Allergy Immunol. 155, 205–211 (2011).

    Article  CAS  PubMed  Google Scholar 

  71. Burger, J. A., Zvaifler, N. J., Tsukada, N., Firestein, G. S. & Kipps, T. J. Fibroblast-like synoviocytes support B-cell pseudoemperipolesis via a stromal cell-derived factor-1- and CD106 (VCAM-1)-dependent mechanism. J. Clin. Invest. 107, 305–315 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Ohata, J. et al. Fibroblast-like synoviocytes of mesenchymal origin express functional B cell-activating factor of the TNF family in response to proinflammatory cytokines. J. Immunol. 174, 864–870 (2005).

    Article  CAS  PubMed  Google Scholar 

  73. Rochas, C. et al. Transmembrane BAFF from rheumatoid synoviocytes requires interleukin-6 to induce the expression of recombination-activating gene in B lymphocytes. Arthritis Rheum. 60, 1261–1271 (2009).

    Article  PubMed  Google Scholar 

  74. Bombardieri, M. et al. A BAFF/APRIL-dependent TLR3-stimulated pathway enhances the capacity of rheumatoid synovial fibroblasts to induce AID expression and Ig class-switching in B cells. Ann. Rheum. Dis. 70, 1857–1865 (2011).

    Article  CAS  PubMed  Google Scholar 

  75. Schett, G. Autoimmunity as a trigger for structural bone damage in rheumatoid arthritis. Mod. Rheumatol. 27, 193–197 (2017).

    Article  CAS  PubMed  Google Scholar 

  76. Kang, Y. M. et al. LIGHT up-regulated on B lymphocytes and monocytes in rheumatoid arthritis mediates cellular adhesion and metalloproteinase production by synoviocytes. Arthritis Rheum. 56, 1106–1117 (2007).

    Article  CAS  PubMed  Google Scholar 

  77. Schmitt, V. et al. Interleukin-36 receptor mediates the crosstalk between plasma cells and synovial fibroblasts. Eur. J. Immunol. 47, 2101–2112 (2017).

    Article  CAS  PubMed  Google Scholar 

  78. Frey, S. et al. The novel cytokine interleukin-36alpha is expressed in psoriatic and rheumatoid arthritis synovium. Ann. Rheum. Dis. 72, 1569–1574 (2013).

    Article  CAS  PubMed  Google Scholar 

  79. Boehncke, W. H. & Schon, M. P. Psoriasis. Lancet 386, 983–994 (2015).

    Article  CAS  PubMed  Google Scholar 

  80. Ritchlin, C. T., Colbert, R. A. & Gladman, D. D. Psoriatic arthritis. N. Engl. J. Med. 376, 2095–2096 (2017).

    Article  PubMed  Google Scholar 

  81. Veale, D. J. & Fearon, U. The pathogenesis of psoriatic arthritis. Lancet 391, 2273–2284 (2018).

    Article  CAS  PubMed  Google Scholar 

  82. Priestley, G. C. & Adams, L. W. Hyperactivity of fibroblasts cultured from psoriatic skin: I. Faster proliferation and effect of serum withdrawal. Br. J. Dermatol. 109, 149–156 (1983).

    Article  CAS  PubMed  Google Scholar 

  83. Saiag, P., Coulomb, B., Lebreton, C., Bell, E. & Dubertret, L. Psoriatic fibroblasts induce hyperproliferation of normal keratinocytes in a skin equivalent model in vitro. Science 230, 669–672 (1985).

    Article  CAS  PubMed  Google Scholar 

  84. Quan, C. et al. Dermal fibroblast expression of stromal cell-derived factor-1 (SDF-1) promotes epidermal keratinocyte proliferation in normal and diseased skin. Protein Cell 6, 890–903 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Gunther, C., Carballido-Perrig, N., Kaesler, S., Carballido, J. M. & Biedermann, T. CXCL16 and CXCR6 are upregulated in psoriasis and mediate cutaneous recruitment of human CD8+ T cells. J. Invest. Dermatol. 132, 626–634 (2012).

    Article  PubMed  CAS  Google Scholar 

  86. Dustin, M. L., Singer, K. H., Tuck, D. T. & Springer, T. A. Adhesion of T lymphoblasts to epidermal keratinocytes is regulated by interferon gamma and is mediated by intercellular adhesion molecule 1 (ICAM-1). J. Exp. Med. 167, 1323–1340 (1988).

    Article  CAS  PubMed  Google Scholar 

  87. Veale, D. et al. Reduced synovial membrane macrophage numbers, ELAM-1 expression, and lining layer hyperplasia in psoriatic arthritis as compared with rheumatoid arthritis. Arthritis Rheum. 36, 893–900 (1993).

    Article  CAS  PubMed  Google Scholar 

  88. Homey, B. et al. CCL27-CCR10 interactions regulate T cell-mediated skin inflammation. Nat. Med. 8, 157–165 (2002).

    Article  CAS  PubMed  Google Scholar 

  89. Noack, M., Ndongo-Thiam, N. & Miossec, P. Role of podoplanin in the high interleukin-17A secretion resulting from interactions between activated lymphocytes and psoriatic skin-derived mesenchymal cells. Clin. Exp. Immunol. 186, 64–74 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Schirmer, C., Klein, C., von Bergen, M., Simon, J. C. & Saalbach, A. Human fibroblasts support the expansion of IL-17-producing T cells via up-regulation of IL-23 production by dendritic cells. Blood 116, 1715–1725 (2010).

    Article  CAS  PubMed  Google Scholar 

  91. Piskin, G., Sylva-Steenland, R. M., Bos, J. D. & Teunissen, M. B. In vitro and in situ expression of IL-23 by keratinocytes in healthy skin and psoriasis lesions: enhanced expression in psoriatic skin. J. Immunol. 176, 1908–1915 (2006).

    Article  CAS  PubMed  Google Scholar 

  92. Orlik, C. et al. Keratinocytes costimulate naive human T cells via CD2: a potential target to prevent the development of proinflammatory Th1 cells in the skin. Cell Mol. Immunol. 17, 380–394 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  93. Lowes, M. A. et al. Psoriasis vulgaris lesions contain discrete populations of Th1 and Th17 T cells. J. Invest. Dermatol. 128, 1207–1211 (2008).

    Article  CAS  PubMed  Google Scholar 

  94. Blauvelt, A. & Chiricozzi, A. The immunologic role of IL-17 in psoriasis and psoriatic arthritis pathogenesis. Clin. Rev. Allergy Immunol. 55, 379–390 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Noack, M., Beringer, A. & Miossec, P. Additive or synergistic interactions between IL-17A or IL-17F and TNF or IL-1beta depend on the cell type. Front. Immunol. 10, 1726 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Chiricozzi, A., Romanelli, P., Volpe, E., Borsellino, G. & Romanelli, M. Scanning the immunopathogenesis of psoriasis. Int. J. Mol. Sci. 19, 179 (2018).

    Article  PubMed Central  CAS  Google Scholar 

  97. Ma, W. Y., Jia, K. & Zhang, Y. IL-17 promotes keratinocyte proliferation via the downregulation of C/EBPalpha. Exp. Ther. Med. 11, 631–636 (2016).

    Article  PubMed  CAS  Google Scholar 

  98. Kim, T. G. et al. Dermal clusters of mature dendritic cells and T cells are associated with the CCL20/CCR6 chemokine system in chronic psoriasis. J. Invest. Dermatol. 134, 1462–1465 (2014).

    Article  CAS  PubMed  Google Scholar 

  99. Furue, K., Ito, T., Tsuji, G., Nakahara, T. & Furue, M. The CCL20 and CCR6 axis in psoriasis. Scand. J. Immunol. 91, e12846 (2019).

    PubMed  Google Scholar 

  100. Wolk, K. et al. IL-22 regulates the expression of genes responsible for antimicrobial defense, cellular differentiation, and mobility in keratinocytes: a potential role in psoriasis. Eur. J. Immunol. 36, 1309–1323 (2006).

    Article  CAS  PubMed  Google Scholar 

  101. Tohyama, M. et al. Bcl-3 induced by IL-22 via STAT3 activation acts as a potentiator of psoriasis-related gene expression in epidermal keratinocytes. Eur. J. Immunol. 48, 168–179 (2018).

    Article  CAS  PubMed  Google Scholar 

  102. Pfaff, C. M., Marquardt, Y., Fietkau, K., Baron, J. M. & Luscher, B. The psoriasis-associated IL-17A induces and cooperates with IL-36 cytokines to control keratinocyte differentiation and function. Sci. Rep. 7, 15631 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  103. Carrier, Y. et al. Inter-regulation of Th17 cytokines and the IL-36 cytokines in vitro and in vivo: implications in psoriasis pathogenesis. J. Invest. Dermatol. 131, 2428–2437 (2011).

    Article  CAS  PubMed  Google Scholar 

  104. Albanesi, C., Madonna, S., Gisondi, P. & Girolomoni, G. The interplay between keratinocytes and immune cells in the pathogenesis of psoriasis. Front. Immunol. 9, 1549 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  105. Frieder, J., Kivelevitch, D., Haugh, I., Watson, I. & Menter, A. Anti-IL-23 and anti-IL-17 biologic agents for the treatment of immune-mediated inflammatory conditions. Clin. Pharmacol. Ther. 103, 88–101 (2018).

    Article  CAS  PubMed  Google Scholar 

  106. Belasco, J. et al. Comparative genomic profiling of synovium versus skin lesions in psoriatic arthritis. Arthritis Rheumatol. 67, 934–944 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. van Kuijk, A. W. & Tak, P. P. Synovitis in psoriatic arthritis: immunohistochemistry, comparisons with rheumatoid arthritis, and effects of therapy. Curr. Rheumatol. Rep. 13, 353–359 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Campbell, J. J., O’Connell, D. J. & Wurbel, M. A. Cutting edge: chemokine receptor CCR4 is necessary for antigen-driven cutaneous accumulation of CD4 T cells under physiological conditions. J. Immunol. 178, 3358–3362 (2007).

    Article  CAS  PubMed  Google Scholar 

  109. Flytlie, H. A. et al. Expression of MDC/CCL22 and its receptor CCR4 in rheumatoid arthritis, psoriatic arthritis and osteoarthritis. Cytokine 49, 24–29 (2010).

    Article  PubMed  CAS  Google Scholar 

  110. Colucci, S. et al. Lymphocytes and synovial fluid fibroblasts support osteoclastogenesis through RANKL, TNFalpha, and IL-7 in an in vitro model derived from human psoriatic arthritis. J. Pathol. 212, 47–55 (2007).

    Article  CAS  PubMed  Google Scholar 

  111. Mahmoud, F. et al. Elevated B-lymphocyte levels in lesional tissue of non-arthritic psoriasis. J. Dermatol. 26, 428–433 (1999).

    Article  CAS  PubMed  Google Scholar 

  112. Lu, J., Ding, Y., Yi, X. & Zheng, J. CD19+ B cell subsets in the peripheral blood and skin lesions of psoriasis patients and their correlations with disease severity. Braz. J. Med. Biol. Res. 49, e5374 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Hayashi, M. et al. IL-10-producing regulatory B cells are decreased in patients with psoriasis. J. Dermatol. Sci. 81, 93–100 (2015).

    Article  PubMed  CAS  Google Scholar 

  114. Kahlert, K. et al. Aberrant B-cell subsets and immunoglobulin levels in patients with moderate-to-severe psoriasis. Acta Derm. Venereol. 99, 226–227 (2019).

    Article  CAS  PubMed  Google Scholar 

  115. Samoud-El Kissi, S. et al. BAFF is elevated in serum of patients with psoriasis: association with disease activity. Br. J. Dermatol. 159, 765–768 (2008).

    Article  CAS  PubMed  Google Scholar 

  116. Gerhard, N. et al. IgVH-genes analysis from psoriatic arthritis shows involvement of antigen-activated synovial B-lymphocytes. Z. Rheumatol. 61, 718–727 (2002).

    Article  CAS  PubMed  Google Scholar 

  117. Kaul, A. et al. Systemic lupus erythematosus. Nat. Rev. Dis. Prim. 2, 16039 (2016).

    Article  PubMed  Google Scholar 

  118. Steinmetz, O. M. et al. Analysis and classification of B-cell infiltrates in lupus and ANCA-associated nephritis. Kidney Int. 74, 448–457 (2008).

    Article  CAS  PubMed  Google Scholar 

  119. Da, Z. et al. CXCL13 promotes proliferation of mesangial cells by combination with CXCR5 in SLE. J. Immunol. Res. 2016, 2063985 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  120. Karrar, S. & Cunninghame Graham, D. S. Abnormal B cell development in systemic lupus erythematosus: what the genetics tell us. Arthritis Rheumatol. 70, 496–507 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  121. Tsokos, G. C. Systemic lupus erythematosus. N. Engl. J. Med. 365, 2110–2121 (2011).

    Article  CAS  PubMed  Google Scholar 

  122. Chu, V. T. et al. Systemic activation of the immune system induces aberrant BAFF and APRIL expression in B cells in patients with systemic lupus erythematosus. Arthritis Rheum. 60, 2083–2093 (2009).

    Article  CAS  PubMed  Google Scholar 

  123. Iwata, S. & Tanaka, Y. B-cell subsets, signaling and their roles in secretion of autoantibodies. Lupus 25, 850–856 (2016).

    Article  CAS  PubMed  Google Scholar 

  124. Vincent, F. B., Morand, E. F., Schneider, P. & Mackay, F. The BAFF/APRIL system in SLE pathogenesis. Nat. Rev. Rheumatol. 10, 365–373 (2014).

    Article  CAS  PubMed  Google Scholar 

  125. Collins, C. E. et al. B lymphocyte stimulator (BLyS) isoforms in systemic lupus erythematosus: disease activity correlates better with blood leukocyte BLyS mRNA levels than with plasma BLyS protein levels. Arthritis Res. Ther. 8, R6 (2006).

    Article  PubMed  Google Scholar 

  126. Sun, L. Y. et al. Abnormality of bone marrow-derived mesenchymal stem cells in patients with systemic lupus erythematosus. Lupus 16, 121–128 (2007).

    Article  CAS  PubMed  Google Scholar 

  127. Menard, C. et al. Clinical-grade mesenchymal stromal cells produced under various good manufacturing practice processes differ in their immunomodulatory properties: standardization of immune quality controls. Stem Cell Dev. 22, 1789–1801 (2013).

    Article  CAS  Google Scholar 

  128. Che, N. et al. Impaired B cell inhibition by lupus bone marrow mesenchymal stem cells is caused by reduced CCL2 expression. J. Immunol. 193, 5306–5314 (2014).

    Article  CAS  PubMed  Google Scholar 

  129. Fan, L. et al. Interaction between mesenchymal stem cells and B-cells. Int. J. Mol. Sci. 17, 650 (2016).

    Article  PubMed Central  CAS  Google Scholar 

  130. Rosado, M. M. et al. Inhibition of B-cell proliferation and antibody production by mesenchymal stromal cells is mediated by T cells. Stem Cell Dev. 24, 93–103 (2015).

    Article  CAS  Google Scholar 

  131. Suarez-Fueyo, A., Bradley, S. J. & Tsokos, G. C. T cells in systemic lupus erythematosus. Curr. Opin. Immunol. 43, 32–38 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Katsuyama, T., Tsokos, G. C. & Moulton, V. R. Aberrant T cell signaling and subsets in systemic lupus erythematosus. Front. Immunol. 9, 1088 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  133. Robert, M. & Miossec, P. Interleukin-17 and lupus: enough to be a target? For which patients? Lupus 29, 6–14 (2020).

    Article  CAS  PubMed  Google Scholar 

  134. Koga, T., Ichinose, K. & Tsokos, G. C. T cells and IL-17 in lupus nephritis. Clin. Immunol. 185, 95–99 (2017).

    Article  CAS  PubMed  Google Scholar 

  135. Zickert, A. et al. IL-17 and IL-23 in lupus nephritis - association to histopathology and response to treatment. BMC Immunol. 16, 7 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  136. Alunno, A. et al. Balance between regulatory T and Th17 cells in systemic lupus erythematosus: the old and the new. Clin. Dev. Immunol. 2012, 823085 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  137. Gu, Z. et al. Rapamycin reverses the senescent phenotype and improves immunoregulation of mesenchymal stem cells from MRL/lpr mice and systemic lupus erythematosus patients through inhibition of the mTOR signaling pathway. Aging 8, 1102–1114 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Geng, L. et al. Reduced Let-7f in bone marrow-derived mesenchymal stem cells triggers Treg/Th17 imbalance in patients with systemic lupus erythematosus. Front. Immunol. 11, 233 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Guo, Q. et al. Rheumatoid arthritis: pathological mechanisms and modern pharmacologic therapies. Bone Res. 6, 15 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  140. Yasuda, S. Emerging targets for the treatment of lupus erythematosus: there is no royal road to treating lupus. Mod. Rheumatol. 29, 60–69 (2019).

    Article  CAS  PubMed  Google Scholar 

  141. Rendon, A. & Schakel, K. Psoriasis pathogenesis and treatment. Int. J. Mol. Sci. 20, 1475 (2019).

    Article  CAS  PubMed Central  Google Scholar 

  142. Smeets, T. J., Kraan, M. C., van Loon, M. E. & Tak, P. P. Tumor necrosis factor alpha blockade reduces the synovial cell infiltrate early after initiation of treatment, but apparently not by induction of apoptosis in synovial tissue. Arthritis Rheum. 48, 2155–2162 (2003).

    Article  CAS  PubMed  Google Scholar 

  143. Guggino, G. et al. Targeting IL-6 signalling in early rheumatoid arthritis is followed by Th1 and Th17 suppression and Th2 expansion. Clin. Exp. Rheumatol. 32, 77–81 (2014).

    PubMed  Google Scholar 

  144. Noisette, A. & Hochberg, M. C. Abatacept for the treatment of adults with psoriatic arthritis: patient selection and perspectives. Psoriasis 8, 31–39 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Wang, G., Hu, P., Yang, J., Shen, G. & Wu, X. The effects of PDL-Ig on collagen-induced arthritis. Rheumatol. Int. 31, 513–519 (2011).

    Article  CAS  PubMed  Google Scholar 

  146. Kim, J. H. et al. Programmed cell death ligand 1 alleviates psoriatic inflammation by suppressing IL-17A production from programmed cell death 1-high T cells. J. Allergy Clin. Immunol. 137, 1466–1476 e1463 (2016).

    Article  CAS  PubMed  Google Scholar 

  147. Michot, J. M. et al. Immune-related adverse events with immune checkpoint blockade: a comprehensive review. Eur. J. Cancer 54, 139–148 (2016).

    Article  CAS  PubMed  Google Scholar 

  148. Kumar, P., Saini, S. & Prabhakar, B. S. Cancer immunotherapy with check point inhibitor can cause autoimmune adverse events due to loss of Treg homeostasis. Semin. Cancer Biol. 64, 29–35 (2020).

    Article  PubMed  Google Scholar 

  149. Sawai, H. et al. T cell costimulation by fractalkine-expressing synoviocytes in rheumatoid arthritis. Arthritis Rheum. 52, 1392–1401 (2005).

    Article  CAS  PubMed  Google Scholar 

  150. Tanaka, Y. et al. Safety, pharmacokinetics, and efficacy of E6011, an antifractalkine monoclonal antibody, in a first-in-patient phase 1/2 study on rheumatoid arthritis. Mod. Rheumatol. 28, 58–65 (2018).

    Article  CAS  PubMed  Google Scholar 

  151. Quintanilla, M., Montero-Montero, L., Renart, J. & Martin-Villar, E. Podoplanin in inflammation and cancer. Int. J. Mol. Sci. 20, 707 (2019).

    Article  CAS  PubMed Central  Google Scholar 

  152. Krishnan, H. et al. Podoplanin: an emerging cancer biomarker and therapeutic target. Cancer Sci. 109, 1292–1299 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Peters, A. et al. Podoplanin negatively regulates CD4+ effector T cell responses. J. Clin. Invest. 125, 129–140 (2015).

    Article  PubMed  Google Scholar 

  154. Caporali, R. & Zavaglia, D. Real-world experience with tofacitinib for the treatment of rheumatoid arthritis. Clin. Exp. Rheumatol. 37, 485–495 (2019).

    PubMed  Google Scholar 

  155. Rosengren, S., Corr, M., Firestein, G. S. & Boyle, D. L. The JAK inhibitor CP-690,550 (tofacitinib) inhibits TNF-induced chemokine expression in fibroblast-like synoviocytes: autocrine role of type I interferon. Ann. Rheum. Dis. 71, 440–447 (2012).

    Article  CAS  PubMed  Google Scholar 

  156. Morand, E. F. et al. Trial of anifrolumab in active systemic lupus erythematosus. N. Engl. J. Med. 382, 211–221 (2020).

    Article  CAS  PubMed  Google Scholar 

  157. Diller, M. et al. Targeting activated synovial fibroblasts in rheumatoid arthritis by peficitinib. Front. Immunol. 10, 541 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Hong, S. S. et al. PUMA gene delivery to synoviocytes reduces inflammation and degeneration of arthritic joints. Nat. Commun. 8, 146 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  159. Bonaventura, P. et al. Protective effect of low dose intra-articular cadmium on inflammation and joint destruction in arthritis. Sci. Rep. 7, 2415 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  160. Bonaventura, P., Lamboux, A., Albarede, F. & Miossec, P. Regulatory effects of zinc on cadmium-induced cytotoxicity in chronic inflammation. PLoS ONE 12, e0180879 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  161. Viswanathan, S. et al. Mesenchymal stem versus stromal cells: International Society for Cell & Gene Therapy (ISCT®) Mesenchymal Stromal Cell committee position statement on nomenclature. Cytotherapy 21, 1019–1024 (2019).

    Article  CAS  PubMed  Google Scholar 

  162. Dominici, M. et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 8, 315–317 (2006).

    Article  CAS  PubMed  Google Scholar 

  163. Rosengren, S., Boyle, D. L. & Firestein, G. S. Acquisition, culture, and phenotyping of synovial fibroblasts. Methods Mol. Med. 135, 365–375 (2007).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The work of the authors is supported in part by a grant from the Société Française de Rhumatologie.

Author information

Authors and Affiliations

Authors

Contributions

Both authors made substantial contributions to discussions of content, wrote the article and researched data for the article. P.M. reviewed and edited the manuscript before submission.

Corresponding author

Correspondence to Pierre Miossec.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Rheumatology thanks H. M. McGettrick, L. van Baarsen and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Noack, M., Miossec, P. Importance of lymphocyte–stromal cell interactions in autoimmune and inflammatory rheumatic diseases. Nat Rev Rheumatol 17, 550–564 (2021). https://doi.org/10.1038/s41584-021-00665-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41584-021-00665-4

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing