Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Genome editing to define the function of risk loci and variants in rheumatic disease

Abstract

Discoveries in human genetic studies have revolutionized our understanding of complex rheumatic and autoimmune diseases, including the identification of hundreds of genetic loci and single nucleotide polymorphisms that potentially predispose individuals to disease. However, in most cases, the exact disease-causing variants and their mechanisms of action remain unresolved. Functional follow-up of these findings is most challenging for genomic variants that are in non-coding genomic regions, where the large majority of common disease-associated variants are located, and/or that probably affect disease progression via cell type-specific gene regulation. To deliver on the therapeutic promise of human genetic studies, defining the mechanisms of action of these alleles is essential. Genome editing technology, such as CRISPR–Cas, has created a vast toolbox for targeted genetic and epigenetic modifications that presents unprecedented opportunities to decipher disease-causing loci, genes and variants in autoimmunity. In this Review, we discuss the past 5–10 years of progress in resolving the mechanisms underlying rheumatic disease-associated alleles, with an emphasis on how genomic editing techniques can enable targeted dissection and mechanistic studies of causal autoimmune risk variants.

Key points

  • Hundreds of autoimmune risk loci have been discovered in coding and non-coding regions of the genome; however, their function and the causal alleles functioning within these loci have been difficult to discern.

  • Advances in genomic editing have made it possible to quickly and effectively investigate autoimmune disease-associated loci and variants using a number of approaches in both cell lines and primary cells.

  • CRISPR–Cas genomic editing can be used to induce insertions and deletions, correct precise mutations and induce epigenetic changes to investigate loci and variants associated with rheumatic diseases.

  • CRISPR–Cas screening approaches are effective tools for whole-genome investigation of autoimmune disease-related genes and detailed resolution of autoimmune risk regions.

  • Resolving the heterogeneity of cell types in rheumatic disorders with unbiased single-cell technologies is critical to understanding the genetics of disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Studying the genetics of rheumatic diseases.
Fig. 2: Genomic editing to investigate regions of interest in rheumatic diseases.
Fig. 3: Genomic editing to investigate variants of interest in rheumatic disease.

Similar content being viewed by others

References

  1. Cooper, G. S., Bynum, M. L. K. & Somers, E. C. Recent insights in the epidemiology of autoimmune diseases: improved prevalence estimates and understanding of clustering of diseases. J. Autoimmun. 33, 197–207 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Bogdanos, D. P. et al. Twin studies in autoimmune disease: genetics, gender and environment. J. Autoimmun. 38, J156–J169 (2012).

    Article  PubMed  Google Scholar 

  3. Plenge, R. M., Scolnick, E. M. & Altshuler, D. Validating therapeutic targets through human genetics. Nat. Rev. Drug Discov. 12, 581–594 (2013).

    Article  CAS  PubMed  Google Scholar 

  4. Nelson, M. R. et al. The support of human genetic evidence for approved drug indications. Nat. Genet. 47, 856–860 (2015).

    Article  CAS  PubMed  Google Scholar 

  5. King, E. A., Wade Davis, J. & Degner, J. F. Are drug targets with genetic support twice as likely to be approved? Revised estimates of the impact of genetic support for drug mechanisms on the probability of drug approval. PLoS Genet. 15, e1008489 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Cao, C. & Moult, J. GWAS and drug targets. BMC Genomics 15, S5 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Ishigaki, K. et al. Large-scale genome-wide association study in a Japanese population identifies novel susceptibility loci across different diseases. Nat. Genet. 52, 669–679 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Shay, T. et al. Conservation and divergence in the transcriptional programs of the human and mouse immune systems. Proc. Natl Acad. Sci. USA 110, 2946–2951 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Gallagher, M. D. & Chen-Plotkin, A. S. The post-GWAS era: from association to function. Am. J. Hum. Genet. 102, 717–730 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Junhee, Seok et al. Genomic responses in mouse models poorly mimic human inflammatory diseases. Proc. Natl Acad. Sci. USA 110, 3507–3512 (2013).

    Article  Google Scholar 

  11. von Scheidt, M. et al. Applications and limitations of mouse models for understanding human atherosclerosis. Cell Metab. 25, 248–261 (2017).

    Article  CAS  Google Scholar 

  12. Inoue, F. & Ahituv, N. Decoding enhancers using massively parallel reporter assays. Genomics 106, 159–164 (2015).

    Article  CAS  PubMed  Google Scholar 

  13. Brown, C. D., Mangravite, L. M. & Engelhardt, B. E. Integrative modeling of eQTLs and cis-regulatory elements suggests mechanisms underlying cell type specificity of eQTLs. PLoS Genet. 9, 1003649 (2013).

    Article  CAS  Google Scholar 

  14. Jinek, M. et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337, 816–821 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Cong, L. et al. Multiplex genome engineering using CRISPR/Cas systems. Science 339, 819–823 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Gibson, G. J. & Yang, M. What rheumatologists need to know about CRISPR/Cas9. Nat. Rev. Rheumatol. 13, 205–216 (2017).

    Article  CAS  PubMed  Google Scholar 

  17. Anzalone, A. V., Koblan, L. W. & Liu, D. R. Genome editing with CRISPR-Cas nucleases, base editors, transposases and prime editors. Nat. Biotechnol. 38, 824–844 (2020).

    Article  CAS  PubMed  Google Scholar 

  18. Lee, E. G. et al. Failure to regulate TNF-induced NF-κB and cell death responses in A20-deficient mice. Science 289, 2350–2354 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Hasegawa, K. et al. PEST domain-enriched tyrosine phosphatase (PEP) regulation of effector/memory T cells. Science 303, 685–689 (2004).

    Article  CAS  PubMed  Google Scholar 

  20. Kaplan, M. H., Sun, Y. L., Hoey, T. & Grusby, M. J. Impaired IL-12 responses and enhanced development of Th2 cells in Stat4-deficient mice. Nature 382, 174–177 (1996).

    Article  CAS  PubMed  Google Scholar 

  21. Afzali, B. et al. BACH2 immunodeficiency illustrates an association between super-enhancers and haploinsufficiency. Nat. Immunol. 18, 813–823 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Siggs, O. M. et al. Opposing functions of the T cell receptor kinase ZAP-70 in immunity and tolerance differentially titrate in response to nucleotide substitutions. Immunity 27, 912–926 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Bennett, C. L. et al. The immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome (IPEX) is caused by mutations of FOXP3. Nat. Genet. 27, 20–21 (2001).

    Article  CAS  PubMed  Google Scholar 

  24. Morel, L., Rudofsky, U. H., Longmate, J. A., Schiffenbauer, J. & Wakeland, E. K. Polygenic control of susceptibility to murine systemic lupus erythematosus. Immunity 1, 219–229 (1994).

    Article  CAS  PubMed  Google Scholar 

  25. Todd, J. A. et al. Genetic analysis of autoimmune type 1 diabetes mellitus in mice. Nature 351, 542–547 (1991).

    Article  CAS  PubMed  Google Scholar 

  26. Ellinghaus, D. et al. Analysis of five chronic inflammatory diseases identifies 27 new associations and highlights disease-specific patterns at shared loci. Nat. Genet. 48, 510–518 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Li, Y. R. et al. Meta-analysis of shared genetic architecture across ten pediatric autoimmune diseases. Nat. Med. 21, 1018–1027 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. McCarthy, M. I. & Hirschhorn, J. N. Genome-wide association studies: potential next steps on a genetic journey. Hum. Mol. Genet. 17, R156 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Bomba, L., Walter, K. & Soranzo, N. The impact of rare and low-frequency genetic variants in common disease. Genome Biol. 18, 1–17 (2017).

    Article  CAS  Google Scholar 

  30. Shang, W. et al. Genome-wide CRISPR screen identifies FAM49B as a key regulator of actin dynamics and T cell activation. Proc. Natl Acad. Sci. USA 115, E4051–E4060 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Parnas, O. et al. A Genome-wide CRISPR screen in primary immune cells to dissect regulatory networks. Cell 162, 675–686 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Henriksson, J. et al. Genome-wide CRISPR screens in T helper cells reveal pervasive crosstalk between activation and differentiation. Cell 176, 882–896.e18 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Cortez, J. T. et al. CRISPR screen in regulatory T cells reveals modulators of Foxp3. Nature 582, 416 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Shifrut, E. et al. Genome-wide CRISPR screens in primary human T cells reveal key regulators of immune function. Cell 175, 1958–1971.e15 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Anderson, W., Thorpe, J., Long, S. A. & Rawlings, D. J. Efficient CRISPR/Cas9 disruption of autoimmune-associated genes reveals key signaling programs in primary human T cells. J. Immunol. 203, 3166–3178 (2019).

    Article  CAS  PubMed  Google Scholar 

  36. Nguyen, D. N. et al. Polymer-stabilized Cas9 nanoparticles and modified repair templates increase genome editing efficiency. Nat. Biotechnol. 38, 44–49 (2020).

    Article  CAS  PubMed  Google Scholar 

  37. Schumann, K. et al. Generation of knock-in primary human T cells using Cas9 ribonucleoproteins. Proc. Natl Acad. Sci. USA 112, 10437–10442 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Sirvent, S. et al. Genomic programming of IRF4-expressing human Langerhans cells. Nat. Commun. 11, 1–12 (2020).

    Article  CAS  Google Scholar 

  39. Wu, C.-A. et al. Genetic engineering in primary human B cells with CRISPR-Cas9 ribonucleoproteins. J. Immunol. Methods 457, 33–40 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Amariuta, T. et al. IMPACT: genomic annotation of cell-state-specific regulatory elements inferred from the epigenome of bound transcription factors. Am. J. Hum. Genet. 104, 879–895 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Maurano, M. T. et al. Systematic localization of common disease-associated variation in regulatory DNA. Science 337, 1190–1195 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Hindorff, L. A. et al. Potential etiologic and functional implications of genome-wide association loci for human diseases and traits. Proc. Natl Acad. Sci. USA 106, 9362–9367 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Abascal, F. et al. Expanded encyclopaedias of DNA elements in the human and mouse genomes. Nature 583, 699–710 (2020).

    Article  CAS  Google Scholar 

  44. Furey, T. S. ChIP-seq and beyond: new and improved methodologies to detect and characterize protein-DNA interactions. Nat. Rev. Genet. 13, 840–852 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Buenrostro, J. D., Giresi, P. G., Zaba, L. C., Chang, H. Y. & Greenleaf, W. J. Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position. Nat. Methods 10, 1213–1218 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Satpathy, A. T. et al. Massively parallel single-cell chromatin landscapes of human immune cell development and intratumoral T cell exhaustion. Nat. Biotechnol. 37, 925–936 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Skene, P. J. & Henikoff, S. An efficient targeted nuclease strategy for high-resolution mapping of DNA binding sites. eLife 6, e21856 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Kaya-Okur, H. S. et al. CUT&Tag for efficient epigenomic profiling of small samples and single cells. Nat. Commun. 10, 1–10 (2019).

    Article  CAS  Google Scholar 

  49. Farh, K. K.-H. et al. Genetic and epigenetic fine mapping of causal autoimmune disease variants. Nature 518, 337–343 (2015).

    Article  CAS  PubMed  Google Scholar 

  50. Hrdlickova, B. et al. Expression profiles of long non-coding RNAs located in autoimmune disease-associated regions reveal immune cell-type specificity. Genome Med. 6, 88 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Yang, J. et al. Analysis of chromatin organization and gene expression in T cells identifies functional genes for rheumatoid arthritis. Nat. Commun. 11, 4402 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Gustafsson, M. et al. A validated gene regulatory network and GWAS identifies early regulators of T cell-associated diseases. Sci. Transl. Med. 7, 313ra178 (2015).

    Article  PubMed  CAS  Google Scholar 

  53. Hawkins, R. D. et al. Global chromatin state analysis reveals lineage-specific enhancers during the initiation of human T helper 1 and T helper 2 cell polarization. Immunity 38, 1271–1284 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Basak, A. & Sankaran, V. G. Regulation of the fetal hemoglobin silencing factor BCL11A. Ann. N. Y. Acad. Sci. 1368, 25–30 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Canver, M. C. et al. BCL11A enhancer dissection by Cas9-mediated in situ saturating mutagenesis. Nature 527, 192–197 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Rajagopal, N. et al. High-throughput mapping of regulatory DNA. Nat. Biotechnol. 34, 167–174 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Korkmaz, G. et al. Functional genetic screens for enhancer elements in the human genome using CRISPR-Cas9. Nat. Biotechnol. 34, 192–198 (2016).

    Article  CAS  PubMed  Google Scholar 

  58. Thynn, H. N. et al. An allele-specific functional SNP associated with two systemic autoimmune diseases modulates IRF5 expression by long-range chromatin loop formation. J. Invest. Dermatol. 140, 348–360.e11 (2020).

    Article  CAS  PubMed  Google Scholar 

  59. Doench, J. G. Am i ready for CRISPR? A user’s guide to genetic screens. Nat. Rev. Genet. 19, 67–80 (2018).

    Article  CAS  PubMed  Google Scholar 

  60. Simeonov, D. R. et al. Discovery of stimulation-responsive immune enhancers with CRISPR activation. Nature 549, 111–115 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Klann, T. S. et al. CRISPR-Cas9 epigenome editing enables high-throughput screening for functional regulatory elements in the human genome. Nat. Biotechnol. 35, 561–568 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Ray, J. P. et al. Prioritizing disease and trait causal variants at the TNFAIP3 locus using functional and genomic features. Nat. Commun. 11, 1237 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Fulco, C. P. et al. Activity-by-contact model of enhancer–promoter regulation from thousands of CRISPR perturbations. Nat. Genet. 51, 1664–1669 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Nasrallah, R. et al. A distal enhancer at risk locus 11q13.5 promotes suppression of colitis by Treg cells. Nature 583, 447–452 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Gasperini, M. et al. A genome-wide framework for mapping gene regulation via cellular genetic screens in brief a highly multiplexed CRISPRi screen uncovers gene-enhancer relationships at scale. A genome-wide framework for mapping gene regulation via cellular genetic screens. Cell 176, 377–390 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Cho, J. H. & Gregersen, P. K. Genomics and the multifactorial nature of human autoimmune disease. N. Engl. J. Med. 365, 1612–1623 (2011).

    Article  CAS  PubMed  Google Scholar 

  67. Husebye, E. S., Anderson, M. S. & Kampe, O. Autoimmune polyendocrine syndromes. N. Engl. J. Med. 378, 1132–1141 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Martínez-Feito, A. et al. Autoimmune lymphoproliferative syndrome due to somatic FAS mutation (ALPS-sFAS) combined with a germline caspase-10 (CASP10) variation. Immunobiology 221, 40–47 (2016).

    Article  PubMed  CAS  Google Scholar 

  69. Li, G. et al. High-throughput identification of noncoding functional SNPs via type IIS enzyme restriction. Nat. Genet. 50, 1180–1188 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Wallace, C. et al. Dissection of a complex disease susceptibility region using a bayesian stochastic search approach to fine mapping. PLoS Genet. 11, 1–22 (2015).

    Article  CAS  Google Scholar 

  71. Lonsdale, J. et al. The genotype-tissue expression (GTEx) project. Nat. Genet. 45, 580–585 (2013).

    Article  CAS  Google Scholar 

  72. Tewhey, R. et al. Direct identification of hundreds of expression-modulating variants using a multiplexed reporter assay. Cell 165, 1519–1529 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Chen, L. et al. Genetic drivers of epigenetic and transcriptional variation in human immune cells. Cell 167, 1398–1414.e24 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Ricaño-Ponce, I. et al. Refined mapping of autoimmune disease associated genetic variants with gene expression suggests an important role for non-coding RNAs. J. Autoimmun. 68, 62–74 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Zhernakova, D. V. et al. Identification of context-dependent expression quantitative trait loci in whole blood. Nat. Genet. 49, 139–145 (2017).

    Article  CAS  PubMed  Google Scholar 

  76. Gracey, E. et al. TYK2 inhibition reduces type 3 immunity and modifies disease progression in murine spondyloarthritis. J. Clin. Invest. 130, 1863–1878 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Westra, H.-J. et al. Fine-mapping and functional studies highlight potential causal variants for rheumatoid arthritis and type 1 diabetes. Nat. Genet. 50, 1366–1374 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Hwang, J. S. et al. NFAT1 and JunB cooperatively regulate IL-31 gene expression in CD4+ T cells in health and disease. J. Immunol. 194, 1963–1974 (2015).

    Article  CAS  PubMed  Google Scholar 

  79. Tripathi, S. K. et al. Genome-wide analysis of STAT3-mediated transcription during early human Th17 cell differentiation. Cell Rep. 19, 1888–1901 (2017).

    Article  CAS  PubMed  Google Scholar 

  80. Gutierrez-Arcelus, M. et al. Allele-specific expression changes dynamically during T cell activation in HLA and other autoimmune loci. Nat. Genet. 52, 247–253 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Brandt, M. et al. An autoimmune disease risk variant has a trans master regulatory effect mediated by IRF1 under immune stimulation. bioRxiv https://doi.org/10.1101/2020.02.21.959734 (2020).

    Article  Google Scholar 

  82. Kumasaka, N., Knights, A. J. & Gaffney, D. J. High-resolution genetic mapping of putative causal interactions between regions of open chromatin. Nat. Genet. 51, 128–137 (2019).

    Article  CAS  PubMed  Google Scholar 

  83. Odqvist, L. et al. Genetic variations in A20 DUB domain provide a genetic link to citrullination and neutrophil extracellular traps in systemic lupus erythematosus. Ann. Rheum. Dis. 78, 1363–1370 (2019).

    Article  CAS  PubMed  Google Scholar 

  84. Roth, T. L. et al. Reprogramming human T cell function and specificity with non-viral genome targeting. Nature 559, 405–409 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Komor, A. C., Kim, Y. B., Packer, M. S., Zuris, J. A. & Liu, D. R. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature 533, 420–424 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Gaudelli, N. M. et al. Programmable base editing of T to G C in genomic DNA without DNA cleavage. Nature 551, 464–471 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Gehrke, J. M. et al. An apobec3a-cas9 base editor with minimized bystander and off-target activities. Nat. Biotechnol. 36, 977 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Liang, P. et al. Correction of β-thalassemia mutant by base editor in human embryos. Protein Cell 8, 811–822 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Zeng, J. et al. Therapeutic base editing of human hematopoietic stem cells. Nat. Med. 26, 535–541 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Webber, B. R. et al. Highly efficient multiplex human T cell engineering without double-strand breaks using Cas9 base editors. Nat. Commun. 10, 5222 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Anzalone, A. V. et al. Search-and-replace genome editing without double-strand breaks or donor DNA. Nature 576, 149–157 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Trynka, G. et al. Chromatin marks identify critical cell types for fine mapping complex trait variants. Nat. Genet. 45, 124–130 (2013).

    Article  CAS  PubMed  Google Scholar 

  93. Raj, T. et al. Polarization of the effects of autoimmune and neurodegenerative risk alleles in leukocytes. Science 344, 519–523 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Gutierrez-Achury, J. et al. Functional implications of disease-specific variants in loci jointly associated with coeliac disease and rheumatoid arthritis. Hum. Mol. Genet. 25, 180–190 (2016).

    Article  CAS  PubMed  Google Scholar 

  95. Thalayasingam, N. et al. CD4+ and B lymphocyte expression quantitative traits at rheumatoid arthritis risk loci in patients with untreated early arthritis: implications for causal gene identification. Arthritis Rheumatol. 70, 361–370 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Der, E. et al. Tubular cell and keratinocyte single-cell transcriptomics applied to lupus nephritis reveal type I IFN and fibrosis relevant pathways. Nat. Immunol. 20, 915–927 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Shalek, A. K. & Benson, M. Single-cell analyses to tailor treatments. Sci. Transl. Med. 9, 4730 (2017).

    Article  CAS  Google Scholar 

  98. Rao, D. A. et al. Pathologically expanded peripheral T helper cell subset drives B cells in rheumatoid arthritis. Nature 542, 110–114 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Smillie, C. S. et al. Intra- and inter-cellular rewiring of the human colon during ulcerative colitis. Cell 178, 714–730.e22 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. van der Wijst, M. G. P. et al. The single-cell eQTLGen consortium. eLife 9, e52155 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  101. Dixit, A. et al. Perturb-seq: dissecting molecular circuits with scalable single-cell RNA profiling of pooled genetic screens. Cell 167, 1853–1866.e17 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Rubin, A. J. et al. Coupled single-cell CRISPR screening and epigenomic profiling reveals causal gene regulatory etworks. Cell 176, 361–376.e17 (2019).

    Article  CAS  PubMed  Google Scholar 

  103. Datlinger, P. et al. Pooled CRISPR screening with single-cell transcriptome readout. Nat. Methods 14, 297–301 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Marshall, J. L. et al. HyPR-seq: Single-cell quantification of chosen RNAs via hybridization and sequencing of DNA probes. Proc. Natl Acad. Sci. 117, 33404–33413 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Roth, T. L. et al. Pooled knockin targeting for genome engineering of cellular immunotherapies. Cell 181, 728–744.e21 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Grünewald, J. et al. CRISPR DNA base editors with reduced RNA off-target and self-editing activities. Nat. Biotechnol. 37, 1041–1048 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  107. Walton, R. T., Christie, K. A., Whittaker, M. N. & Kleinstiver, B. P. Unconstrained genome targeting with near-PAMless engineered CRISPR-Cas9 variants. Science 368, 290–296 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Hu, J. H. et al. Evolved Cas9 variants with broad PAM compatibility and high DNA specificity. Nature 556, 57–63 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Kleinstiver, B. P. et al. High-fidelity CRISPR-Cas9 nucleases with no detectable genome-wide off-target effects. Nature 529, 490–495 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Kleinstiver, B. P. et al. Engineered CRISPR-Cas9 nucleases with altered PAM specificities. Nature 523, 481–485 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  111. Nishimasu, H. et al. Engineered CRISPR-Cas9 nuclease with expanded targeting space. Science 361, 1259–1262 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Cox, D. B. T. et al. RNA editing with CRISPR-Cas13. Science 358, 1019–1027 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Abudayyeh, O. O. et al. A cytosine deaminase for programmable single-base RNA editing. Science 365, 382–386 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Mok, B. Y. et al. A bacterial cytidine deaminase toxin enables CRISPR-free mitochondrial base editing. Nature 583, 631–637 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Zuo, E. et al. Cytosine base editor generates substantial off-target single-nucleotide variants in mouse embryos. Science 364, 289–292 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Simeonov, D. R. & Marson, A. CRISPR-based tools in immunity. Annu. Rev. Immunol. 37, 571–597 (2019).

    Article  CAS  PubMed  Google Scholar 

  117. Ewart, D. T., Peterson, E. J. & Steer, C. J. Gene editing for inflammatory disorders. Ann. Rheum. Dis. 78, 6–15 (2019).

    Article  CAS  PubMed  Google Scholar 

  118. Ben-David, U. et al. Genetic and transcriptional evolution alters cancer cell line drug response. Nature 560, 325–330 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Ghandi, M. et al. Next-generation characterization of the cancer cell line encyclopedia. Nature 569, 503–508 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

S.R. is supported by funding from the National Institutes of Health (UH2AR067677, U01 HG009379, 1R01AR063759). Y.B. and S.R. are funded by the Broad Institute through the Scientific Projects to Accelerate Research (SPARC) programme and an investigator-initiated grant from Pfizer. P.A.N. is funded by National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS) awards 2R01 AR065538, R01 AR075906, R01 AR073201, P30 AR070253, R21 AR076630 and NHLBI award R21 HL150575; the Fundación Bechara; the Arbuckle Family Fund for Arthritis Research; and the Samara Jan Turkel Center. A.M. is funded by NIH awards DP3DK111914-01 and R01DK1199979 and the National Multiple Sclerosis Society. A.M. holds a Career Award for Medical Scientists from the Burroughs Wellcome Fund and received the Lloyd Old STAR career award from the Cancer Research Institute (CRI). The Marson lab has received funding from the Innovative Genomics Institute (IGI), the Parker Institute for Cancer Immunotherapy (PICI), the Chan Zuckerberg Biohub and the Northern California JDRF Center of Excellence.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed to all aspects of the article.

Corresponding author

Correspondence to Soumya Raychaudhuri.

Ethics declarations

Competing interests

P.A.N. has been supported by investigator-initiated research grants from AbbVie, Bristol-Myers Squibb, Novartis, Pfizer, Sobi; consulting fees from Bristol-Myers Squibb (BMS), Cerecor, Miach Orthopedics, Novartis, Pfizer, Quench Bio, Sigilon, Simcere, Sobi, Exo Therapeutics and XBiotech; royalties from UpToDate Inc.; and salary support from the Childhood Arthritis and Rheumatology Research Alliance (CARRA). A.M. is a compensated co-founder, member of the boards of directors and a member of the scientific advisory boards of Spotlight Therapeutics and Arsenal Biosciences. A.M. was a compensated member of the scientific advisory board at PACT Pharma and was a compensated adviser to Juno Therapeutics and Trizell. A.M. owns stock in Arsenal Biosciences, Spotlight Therapeutics and PACT Pharma. A.M. has received honoraria from Merck and Vertex, a consulting fee from AlphaSights, and is an investor in and informal adviser to Offline Ventures. The Marson lab has received research support from Juno Therapeutics, Epinomics, Sanofi, GlaxoSmithKline, Gilead, and Anthem and reagents from Illumina. A.M. is an inventor on multiple inventions with the Whitehead Institute, UCSF and the Gladstone Institutes, including some that have been licensed. S.R. is a founder for Mestag, Inc, served in the past year as an adviser to Gilead, Biogen, Merck, Pfizer, Janssen and Abbvie. Y.B. and D.M. have no competing interests.

Additional information

Peer review information

Nature Reviews Rheumatology thanks S. Tripathi, D. Ewart and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

CUT&Tag

A technique that uses antibodies specific for DNA binding proteins to measure DNA regions bound by these proteins. The antibodies are tethered to a Tn5 transposase fusion protein and, following antibody-binding, activation of the transposase cleaves nearby DNA and generates fragment libraries for sequencing, the data of which are used to identify the bound regions.

CUT&RUN

Similar to CUT&Tag, this technique analyses DNA regions bound by specific proteins using targeted antibodies. Unlike with CUT&Tag, the antibody is tethered to a micrococcal nuclease, which fragments nearby DNA elements.

ATAC-seq

A technique used for assaying areas of open chromatin in the genome; the method relies on unguided Tn5 transposase-induced fragmentation of the genome.

IMPACT

A computational genome annotation strategy that identifies regulatory elements defined by cell-state-specific transcription factor binding profiles.

Massively parallel reporter assay

A technique used to identify regulatory regions of the genome in a high-throughput assay. Regions of interest are cloned into a minimal reporter with a unique barcode and a promoter to create a large pool of constructs. Constructs are expressed into cells and the RNA and DNA are sequenced to estimate the effects of each regulatory region on barcode gene expression, indicating regulatory capacity.

Fluorescent in situ hybridization

A technique that measures RNA expression by flow cytometry using hybridization and amplification of fluorescent RNA probes.

Single-cell RNA sequencing

An approach for measuring the expression of RNA in individual cells using droplet or plate-based technology.

Computational fine mapping

A process by which a trait-associated region from a genome-wide association study is further analysed to identify genetic variants that are likely to causally influence the trait, usually through the integration of additional epigenetic or genomic data.

Expression quantitative trait loci

Trait-associated regions that can explain a notable portion of the changes in expression of a gene.

Electromobility shift assays

A molecular biology technique that measures the interaction of DNA and proteins on a protein-binding gel.

Luciferase assays

A technique used to identify regions of the genome that can regulate gene expression. In these assays, the region of interest is cloned upstream or downstream of the gene encoding luciferase and the resultant plasmids are transfected into cells to measure the effect of the modification on luciferase expression.

Affinity precipitation assays

A technique that is similar to electromobility shift assays, with the exception that bound complexes are magnetically pulled down prior to examination on a protein-binding gel.

Droplet-based RNAseq

A single-cell RNA sequencing method that relies on droplet generation and encapsulation of individual cells.

Mass cytometry

A type of single-cell analysis that tags cells with antibodies conjugated to heavy metals to then analyse staining intensity by time-of-flight mass spectrometry.

HyPR-seq

A droplet-based targeted single-cell sequencing technique that involves hybridizing DNA probes to selected RNA to measure the expression of genes.

Directed evolution

A process of protein engineering that mimics biological evolution. A library of mutated genes is expressed in cell lines and a phenotype is selected; the process is repeated with new mutations and harsher selection conditions until a desired outcome is achieved.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baglaenko, Y., Macfarlane, D., Marson, A. et al. Genome editing to define the function of risk loci and variants in rheumatic disease. Nat Rev Rheumatol 17, 462–474 (2021). https://doi.org/10.1038/s41584-021-00637-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41584-021-00637-8

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research