Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The role of HIF proteins in maintaining the metabolic health of the intervertebral disc

Abstract

The physiologically hypoxic intervertebral disc and cartilage rely on the hypoxia-inducible factor (HIF) family of transcription factors to mediate cellular responses to changes in oxygen tension. During homeostatic development, oxygen-dependent prolyl hydroxylases, circadian clock proteins and metabolic intermediates control the activities of HIF1 and HIF2 in these tissues. Mechanistically, HIF1 is the master regulator of glycolytic metabolism and cytosolic lactate levels. In addition, HIF1 regulates mitochondrial metabolism by promoting flux through the tricarboxylic acid cycle, inhibiting downsteam oxidative phosphorylation and controlling mitochondrial health through modulation of the mitophagic pathway. Accumulation of metabolic intermediates from HIF-dependent processes contribute to intracellular pH regulation in the disc and cartilage. Namely, to prevent changes in intracellular pH that could lead to cell death, HIF1 orchestrates a bicarbonate buffering system in the disc, controlled by carbonic anhydrase 9 (CA9) and CA12, sodium bicarbonate cotransporters and an intracellular H+/lactate efflux mechanism. In contrast to HIF1, the role of HIF2 remains elusive; in disorders of the disc and cartilage, its function has been linked to both anabolic and catabolic pathways. The current knowledge of hypoxic cell metabolism and regulation of HIF1 activity provides a strong basis for the development of future therapies designed to repair the degenerative disc.

Key points

  • Loss of control of hypoxia-inducible factor 1 (HIF1) and HIF-dependent metabolic pathways can lead to intervertebral disc degeneration, whereas loss of HIF2 function is implicated in osteoarthritis.

  • In nucleus pulposus cells, HIF1 and HIF2 are uniquely regulated by both oxygen-dependent and oxygen-independent mechanisms involving prolyl hydroxylase domain-containing proteins (PHDs) and circadian clock genes.

  • Cells of the intervertebral disc possess functional mitochondria and, in nucleus pulposus cells, mitochondria undergo HIF-dependent mitophagy and fragmentation.

  • HIF1 maintains glycolytic and tricarboxylic acid cycle flux while simultaneously inhibiting oxidative phosphorylation in nucleus pulposus cells.

  • HIF1 controls intracellular H+/lactate levels via monocarboxylate transporter 4 (MCT4); conversely, the accumulated lactate is capable of stabilizing HIF proteins by inhibiting PHD function as well as controlling transcriptional programmes.

  • In addition to the well-studied proton extrusion mechanisms, the intracellular pH in nucleus pulposus cells is maintained by a HIF-dependent bicarbonate buffering mechanism controlled by various components including carbonic anhydrases.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Regulation of HIF1α in hypoxic nucleus pulposus cells.
Fig. 2: HIF1α-dependent metabolic and pH regulatory pathways in nucleus pulposus cells.
Fig. 3: Pathological link between loss of HIF1α function and intervertebral disc degeneration.

References

  1. 1.

    Kaelin, W. G. The von Hippel–Lindau tumour suppressor protein: O2 sensing and cancer. Nat. Rev. Cancer 8, 865–873 (2008).

    CAS  PubMed  Article  Google Scholar 

  2. 2.

    Shen, C. & Kaelin, W. G. The VHL/HIF axis in clear cell renal carcinoma. Semin. Cancer Biol. 23, 18–25 (2013).

    CAS  PubMed  Article  Google Scholar 

  3. 3.

    Schödel, J. & Ratcliffe, P. J. Mechanisms of hypoxia signalling: new implications for nephrology. Nat. Rev. Nephrol. 15, 641–659 (2019).

    PubMed  Article  Google Scholar 

  4. 4.

    Semenza, G. L. Hypoxia-inducible factors in physiology and medicine. Cell 148, 399–408 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  5. 5.

    Silagi, E. S. et al. Lactate efflux from intervertebral disc cells is required for maintenance of spine health. J. Bone Miner. Res. 35, 550–570 (2020).

    CAS  PubMed  Article  Google Scholar 

  6. 6.

    Madhu, V. et al. Hypoxic regulation of mitochondrial metabolism and mitophagy in nucleus pulposus cells is dependent on HIF-1α–BNIP3 axis. J. Bone Miner. Res. 35, 1504–1524 (2020).

    CAS  PubMed  Article  Google Scholar 

  7. 7.

    Silagi, E. S. et al. Bicarbonate recycling by HIF-1-dependent carbonic anhydrase isoforms 9 and 12 is critical in maintaining intracellular pH and viability of nucleus pulposus cells. J. Bone Miner. Res. 33, 338–355 (2018).

    CAS  PubMed  Article  Google Scholar 

  8. 8.

    Pan, H. et al. RNA binding protein HuR regulates extracellular matrix gene expression and pH homeostasis independent of controlling HIF-1α signaling in nucleus pulposus cells. Matrix Biol. 77, 23–40 (2019).

    CAS  PubMed  Article  Google Scholar 

  9. 9.

    Choi, H. et al. Hypoxia promotes noncanonical autophagy in nucleus pulposus cells independent of MTOR and HIF1A signaling. Autophagy 12, 1631–1646 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  10. 10.

    Yao, Q. et al. Suppressing mitochondrial respiration is critical for hypoxia tolerance in the fetal growth plate. Dev. Cell 49, 748–763 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  11. 11.

    Yang, S. et al. Hypoxia-inducible factor-2α is a catabolic regulator of osteoarthritic cartilage destruction. Nat. Med. 16, 687–694 (2010).

    CAS  PubMed  Article  Google Scholar 

  12. 12.

    Saito, T. et al. Transcriptional regulation of endochondral ossification by HIF-2α during skeletal growth and osteoarthritis development. Nat. Med. 16, 678–687 (2010).

    CAS  PubMed  Article  Google Scholar 

  13. 13.

    Murray, C. J. L. The state of US health, 1990-2010: burden of diseases, injuries, and risk factors. JAMA 310, 591–608 (2013).

    CAS  PubMed  Article  Google Scholar 

  14. 14.

    Choi, H. et al. A novel mouse model of intervertebral disc degeneration shows altered cell fate and matrix homeostasis. Matrix Biol. 70, 102–122 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  15. 15.

    Silagi, E. S., Shapiro, I. M. & Risbud, M. V. Glycosaminoglycan synthesis in the nucleus pulposus: dysregulation and the pathogenesis of disc degeneration. Matrix Biol. 71–72, 368–379 (2018).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  16. 16.

    Le Maitre, C. L., Pockert, A. P., Buttle, D. J., Freemont, A. J. & Hoyland, J. A. Matrix synthesis and degradation in human intervertebral disc degeneration. Biochem. Soc. Trans. 35, 652–655 (2007).

    PubMed  Article  Google Scholar 

  17. 17.

    Gorth, D. J., Shapiro, I. M. & Risbud, M. V. Transgenic mice overexpressing human TNF-α experience early onset spontaneous intervertebral disc herniation in the absence of overt degeneration. Cell Death Dis. 10, 7 (2018).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  18. 18.

    Risbud, M. V. & Shapiro, I. M. Role of cytokines in intervertebral disc degeneration: pain and disc content. Nat. Rev. Rheumatol. 10, 44–56 (2014).

    CAS  PubMed  Article  Google Scholar 

  19. 19.

    Nachemson, A. Intradiscal measurements of pH in patients with lumbar rhizopathies. Acta Orthop. Scand. 40, 23–42 (1969).

    CAS  PubMed  Article  Google Scholar 

  20. 20.

    Lin, W. P. et al. Polymorphism in the hypoxia-inducible factor 1alpha gene may confer susceptibility to LDD in Chinese cohort. PLoS ONE 8, e73158 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  21. 21.

    Power, K. A. et al. Identification of cell surface-specific markers to target human nucleus pulposus cells: expression of carbonic anhydrase XII varies with age and degeneration. Arthritis Rheum. 63, 3876–3886 (2011).

    CAS  PubMed  Article  Google Scholar 

  22. 22.

    Peroglio, M. et al. Intervertebral disc response to stem cell treatment is conditioned by disc state and cell carrier: an ex vivo study. J. Orthop. Transl. 9, 43–51 (2017).

    Google Scholar 

  23. 23.

    Shapiro, I. M., Vresilovic, E. J. & Risbud, M. V. Is the spinal motion segment a diarthrodial polyaxial joint: what a nice nucleus like you doing in a joint like this? Bone 50, 771–776 (2012).

    PubMed  Article  Google Scholar 

  24. 24.

    Tessier, S. et al. TonEBP-deficiency accelerates intervertebral disc degeneration underscored by matrix remodeling, cytoskeletal rearrangements, and changes in proinflammatory gene expression. Matrix Biol. 87, 94–111 (2020).

    CAS  PubMed  Article  Google Scholar 

  25. 25.

    Rudert, M. & Tillmann, B. Lymph and blood supply of the human intervertebral disc. Cadaver study of correlations to discitis. Acta Orthop. Scand. 64, 37–40 (1993).

    CAS  PubMed  Article  Google Scholar 

  26. 26.

    Risbud, M. V. et al. Nucleus pulposus cells express HIF-1α under normoxic culture conditions: a metabolic adaptation to the intervertebral disc microenvironment. J. Cell. Biochem. 98, 152–159 (2006).

    CAS  PubMed  Article  Google Scholar 

  27. 27.

    Agrawal, A. et al. Normoxic stabilization of HIF-1α drives glycolytic metabolism and regulates aggrecan gene expression in nucleus pulposus cells of the rat intervertebral disk. Am. J. Physiol. Cell Physiol. 293, C621–C631 (2007).

    CAS  PubMed  Article  Google Scholar 

  28. 28.

    Fujita, N., Chiba, K., Shapiro, I. M. & Risbud, M. V. HIF-1α and HIF-2α degradation is differentially regulated in nucleus pulposus cells of the intervertebral disc. J. Bone Min. Res. 27, 401–412 (2012).

    CAS  Article  Google Scholar 

  29. 29.

    Risbud, M. V., Schipani, E. & Shapiro, I. M. Hypoxic regulation of nucleus pulposus cell survival: from niche to notch. Am. J. Pathol. 176, 1577–1583 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  30. 30.

    Schito, L. & Semenza, G. L. Hypoxia-inducible factors: master regulators of cancer progression. Trends Cancer 2, 758–770 (2016).

    PubMed  Article  Google Scholar 

  31. 31.

    Yang, M., Su, H., Soga, T., Kranc, K. R. & Pollard, P. J. Prolyl hydroxylase domain enzymes: important regulators of cancer metabolism. Hypoxia 2, 127–142 (2014).

    PubMed  PubMed Central  Google Scholar 

  32. 32.

    Dengler, V. L., Galbraith, M. D. & Espinosa, J. M. Transcriptional regulation by hypoxia inducible factors. Crit. Rev. Biochem. Mol. Biol. 49, 1–15 (2014).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  33. 33.

    Talks, K. L. et al. The expression and distribution of the hypoxia-inducible factors HIF-1α and HIF-2α in normal human tissues, cancers, and tumor-associated macrophages. Am. J. Pathol. 157, 411–421 (2000).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  34. 34.

    Ratcliffe, P. J. HIF-1 and HIF-2: working alone or together in hypoxia? J. Clin. Invest. 117, 862–865 (2007).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  35. 35.

    Downes, N. L., Laham-Karam, N., Kaikkonen, M. U. & Ylä-Herttuala, S. Differential but complementary HIF1α and HIF2α transcriptional regulation. Mol. Ther. 26, 1735–1745 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  36. 36.

    Suyama, K. et al. Circadian factors BMAL1 and RORα control HIF-1α transcriptional activity in nucleus pulposus cells: implications in maintenance of intervertebral disc health. Oncotarget 7, 23056–23071 (2016).

    PubMed  PubMed Central  Article  Google Scholar 

  37. 37.

    Dudek, M. et al. The intervertebral disc contains intrinsic circadian clocks that are regulated by age and cytokines and linked to degeneration. Ann. Rheum. Dis. 76, 576–584 (2016).

    PubMed  Article  CAS  Google Scholar 

  38. 38.

    Fujita, N. et al. Expression of prolyl hydroxylases (PHDs) is selectively controlled by HIF-1 and HIF-2 proteins in nucleus pulposus cells of the intervertebral disc: distinct roles of PHD2 and PHD3 proteins in controlling HIF-1α activity in hypoxia. J. Biol. Chem. 287, 16975–16986 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  39. 39.

    Thoms, B. L. & Murphy, C. L. Inhibition of hypoxia-inducible factor-targeting prolyl hydroxylase domain-containing protein 2 (PHD2) enhances matrix synthesis by human chondrocytes. J. Biol. Chem. 285, 20472–20480 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  40. 40.

    Schoepflin, Z. R., Silagi, E. S., Shapiro, I. M. & Risbud, M. V. PHD3 is a transcriptional coactivator of HIF-1a in nucleus pulposus cells independent of the PKM2-JMJD5 axis. FASEB J. 31, 3831–3847 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  41. 41.

    Wang, H. J. et al. JMJD5 regulates PKM2 nuclear translocation and reprograms HIF-1α-mediated glucose metabolism. Proc. Natl Acad. Sci. USA 111, 279–284 (2014).

    CAS  PubMed  Article  Google Scholar 

  42. 42.

    Luo, W. et al. Pyruvate kinase M2 is a PHD3-stimulated coactivator for hypoxia-inducible factor 1. Cell 145, 732–744 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  43. 43.

    Luo, W. et al. Hsp70 and CHIP selectively mediate ubiquitination and degradation of hypoxia-inducible factor (HIF)-1α but not HIF-2α. J. Biol. Chem. 285, 3651–3663 (2010).

    CAS  PubMed  Article  Google Scholar 

  44. 44.

    Gogate, S. S., Fujita, N., Skubutyte, R., Shapiro, I. M. & Risbud, M. V. Tonicity enhancer binding protein (TonEBP) and hypoxia-inducible factor (HIF) coordinate heat shock protein 70 (Hsp70) expression in hypoxic nucleus pulposus cells: role of Hsp70 in HIF-1α degradation. J. Bone Miner. Res. 27, 1106–1117 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  45. 45.

    Schoepflin, Z. R., Shapiro, I. M. & Risbud, M. V. Class I and IIa HDACs mediate HIF-1α stability through PHD2-dependent mechanism while HDAC6, a class IIb member, promotes HIF-1α transcriptional activity in nucleus pulposus cells of the intervertebral disc. J. Bone Miner. Res. 31, 1287–1299 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  46. 46.

    Tran, C. M. et al. Hypoxia-inducible factor (HIF)-1α and CCN2 form a regulatory circuit in hypoxic nucleus pulposus cells: CCN2 suppresses HIF-1α level and transcriptional activity. J. Biol. Chem. 288, 12654–12666 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  47. 47.

    Lando, D. et al. FIH-1 is an asparaginyl hydroxylase enzyme that regulates the transcriptional activity of hypoxia-inducible factor. Genes Dev. 16, 1466–1471 (2002).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  48. 48.

    Hirose, Y. et al. FIH-1-Mint3 axis does not control HIF-1a transcriptional activity in nucleus pulposus cells. J. Biol. Chem. 289, 20594–20605 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  49. 49.

    Zhang, N. et al. The asparaginyl hydroxylase factor inhibiting HIF-1α is an essential regulator of metabolism. Cell Metab. 11, 364–378 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  50. 50.

    Berenbaum, F. & Meng, Q. J. The brain–joint axis in osteoarthritis: nerves, circadian clocks and beyond. Nat. Rev. Rheumatol. 12, 508–516 (2016).

    PubMed  Article  Google Scholar 

  51. 51.

    Kanbe, K., Inoue, K., Xiang, C. & Chen, Q. Identification of clock as a mechanosensitive gene by large-scale DNA microarray analysis: downregulation in osteoarthritic cartilage. Mod. Rheumatol. 16, 131–136 (2006).

    CAS  PubMed  Article  Google Scholar 

  52. 52.

    Kobayashi, M. et al. A circadian clock gene, PER2, activates HIF-1 as an effector molecule for recruitment of HIF-1α to promoter regions of its downstream genes. FEBS J. 284, 3804–3816 (2017).

    CAS  PubMed  Article  Google Scholar 

  53. 53.

    Wu, Y. et al. Reciprocal regulation between the circadian clock and hypoxia signaling at the genome level in mammals. Cell Metab. 25, 73–85 (2017).

    CAS  PubMed  Article  Google Scholar 

  54. 54.

    Manella, G. et al. Hypoxia induces a time- and tissue-specific response that elicits intertissue circadian clock misalignment. Proc. Natl Acad. Sci. USA 117, 779–786 (2020).

    CAS  PubMed  Article  Google Scholar 

  55. 55.

    Bass, J. Circadian topology of metabolism. Nature 491, 348–356 (2012).

    CAS  PubMed  Article  Google Scholar 

  56. 56.

    Fisch, K. M. et al. Identification of transcription factors responsible for dysregulated networks in human osteoarthritis cartilage by global gene expression analysis. Osteoarthritis Cartilage 26, 1531–1538 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  57. 57.

    Dudek, M. et al. The chondrocyte clock gene Bmal1 controls cartilage homeostasis and integrity. J. Clin. Invest. 126, 365–376 (2016).

    PubMed  Article  Google Scholar 

  58. 58.

    Zhao, I., Bogossian, F. & Turner, C. The effects of shift work and interaction between shift work and overweight/obesity on low back pain in nurses: results from a longitudinal study. J. Occup. Environ. Med. 54, 820–825 (2012).

    PubMed  Article  Google Scholar 

  59. 59.

    Grunhagen, T., Shirazi-Adl, A., Fairbank, J. C. T. & Urban, J. P. G. Intervertebral disk nutrition: a review of factors influencing concentrations of nutrients and metabolites. Orthop. Clin. North Am. 42, 465–477 (2011).

    PubMed  Article  Google Scholar 

  60. 60.

    Huang, Y. C., Urban, J. P. G. & Luk, K. D. K. Intervertebral disc regeneration: do nutrients lead the way? Nat. Rev. Rheumatol. 10, 561–566 (2014).

    PubMed  Article  Google Scholar 

  61. 61.

    Bibby, S. R. S., Jones, D. A., Ripley, R. M. & Urban, J. P. G. Metabolism of the intervertebral disc: effects of low levels of oxygen, glucose, and pH on rates of energy metabolism of bovine nucleus pulposus cells. Spine 30, 487–496 (2005).

    PubMed  Article  Google Scholar 

  62. 62.

    Merceron, C. et al. Loss of HIF-1α in the notochord results in cell death and complete disappearance of the nucleus pulposus. PLoS ONE 9, e110768 (2014).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  63. 63.

    Wu, W. J. et al. SHH-dependent knockout of HIF-1 alpha accelerates the degenerative process in mouse intervertebral disc. Int. J. Immunopathol. Pharmacol. 26, 601–609 (2013).

    CAS  PubMed  Article  Google Scholar 

  64. 64.

    Zhang, Y. et al. Early onset of disc degeneration in SM/J mice is associated with changes in ion transport systems and fibrotic events. Matrix Biol. 70, 123–139 (2018).

    CAS  PubMed  Article  Google Scholar 

  65. 65.

    Fujita, N. et al. Vascular endothelial growth factor-A is a survival factor for nucleus pulposus cells in the intervertebral disc. Biochem. Biophys. Res. Commun. 372, 367–372 (2008).

    CAS  PubMed  Article  Google Scholar 

  66. 66.

    Madhu, V., Guntur, A. R. & Risbud, M. V. Role of autophagy in intervertebral disc and cartilage function: implications in health and disease. Matrix Biol. https://doi.org/10.1016/j.matbio.2020.12.002 (2020).

    Article  PubMed  Google Scholar 

  67. 67.

    Hu, S. et al. Stabilization of HIF-1α alleviates osteoarthritis via enhancing mitophagy. Cell Death Dis. 11, 1–16 (2020).

    Article  CAS  Google Scholar 

  68. 68.

    Mazure, N. M. & Pouysségur, J. Atypical BH3-domains of BNIP3 and BNIP3L lead to autophagy in hypoxia. Autophagy 5, 868–869 (2009).

    PubMed  Article  Google Scholar 

  69. 69.

    Novais, E. J. et al. Hypoxia and hypoxia-inducible factor-1α regulate endoplasmic reticulum stress in nucleus pulposus cells. Am. J. Pathol. 191, 487–502 (2019).

    Article  CAS  Google Scholar 

  70. 70.

    Bibby, S. R. S. & Urban, J. P. G. Effect of nutrient deprivation on the viability of intervertebral disc cells. Eur. Spine J. 13, 694–701 (2004).

    Article  Google Scholar 

  71. 71.

    Bartels, E. M., Fairbank, J. C., Winlove, C. P. & Urban, J. P. Oxygen and lactate concentrations measured in vivo in the intervertebral discs of patients with scoliosis and back pain. Spine 23, 1–7 (1998).

    CAS  PubMed  Article  Google Scholar 

  72. 72.

    Richardson, S. M., Knowles, R., Tyler, J., Mobasheri, A. & Hoyland, J. A. Expression of glucose transporters GLUT-1, GLUT-3, GLUT-9 and HIF-1α in normal and degenerate human intervertebral disc. Histochem. Cell Biol. 129, 503–511 (2008).

    CAS  PubMed  Article  Google Scholar 

  73. 73.

    Papandreou, I., Cairns, R. A., Fontana, L., Lim, A. L. & Denko, N. C. HIF-1 mediates adaptation to hypoxia by actively downregulating mitochondrial oxygen consumption. Cell Metab. 3, 187–197 (2006).

    CAS  PubMed  Article  Google Scholar 

  74. 74.

    Kim, J. W., Tchernyshyov, I., Semenza, G. L. & Dang, C. V. HIF-1-mediated expression of pyruvate dehydrogenase kinase: a metabolic switch required for cellular adaptation to hypoxia. Cell Metab. 3, 177–185 (2006).

    PubMed  Article  CAS  Google Scholar 

  75. 75.

    Ishihara, H. & Urban, J. P. Effects of low oxygen concentrations and metabolic inhibitors on proteoglycan and protein synthesis rates in the intervertebral disc. J. Orthop. Res. 17, 829–835 (1999).

    CAS  PubMed  Article  Google Scholar 

  76. 76.

    Ohshima, H. & Urban, J. P. The effect of lactate and pH on proteoglycan and protein synthesis rates in the intervertebral disc. Spine 17, 1079–1082 (1992).

    CAS  PubMed  Article  Google Scholar 

  77. 77.

    Watanabe, H., Bohensky, J., Freeman, T., Srinivas, V. & Shapiro, I. M. Hypoxic induction of UCP3 in the growth plate: UCP3 suppresses chondrocyte autophagy. J. Cell. Physiol. 216, 419–425 (2008).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  78. 78.

    Adijanto, J. & Philp, N. J. The SLC16A family of monocarboxylate transporters (MCTs)-physiology and function in cellular metabolism, pH homeostasis, and fluid transport. Curr. Top. Membr. 70, 275–311 (2012).

    CAS  PubMed  Article  Google Scholar 

  79. 79.

    Philp, N. J., Yoon, H. & Grollman, E. F. Monocarboxylate transporter MCT1 is located in the apical membrane and MCT3 in the basal membrane of rat RPE. Am. J. Physiol. Integr. Comp. Physiol. 274, R1824–R1828 (1998).

    CAS  Article  Google Scholar 

  80. 80.

    Dimmer, K. S., Friedrich, B., Lang, F., Deitmer, J. W. & Bröer, S. The low-affinity monocarboxylate transporter MCT4 is adapted to the export of lactate in highly glycolytic cells. Biochem. J. 350, 219–227 (2000).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  81. 81.

    Halestrap, A. P. The monocarboxylate transporter family–structure and functional characterization. IUBMB Life 64, 1–9 (2012).

    CAS  PubMed  Article  Google Scholar 

  82. 82.

    Ullah, M. S., Davies, A. J. & Halestrap, A. P. The plasma membrane lactate transporter MCT4, but not MCT1, is up-regulated by hypoxia through a HIF-1α-dependent mechanism. J. Biol. Chem. 281, 9030–9037 (2006).

    CAS  PubMed  Article  Google Scholar 

  83. 83.

    Roberts, S., Evans, H., Trivedi, J. & Menage, J. Histology and pathology of the human intervertebral disc. J. Bone Jt. Surg. Am. 88, 10–14 (2006).

    Google Scholar 

  84. 84.

    Thompson, J. P. et al. Preliminary evaluation of a scheme for grading the gross morphology of the human intervertebral disc. Spine 15, 411–415 (1990).

    CAS  PubMed  Article  Google Scholar 

  85. 85.

    Lu, H., Forbes, R. A. & Verma, A. Hypoxia-inducible factor 1 activation by aerobic glycolysis implicates the Warburg effect in carcinogenesis. J. Biol. Chem. 277, 23111–23115 (2002).

    CAS  PubMed  Article  Google Scholar 

  86. 86.

    De Saedeleer, C. J. et al. Lactate activates HIF-1 in oxidative but not in Warburg-phenotype human tumor cells. PLoS ONE 7, e46571 (2012).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  87. 87.

    Koivunen, P. et al. Inhibition of hypoxia-inducible factor (HIF) hydroxylases by citric acid cycle intermediates: possible links between cell metabolism and stabilization of HIF. J. Biol. Chem. 282, 4524–4532 (2007).

    CAS  PubMed  Article  Google Scholar 

  88. 88.

    Hewitson, K. S. et al. Structural and mechanistic studies on the inhibition of the hypoxia-inducible transcription factor hydroxylases by tricarboxylic acid cycle intermediates. J. Biol. Chem. 282, 3293–3301 (2007).

    CAS  PubMed  Article  Google Scholar 

  89. 89.

    Lu, H. et al. Reversible inactivation of HIF-1 prolyl hydroxylases allows cell metabolism to control basal HIF-1. J. Biol. Chem. 280, 41928–41939 (2005).

    CAS  PubMed  Article  Google Scholar 

  90. 90.

    Boukouris, A. E., Zervopoulos, S. D. & Michelakis, E. D. Metabolic enzymes moonlighting in the nucleus: metabolic regulation of gene transcription. Trends Biochem. Sci. 41, 712–730 (2016).

    CAS  PubMed  Article  Google Scholar 

  91. 91.

    Castello, A., Hentze, M. W. & Preiss, T. Metabolic enzymes enjoying new partnerships as RNA-binding proteins. Trends Endocrinol. Metab. 26, 746–757 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  92. 92.

    Gao, X. et al. Acetate functions as an epigenetic metabolite to promote lipid synthesis under hypoxia. Nat. Commun. 7, 11960 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  93. 93.

    Zhao, S. et al. ATP-citrate lyase controls a glucose-to-acetate metabolic switch. Cell Rep. 17, 1037–1052 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  94. 94.

    Castonguay, Z., Auger, C., Thomas, S. C., Chahma, M. & Appanna, V. D. Nuclear lactate dehydrogenase modulates histone modification in human hepatocytes. Biochem. Biophys. Res. Commun. 454, 172–177 (2014).

    CAS  PubMed  Article  Google Scholar 

  95. 95.

    Latham, T. et al. Lactate, a product of glycolytic metabolism, inhibits histone deacetylase activity and promotes changes in gene expression. Nucleic Acids Res. 40, 4794–4803 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  96. 96.

    Zhang, D. et al. Metabolic regulation of gene expression by histone lactylation. Nature 574, 575–580 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  97. 97.

    Razaq, S., Wilkins, R. J. & Urban, J. P. G. The effect of extracellular pH on matrix turnover by cells of the bovine nucleus pulposus. Eur. Spine J. 12, 341–349 (2003).

    PubMed  PubMed Central  Article  Google Scholar 

  98. 98.

    Gilbert, H. T. J., Hodson, N., Baird, P., Richardson, S. M. & Hoyland, J. A. Acidic pH promotes intervertebral disc degeneration: acid-sensing ion channel -3 as a potential therapeutic target. Sci. Rep. 6, 37360 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  99. 99.

    Deitmer, J. W., Theparambil, S. M., Ruminot, I. & Becker, H. M. The role of membrane acid/base transporters and carbonic anhydrases for cellular pH and metabolic processes. Front. Neurosci. 8, 430 (2015).

    PubMed  PubMed Central  Article  Google Scholar 

  100. 100.

    Maren, T. H. Carbonic anhydrase: chemistry, physiology, and inhibition. Physiol. Rev. 47, 595–781 (1967).

    CAS  PubMed  Article  Google Scholar 

  101. 101.

    Silagi, E. S., Batista, P., Shapiro, I. M. & Risbud, M. V. Expression of carbonic anhydrase III, a nucleus pulposus phenotypic marker, is hypoxia-responsive and confers protection from oxidative stress-induced cell death. Sci. Rep. 8, 4856 (2018).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  102. 102.

    Mookerjee, S. A., Goncalves, R. L. S., Gerencser, A. A., Nicholls, D. G. & Brand, M. D. The contributions of respiration and glycolysis to extracellular acid production. Biochim. Biophys. Acta Bioenerg. 1847, 171–181 (2015).

    CAS  Article  Google Scholar 

  103. 103.

    Chen, S. et al. PHD/HIF-1 upregulates CA12 to protect against degenerative disc disease: a human sample, in vitro and ex vivo study. Lab. Invest. 96, 561–569 (2016).

    CAS  PubMed  Article  Google Scholar 

  104. 104.

    McMurtrie, H. L. et al. The bicarbonate transport metabolon. J. Enzyme Inhib. Med. Chem. 19, 231–236 (2004).

    CAS  PubMed  Article  Google Scholar 

  105. 105.

    Jamali, S. et al. Hypoxia-induced carbonic anhydrase IX facilitates lactate flux in human breast cancer cells by non-catalytic function. Sci. Rep. 5, 13605 (2015).

    PubMed  PubMed Central  Article  Google Scholar 

  106. 106.

    Stridh, M. H. et al. Lactate flux in astrocytes is enhanced by a non-catalytic action of carbonic anhydrase II. J. Physiol. 590, 2333–2351 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  107. 107.

    Razaq, S., Urban, J. P. & Wilkins, R. J. Regulation of intracellular pH by bovine intervertebral disc cells. Cell. Physiol. Biochem. 10, 109–115 (2000).

    CAS  PubMed  Article  Google Scholar 

  108. 108.

    Horner, H. A. & Urban, J. P. G. 2001 Volvo Award Winner in Basic Science Studies: Effect of nutrient supply on the viability of cells from the nucleus pulposus of the intervertebral disc. Spine 26, 2543–2549 (2001).

    CAS  PubMed  Article  Google Scholar 

  109. 109.

    Huang, Y. C., Leung, V. Y. L., Lu, W. W. & Luk, K. D. K. The effects of microenvironment in mesenchymal stem cell-based regeneration of intervertebral disc. Spine J. 13, 352–362 (2013).

    PubMed  Article  Google Scholar 

  110. 110.

    Nomura, T., Mochida, J., Okuma, M., Nishimura, K. & Sakabe, K. Nucleus pulposus allograft retards intervertebral disc degeneration. Clin. Orthop. Relat. Res. 389, 94–101 (2001).

    Article  Google Scholar 

  111. 111.

    Bowles, R. D., Gebhard, H. H., Härtl, R. & Bonassar, L. J. Tissue-engineered intervertebral discs produce new matrix, maintain disc height, and restore biomechanical function to the rodent spine. Proc. Natl Acad. Sci. USA 108, 13106–13111 (2011).

    CAS  PubMed  Article  Google Scholar 

  112. 112.

    Sakai, D. & Andersson, G. B. J. Stem cell therapy for intervertebral disc regeneration: obstacles and solutions. Nat. Rev. Rheumatol. 11, 243–256 (2015).

    PubMed  Article  Google Scholar 

  113. 113.

    Bae, W. C. & Masuda, K. Emerging technologies for molecular therapy for intervertebral disk degeneration. Orthop. Clin. North Am. 42, 585–601 (2011).

    PubMed  PubMed Central  Article  Google Scholar 

  114. 114.

    Woods, B. I., Vo, N., Sowa, G. & Kang, J. D. Gene therapy for intervertebral disk degeneration. Orthop. Clin. North Am. 42, 563–574 (2011).

    PubMed  Article  Google Scholar 

  115. 115.

    Wong, J. et al. Nutrient supply and nucleus pulposus cell function: effects of the transport properties of the cartilage endplate and potential implications for intradiscal biologic therapy. Osteoarthritis Cartilage 27, 956–964 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  116. 116.

    Dolor, A. et al. Matrix modification for enhancing the transport properties of the human cartilage endplate to improve disc nutrition. PLoS ONE 14, e0215218 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  117. 117.

    Sakai, D. et al. Exhaustion of nucleus pulposus progenitor cells with ageing and degeneration of the intervertebral disc. Nat. Commun. 3, 1264 (2012).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  118. 118.

    Thorpe, A. A., Boyes, V. L., Sammon, C. & Le Maitre, C. L. Thermally triggered injectable hydrogel, which induces mesenchymal stem cell differentiation to nucleus pulposus cells: potential for regeneration of the intervertebral disc. Acta Biomater. 36, 99–111 (2016).

    CAS  PubMed  Article  Google Scholar 

  119. 119.

    Zhang, Y. et al. Directed differentiation of notochord-like and nucleus pulposus-like cells using human pluripotent stem cells. Cell Rep. 30, 2791–2806.e5 (2020).

    CAS  PubMed  Article  Google Scholar 

  120. 120.

    Stefanovic-Racic, M., Stadler, J., Georgescu, H. I. & Evans, C. H. Nitric oxide and energy production in articular chondrocytes. J. Cell. Physiol. 159, 274–280 (1994).

    CAS  PubMed  Article  Google Scholar 

  121. 121.

    US National Library of Medicine. ClinicalTrials.gov https://www.clinicaltrials.gov/ct2/show/NCT01977573 (2018).

  122. 122.

    US National Library of Medicine. ClinicalTrials.gov https://www.clinicaltrials.gov/ct2/show/NCT02892149 (2021).

  123. 123.

    Novais, E. J. et al. Comparison of inbred mouse strains shows diverse phenotypic outcomes of intervertebral disc aging. Aging Cell 19, 213148 (2020).

    Article  CAS  Google Scholar 

  124. 124.

    Koury, M. J. & Haase, V. H. Anaemia in kidney disease: harnessing hypoxia responses for therapy. Nat. Rev. Nephrol. 11, 394–410 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  125. 125.

    Schipani, E. et al. Hypoxia in cartilage: HIF-1α is essential for chondrocyte growth arrest and survival. Genes Dev. 15, 2865–2876 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. 126.

    Bouaziz, W. et al. Interaction of HIF1α and β-catenin inhibits matrix metalloproteinase 13 expression and prevents cartilage damage in mice. Proc. Natl Acad. Sci. USA 113, 5453–5458 (2016).

    CAS  PubMed  Article  Google Scholar 

  127. 127.

    Thoms, B. L., Dudek, K. A., Lafont, J. E. & Murphy, C. L. Hypoxia promotes the production and inhibits the destruction of human articular cartilage. Arthritis Rheum. 65, 13021312 (2013).

    Article  CAS  Google Scholar 

  128. 128.

    Amarilio, R. et al. HIF1α regulation of Sox9 is necessary to maintain differentiation of hypoxic prechondrogenic cells during early skeletogenesis. Development 134, 3917–3928 (2007).

    CAS  PubMed  Article  Google Scholar 

  129. 129.

    Provot, S. et al. Hif-1α regulates differentiation of limb bud mesenchyme and joint development. J. Cell Biol. 177, 451–464 (2007).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  130. 130.

    Araldi, E., Khatri, R., Giaccia, A. J., Simon, M. C. & Schipani, E. Lack of HIF-2α in limb bud mesenchyme causes a modest and transient delay of endochondral bone development. Nat. Med. 17, 25–29 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  131. 131.

    Hartman, R. et al. Age-dependent changes in intervertebral disc cell mitochondria and bioenergetics. Eur. Cell Mater. 36, 171–183 (2018).

    CAS  PubMed  Article  Google Scholar 

  132. 132.

    Fallah, J. & Rini, B. I. HIF inhibitors: status of current clinical development. Curr. Oncol. Rep. 21, 6 (2019).

    PubMed  Article  Google Scholar 

  133. 133.

    Haase, V. H. Therapeutic targeting of the HIF oxygen-sensing pathway: lessons learned from clinical studies. Exp. Cell Res. 356, 160–165 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  134. 134.

    Bernhardt, W. M. et al. Inhibition of prolyl hydroxylases increases erythropoietin production in ESRD. J. Am. Soc. Nephrol. 21, 2151–2156 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  135. 135.

    Scheuermann, T. H. et al. Allosteric inhibition of hypoxia inducible factor-2 with small molecules. Nat. Chem. Biol. 9, 271–276 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  136. 136.

    US National Library of Medicine. ClinicalTrials.gov https://www.clinicaltrials.gov/ct2/show/NCT03108066 (2021).

  137. 137.

    US National Library of Medicine. ClinicalTrials.gov https://www.clinicaltrials.gov/ct2/show/NCT03401788 (2020).

  138. 138.

    Courtney, K. D. et al. Phase I dose-escalation trial of PT2385, a first-in-class hypoxia-inducible factor-2α antagonist in patients with previously treated advanced clear cell renal cell carcinoma. J. Clin. Oncol. 36, 867–874 (2018).

    CAS  PubMed  Article  Google Scholar 

  139. 139.

    Chen, W. et al. Targeting renal cell carcinoma with a HIF-2 antagonist. Nature 539, 112–117 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

Download references

Acknowledgements

The work of M.V.R. and E.S. is supported by grants from the National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS): R01-AR055655 and AR074813 (M.V.R.) and R01-AR074079 and AR073022 (E.S.). The work of E.S.S. is supported by grant T32-AR052273. The authors would like to thank all scientists who contributed to the data and discoveries described in this Review.

Author information

Affiliations

Authors

Contributions

All authors researched data for the article, wrote the article, made substantial contribution to discussion of content and reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Makarand V. Risbud.

Ethics declarations

Competing interests

The authors declare no competing interests

Additional information

Peer review information

Nature Reviews Rheumatology thanks S. Grad, Q.-J. Meng, W.K. Tam and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Tricarboxylic acid (TCA) cycle

A series of chemical reactions following the oxidation of acetyl-CoA. This cycle generates biosynthetic intermediates, reducing agents and CO2, which support multiple cellular reactions. In aerobic cells, NADH generated by the TCA cycle is oxidized in the electron transport chain via a set of reactions that generate ATP.

Redox homeostasis

A balance of reduction and oxidation enzymatic reactions (redox) within a cell. Among many redox systems, the NAD+ to NADH ratio is essential for the redox homeostasis required for glycolysis and mitochondrial function.

Extracellular acidification rate

The rate of change of pericellular proton (H+) production by cells as measured in vitro by a Seahorse Flux analyser.

Oxygen consumption rate

(OCR). The rate of change of pericellular oxygen (O2) consumption by cells as measured in vitro by a Seahorse Flux analyser.

K M

A measure of the ‘affinity’ of an enzyme or transporter for its substrate. More precisely, KM is the concentration of a substrate that is needed for an enzyme or transporter to reach its half-maximum velocity (for enzymes) or binding site occupancy (for transporters); therefore, a lower KM signifies a higher affinity.

Intracellular acidification

Cytosolic pH of cells is tightly regulated within a physiological range. When the H+ concentration exceeds this range, due to dysregulation of H+ export and cytosolic pH buffering systems, intracellular acidification occurs.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Silagi, E.S., Schipani, E., Shapiro, I.M. et al. The role of HIF proteins in maintaining the metabolic health of the intervertebral disc. Nat Rev Rheumatol (2021). https://doi.org/10.1038/s41584-021-00621-2

Download citation

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing