Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Immune monitoring using mass cytometry and related high-dimensional imaging approaches

Abstract

The cellular complexity and functional diversity of the human immune system necessitate the use of high-dimensional single-cell tools to uncover its role in multifaceted diseases such as rheumatic diseases, as well as other autoimmune and inflammatory disorders. Proteomic technologies that use elemental (heavy metal) reporter ions, such as mass cytometry (also known as CyTOF) and analogous high-dimensional imaging approaches (including multiplexed ion beam imaging (MIBI) and imaging mass cytometry (IMC)), have been developed from their low-dimensional counterparts, flow cytometry and immunohistochemistry, to meet this need. A growing number of studies have been published that use these technologies to identify functional biomarkers and therapeutic targets in rheumatic diseases, but the full potential of their application to rheumatic disease research has yet to be fulfilled. This Review introduces the underlying technologies for high-dimensional immune monitoring and discusses aspects necessary for their successful implementation, including study design principles, analytical tools and future developments for the field of rheumatology.

Key points

  • Immune monitoring of human cells using systems immunology approaches has the potential to produce new insights into pathological processes and therapeutic opportunities for rheumatic disease research.

  • Proteomic approaches that use elemental (heavy metal) reporter ions, such as mass cytometry and high-dimensional imaging techniques, might be of value for the study of a wide variety of clinical samples.

  • Mass cytometry enables in-depth analysis of the phenotype and functional state of immune cells at the single-cell level.

  • High-dimensional imaging techniques use concepts analogous to mass cytometry to image cells in their histological context, providing spatial and cell–cell interaction information.

  • A combination of these technologies with data-driven analytical approaches can give predictive insights into disease mechanisms for rheumatic diseases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Analysis of single-cell suspensions by mass cytometry.
Fig. 2: High-dimensional imaging analysis of tissue sections.
Fig. 3: Conducting large-scale immune-monitoring studies using mass cytometry.

Similar content being viewed by others

References

  1. Robinson, W. H. & Mao, R. Technological advances transforming rheumatology. Nat. Rev. Rheumatol. 11, 626–628 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Hartmann, F. J. et al. Comprehensive immune monitoring of clinical trials to advance human immunotherapy. Cell Rep. 28, 819–831.e4 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. von Herrath, M. G. & Nepom, G. T. Lost in translation: barriers to implementing clinical immunotherapeutics for autoimmunity. J. Exp. Med. 202, 1159–1162 (2005).

    Google Scholar 

  4. Davis, M. M. A prescription for human immunology. Immunity 29, 835–838 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Davis, M. M. & Brodin, P. Rebooting human immunology. Annu. Rev. Immunol. 36, 843–864 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Robinson, W. H. & Mao, R. Biomarkers to guide clinical therapeutics in rheumatology? Curr. Opin. Rheumatol. 28, 168–175 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Ermann, J., Rao, D. A., Teslovich, N. C., Brenner, M. B. & Raychaudhuri, S. Immune cell profiling to guide therapeutic decisions in rheumatic diseases. Nat. Rev. Rheumatol. 11, 541–551 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Gaudillière, B. et al. Clinical recovery from surgery correlates with single-cell immune signatures. Sci. Transl Med. 6, 255ra131 (2014).

    PubMed  PubMed Central  Google Scholar 

  9. Levine, J. H. et al. Data-driven phenotypic dissection of AML reveals progenitor-like cells that correlate with prognosis. Cell 162, 184–197 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Good, Z. et al. Single-cell developmental classification of B cell precursor acute lymphoblastic leukemia at diagnosis reveals predictors of relapse. Nat. Med. 24, 474–483 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Nair, N. et al. Mass cytometry as a platform for the discovery of cellular biomarkers to guide effective rheumatic disease therapy. Arthritis Res. Ther. 17, 127 (2015).

    PubMed  PubMed Central  Google Scholar 

  12. Maecker, H. T., McCoy, J. P. & Nussenblatt, R. Standardizing immunophenotyping for the Human Immunology Project. Nat. Rev. Immunol. 12, 191–200 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Hao, Y., O’Neill, P., Naradikian, M. S., Scholz, J. L. & Cancro, M. P. A B-cell subset uniquely responsive to innate stimuli accumulates in aged mice. Blood 118, 1294–1304 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Chattopadhyay, P. K. & Roederer, M. Good cell, bad cell: flow cytometry reveals T-cell subsets important in HIV disease. Cytometry A 77, 614–622 (2010).

    PubMed  PubMed Central  Google Scholar 

  15. Bandura, D. R. et al. Mass cytometry: technique for real time single cell multitarget immunoassay based on inductively coupled plasma time-of-flight mass spectrometry. Anal. Chem. 81, 6813–6822 (2009).

    CAS  PubMed  Google Scholar 

  16. Ornatsky, O. et al. Highly multiparametric analysis by mass cytometry. J. Immunol. Methods 361, 1–20 (2010).

    CAS  PubMed  Google Scholar 

  17. Bendall, S. C. et al. Single-cell mass cytometry of differential immune and drug responses across a human hematopoietic continuum. Science 332, 687–696 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Lou, X. et al. Polymer-based elemental tags for sensitive bioassays. Angew. Chem. Int. Ed. 46, 6111–6114 (2007).

    CAS  Google Scholar 

  19. Ornatsky, O. I. et al. Study of cell antigens and intracellular DNA by identification of element-containing labels and metallointercalators using inductively coupled plasma mass spectrometry. Anal. Chem. 80, 2539–2547 (2008).

    CAS  PubMed  Google Scholar 

  20. Ornatsky, O. I. et al. Development of analytical methods for multiplex bio-assay with inductively coupled plasma mass spectrometry. J. Anal. At. Spectrom. 23, 463 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Majonis, D. et al. Synthesis of a functional metal-chelating polymer and steps toward quantitative mass cytometry bioassays. Anal. Chem. 82, 8961–8969 (2010).

    CAS  PubMed  Google Scholar 

  22. Mei, H. E., Leipold, M. D. & Maecker, H. T. Platinum-conjugated antibodies for application in mass cytometry. Cytometry A 89, 292–300 (2016).

    CAS  PubMed  Google Scholar 

  23. Han, G. et al. Atomic mass tag of bismuth-209 for increasing the immunoassay multiplexing capacity of mass cytometry. Cytometry A 91, 1150–1163 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Han, G., Spitzer, M. H., Bendall, S. C., Fantl, W. J. & Nolan, G. P. Metal-isotope-tagged monoclonal antibodies for high-dimensional mass cytometry. Nat. Protoc. 13, 2121–2148 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Wagner, J. et al. A single-cell atlas of the tumor and immune ecosystem of human breast cancer. Cell 177, 1330–1345.e18 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Chang, Q. et al. Single-cell measurement of the uptake, intratumoral distribution and cell cycle effects of cisplatin using mass cytometry. Int. J. Cancer 136, 1202–1209 (2015).

    CAS  PubMed  Google Scholar 

  27. Chang, Q. et al. Biodistribution of cisplatin revealed by imaging mass cytometry identifies extensive collagen binding in tumor and normal tissues. Sci. Rep. 6, 36641 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Newell, E. W., Sigal, N., Bendall, S. C., Nolan, G. P. & Davis, M. M. Cytometry by time-of-flight shows combinatorial cytokine expression and virus-specific cell niches within a continuum of CD8+ T cell phenotypes. Immunity 36, 142–152 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Newell, E. W. et al. Combinatorial tetramer staining and mass cytometry analysis facilitate T-cell epitope mapping and characterization. Nat. Biotechnol. 31, 623–629 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Newell, E. W. & Davis, M. M. Beyond model antigens: high-dimensional methods for the analysis of antigen-specific T cells. Nat. Biotechnol. 32, 149–157 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Leong, M. L. & Newell, E. W. in Single Cell Protein Analysis (eds. Singh, A. K. & Chandrasekaran, A.) 115–131 (Humana, 2015).

  32. Simoni, Y. et al. Bystander CD8+ T cells are abundant and phenotypically distinct in human tumour infiltrates. Nature 557, 575–579 (2018).

    CAS  PubMed  Google Scholar 

  33. Spitzer, M. H. et al. An interactive reference framework for modeling a dynamic immune system. Science 349, 1259425 (2015).

    PubMed  PubMed Central  Google Scholar 

  34. Hartmann, F. J. et al. High-dimensional single-cell analysis reveals the immune signature of narcolepsy. J. Exp. Med. 213, 2621–2633 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Galli, E. et al. GM-CSF and CXCR4 define a T helper cell signature in multiple sclerosis. Nat. Med. 25, 1290–1300 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Bodenmiller, B. et al. Multiplexed mass cytometry profiling of cellular states perturbed by small-molecule regulators. Nat. Biotechnol. 30, 858–867 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Fienberg, H. G., Simonds, E. F., Fantl, W. J., Nolan, G. P. & Bodenmiller, B. A platinum-based covalent viability reagent for single-cell mass cytometry. Cytometry A 81A, 467–475 (2012).

    CAS  Google Scholar 

  38. Hartmann, F. J., Simonds, E. F. & Bendall, S. C. A universal live cell barcoding-platform for multiplexed human single cell analysis. Sci. Rep. 8, 10770 (2018).

    PubMed  PubMed Central  Google Scholar 

  39. Frei, A. P. et al. Highly multiplexed simultaneous detection of RNAs and proteins in single cells. Nat. Methods 13, 269–275 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Duckworth, A. D. et al. Multiplexed profiling of RNA and protein expression signatures in individual cells using flow or mass cytometry. Nat. Protoc. 14, 901–920 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Behbehani, G. K., Bendall, S. C., Clutter, M. R., Fantl, W. J. & Nolan, G. P. Single-cell mass cytometry adapted to measurements of the cell cycle. Cytometry A 81A, 552–566 (2012).

    Google Scholar 

  42. Kimmey, S. C., Borges, L., Baskar, R. & Bendall, S. C. Parallel analysis of tri-molecular biosynthesis with cell identity and function in single cells. Nat. Commun. 10, 1185 (2019).

    PubMed  PubMed Central  Google Scholar 

  43. Poreba, M. et al. The Activome: multiplexed probing of activity of proteolytic enzymes using mass cytometry-compatible activity-based probes (TOF-probes). Preprint at bioRxiv https://doi.org/10.1101/775627 (2019).

  44. Edgar, L. J. et al. Identification of hypoxic cells using an organotellurium tag compatible with mass cytometry. Angew. Chem. Int. Ed. 53, 11473–11477 (2014).

    CAS  Google Scholar 

  45. Schulz, D., Severin, Y., Zanotelli, V. R. T. & Bodenmiller, B. In-depth characterization of monocyte-derived macrophages using a mass cytometry-based phagocytosis assay. Sci. Rep. 9, 1925 (2019).

    PubMed  PubMed Central  Google Scholar 

  46. Finck, R. et al. Normalization of mass cytometry data with bead standards. Cytometry A 83, 483–494 (2013).

    PubMed  PubMed Central  Google Scholar 

  47. Kleinsteuber, K. et al. Standardization and quality control for high-dimensional mass cytometry studies of human samples. Cytometry A 89, 903–913 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Leipold, M. D. et al. Comparison of CyTOF assays across sites: results of a six-center pilot study. J. Immunol. Methods 453, 37–43 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Zunder, E. R. et al. Palladium-based mass tag cell barcoding with a doublet-filtering scheme and single-cell deconvolution algorithm. Nat. Protoc. 10, 316–333 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Mei, H. E., Leipold, M. D., Schulz, A. R., Chester, C. & Maecker, H. T. Barcoding of live human peripheral blood mononuclear cells for multiplexed mass cytometry. J. Immunol. 194, 2022–2031 (2015).

    CAS  PubMed  Google Scholar 

  51. Lai, L., Ong, R., Li, J. & Albani, S. A CD45-based barcoding approach to multiplex mass-cytometry (CyTOF). Cytometry A 87, 369–374 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Bodenmiller, B. Multiplexed epitope-based tissue imaging for discovery and healthcare applications. Cell Syst. 2, 225–238 (2016).

    CAS  PubMed  Google Scholar 

  53. Gerner, M. Y., Kastenmuller, W., Ifrim, I., Kabat, J. & Germain, R. N. Histo-cytometry: a method for highly multiplex quantitative tissue imaging analysis applied to dendritic cell subset microanatomy in lymph nodes. Immunity 37, 364–376 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Gerdes, M. J. et al. Highly multiplexed single-cell analysis of formalin-fixed, paraffin-embedded cancer tissue. Proc. Natl Acad. Sci. USA 110, 11982–11987 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Lin, J.-R. et al. Highly multiplexed immunofluorescence imaging of human tissues and tumors using t-CyCIF and conventional optical microscopes. eLife 7, e31657 (2018).

    PubMed  PubMed Central  Google Scholar 

  56. Goltsev, Y. et al. Deep profiling of mouse splenic architecture with CODEX multiplexed imaging. Cell 174, 968–981.e15 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Davis, A. S. et al. Characterizing and diminishing autofluorescence in formalin-fixed paraffin-embedded human respiratory tissue. J. Histochem. Cytochem. 62, 405–423 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Giesen, C. et al. Highly multiplexed imaging of tumor tissues with subcellular resolution by mass cytometry. Nat. Methods 11, 417–422 (2014).

    CAS  PubMed  Google Scholar 

  59. Angelo, M. et al. Multiplexed ion beam imaging of human breast tumors. Nat. Med. 20, 436–442 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Keren, L. et al. MIBI-TOF: A multiplexed imaging platform relates cellular phenotypes and tissue structure. Sci. Adv. 5, eaax5851 (2019).

    PubMed  PubMed Central  Google Scholar 

  61. Damond, N. et al. A map of human type 1 diabetes progression by imaging mass cytometry. Cell Metab. 29, 755–768.e5 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Wang, Y. J. et al. Multiplexed in situ imaging mass cytometry analysis of the human endocrine pancreas and immune system in type 1 diabetes. Cell Metab. 29, 769–783.e4 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Keren, L. et al. A structured tumor-immune microenvironment in triple negative breast cancer revealed by multiplexed ion beam imaging. Cell 174, 1373–1387.e19 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Schulz, D. et al. Simultaneous multiplexed imaging of mRNA and proteins with subcellular resolution in breast cancer tissue samples by mass cytometry. Cell Syst. 6, 25–36.e5 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Catena, R., Montuenga, L. M. & Bodenmiller, B. Ruthenium counterstaining for imaging mass cytometry. J. Pathol. 244, 479–484 (2018).

    CAS  PubMed  Google Scholar 

  66. Skinner, P. J., Daniels, M. A., Schmidt, C. S., Jameson, S. C. & Haase, A. T. Cutting edge: in situ tetramer staining of antigen-specific T cells in tissues. J. Immunol. 165, 613–617 (2000).

    CAS  PubMed  Google Scholar 

  67. Steinert, E. M. et al. Quantifying memory CD8 T cells reveals regionalization of immunosurveillance. Cell 161, 737–749 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Li, S. et al. Simian immunodeficiency virus-producing cells in follicles are partially suppressed by CD8+ cells in vivo. J. Virol. 90, 11168–11180 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Mair, F. et al. The end of gating? An introduction to automated analysis of high dimensional cytometry data. Eur. J. Immunol. 46, 34–43 (2016).

    CAS  PubMed  Google Scholar 

  70. Saeys, Y., Gassen, S. Van & Lambrecht, B. N. Computational flow cytometry: helping to make sense of high-dimensional immunology data. Nat. Rev. Immunol. 16, 449–462 (2016).

    CAS  PubMed  Google Scholar 

  71. Chester, C. & Maecker, H. T. Algorithmic tools for mining high-dimensional cytometry data. J. Immunol. 195, 773–779 (2015).

    CAS  PubMed  Google Scholar 

  72. Newell, E. W. & Cheng, Y. Mass cytometry: blessed with the curse of dimensionality. Nat. Immunol. 17, 890–895 (2016).

    CAS  PubMed  Google Scholar 

  73. Moen, E. et al. Deep learning for cellular image analysis. Nat. Methods 16, 1233–1246 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Van Valen, D. A. et al. Deep learning automates the quantitative analysis of individual cells in live-cell imaging experiments. PLOS Comput. Biol. 12, e1005177 (2016).

    PubMed  PubMed Central  Google Scholar 

  75. Sommer, C., Straehle, C., Kothe, U. & Hamprecht, F. A. in 2011 IEEE International Symposium on Biomedical Imaging: From Nano to Macro 230–233 (IEEE, 2011).

  76. Dao, D. et al. CellProfiler Analyst: interactive data exploration, analysis and classification of large biological image sets. Bioinformatics 32, 3210–3212 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Schapiro, D. et al. histoCAT: analysis of cell phenotypes and interactions in multiplex image cytometry data. Nat. Methods 14, 873–876 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Haberl, M. G. et al. CDeep3M–Plug-and-play cloud-based deep learning for image segmentation. Nat. Methods 15, 677–680 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Gabriel, K. R. & Sokal, R. R. A new statistical approach to geographic variation analysis. Syst. Zool. 18, 259–278 (1969).

    Google Scholar 

  80. Finak, G., Perez, J.-M., Weng, A. & Gottardo, R. Optimizing transformations for automated, high throughput analysis of flow cytometry data. BMC Bioinformatics 11, 546 (2010).

    PubMed  PubMed Central  Google Scholar 

  81. Bagwell, C. B. Hyperlog?A flexible log-like transform for negative, zero, and positive valued data. Cytometry A 64A, 34–42 (2005).

    Google Scholar 

  82. Parks, D. R., Roederer, M. & Moore, W. A. A new ‘Logicle’ display method avoids deceptive effects of logarithmic scaling for low signals and compensated data. Cytometry A 69, 541–551 (2006).

    PubMed  Google Scholar 

  83. Maaten, L. Van Der & Hinton, G. Visualizing data using t-SNE. J. Mach. Learn. Res. 9, 2579–2605 (2008).

    Google Scholar 

  84. Amir, E. D. et al. viSNE enables visualization of high dimensional single-cell data and reveals phenotypic heterogeneity of leukemia. Nat. Biotechnol. 31, 545–552 (2013).

    CAS  PubMed Central  Google Scholar 

  85. Kotecha, N., Krutzik, P. O. & Irish, J. M. Web-based analysis and publication of flow cytometry experiments. Curr. Protoc. Cytom. 53, 10.17.1–10.17.24 (2010).

    Google Scholar 

  86. van der Maaten, L. Barnes-Hut-SNE. Preprint at arXiv https://arxiv.org/abs/1301.3342v2 (2013).

  87. Pezzotti, N. et al. Approximated and user steerable tSNE for progressive visual analytics. IEEE Trans. Vis. Computer Graph. 23, 1739–1752 (2016).

    Google Scholar 

  88. van Unen, V. et al. Visual analysis of mass cytometry data by hierarchical stochastic neighbour embedding reveals rare cell types. Nat. Commun. 8, 1740 (2017).

    PubMed  PubMed Central  Google Scholar 

  89. Cho, H., Berger, B. & Peng, J. Generalizable and scalable visualization of single-cell data using neural networks. Cell Syst. 7, 185–191.e4 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. McInnes, L. & Healy, J. UMAP: uniform manifold approximation and projection for dimension reduction. Preprint at arXiv https://arxiv.org/abs/1802.03426v2 (2018).

  91. Becht, E. et al. Dimensionality reduction for visualizing single-cell data using UMAP. Nat. Biotechnol. 37, 38–44 (2019).

    CAS  Google Scholar 

  92. Qiu, P. et al. Extracting a cellular hierarchy from high-dimensional cytometry data with SPADE. Nat. Biotechnol. 29, 886–891 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Samusik, N., Good, Z., Spitzer, M. H., Davis, K. L. & Nolan, G. P. Automated mapping of phenotype space with single-cell data. Nat. Methods 13, 493–496 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Zunder, E. R., Lujan, E., Goltsev, Y., Wernig, M. & Nolan, G. P. A continuous molecular roadmap to iPSC reprogramming through progression analysis of single-cell mass cytometry. Cell Stem Cell 16, 323–337 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Mrdjen, D. et al. High-dimensional single-cell mapping of central nervous system immune cells reveals distinct myeloid subsets in health, aging, and disease. Immunity 48, 380–395.e6 (2018).

    CAS  PubMed  Google Scholar 

  96. Weber, L. M. & Robinson, M. D. Comparison of clustering methods for high-dimensional single-cell flow and mass cytometry data. Cytometry A 89, 1084–1096 (2016).

    CAS  PubMed  Google Scholar 

  97. Van Gassen, S. et al. FlowSOM: using self-organizing maps for visualization and interpretation of cytometry data. Cytometry A 87, 636–645 (2015).

    PubMed  Google Scholar 

  98. Bruggner, R. V., Bodenmiller, B., Dill, D. L., Tibshirani, R. J. & Nolan, G. P. Automated identification of stratifying signatures in cellular subpopulations. Proc. Natl Acad. Sci. USA 111, E2770–E2777 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Spitzer, M. H. et al. Systemic immunity is required for effective cancer immunotherapy. Cell 168, 487–502.e15 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Lun, A. T. L., Richard, A. C. & Marioni, J. C. Testing for differential abundance in mass cytometry data. Nat. Methods 14, 707–709 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Arvaniti, E. & Claassen, M. Sensitive detection of rare disease-associated cell subsets via representation learning. Nat. Commun. 8, 14825 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Bendall, S. C. et al. Single-cell trajectory detection uncovers progression and regulatory coordination in human B cell development. Cell 157, 714–725 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Setty, M. et al. Wishbone identifies bifurcating developmental trajectories from single-cell data. Nat. Biotechnol. 34, 637–645 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Saelens, W., Cannoodt, R., Todorov, H. & Saeys, Y. A comparison of single-cell trajectory inference methods. Nat. Biotechnol. 37, 547–554 (2019).

    CAS  PubMed  Google Scholar 

  105. Krishnaswamy, S. et al. Systems biology. Conditional density-based analysis of T cell signaling in single-cell data. Science 346, 1250689 (2014).

    PubMed  PubMed Central  Google Scholar 

  106. Strauss-Albee, D. M. et al. Human NK cell repertoire diversity reflects immune experience and correlates with viral susceptibility. Sci. Transl Med. 7, 297ra115 (2015).

    PubMed  PubMed Central  Google Scholar 

  107. Good, Z. et al. Proliferation tracing with single-cell mass cytometry optimizes generation of stem cell memory-like T cells. Nat. Biotechnol. 37, 259–266 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Aghaeepour, N. et al. GateFinder: projection-based gating strategy optimization for flow and mass cytometry. Bioinformatics 34, 4131–4133 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Spitzer, M. H. & Nolan, G. P. Mass cytometry: single cells, many features. Cell 165, 780–791 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Hartmann, F. J. et al. Scalable conjugation and characterization of immunoglobulins with stable mass isotope reporters for single-cell mass cytometry analysis. Methods Mol. Biol. 1989, 55–81 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Leipold, M. D., Newell, E. W. & Maecker, H. T. Multiparameter phenotyping of human PBMCs using mass cytometry. Methods Mol. Biol. 1343, 81–95 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Takahashi, C. et al. Mass cytometry panel optimization through the designed distribution of signal interference. Cytometry A 91, 39–47 (2017).

    CAS  PubMed  Google Scholar 

  113. Chevrier, S. et al. Compensation of signal spillover in suspension and imaging mass cytometry. Cell Syst. 6, 612–620.e5 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Bhattacharya, S. et al. ImmPort: disseminating data to the public for the future of immunology. Immunol. Res. 58, 234–239 (2014).

    CAS  PubMed  Google Scholar 

  115. Spidlen, J., Breuer, K., Rosenberg, C., Kotecha, N. & Brinkman, R. R. FlowRepository: a resource of annotated flow cytometry datasets associated with peer-reviewed publications. Cytometry A 81A, 727–731 (2012).

    Google Scholar 

  116. Lee, J. A. et al. MIFlowCyt: the minimum information about a flow cytometry experiment. Cytometry A 73A, 926–930 (2008).

    Google Scholar 

  117. Hu, Z. et al. MetaCyto: a tool for automated meta-analysis of mass and flow cytometry data. Cell Rep. 24, 1377–1388 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Williams, E. et al. Image Data Resource: a bioimage data integration and publication platform. Nat. Methods 14, 775–781 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Brito-Zerón, P. et al. Sjögren syndrome. Nat. Rev. Dis. Primers 2, 16047 (2016).

    PubMed  Google Scholar 

  120. Angiolilli, C. et al. New insights into the genetics and epigenetics of systemic sclerosis. Nat. Rev. Rheumatol. 14, 657–673 (2018).

    PubMed  Google Scholar 

  121. Smolen, J. S. et al. Rheumatoid arthritis. Nat. Rev. Dis. Primers 4, 18001 (2018).

    PubMed  Google Scholar 

  122. Kaul, A. et al. Systemic lupus erythematosus. Nat. Rev. Dis. Primers 2, 16039 (2016).

    PubMed  Google Scholar 

  123. Tsokos, G. C., Lo, M. S., Reis, P. C. & Sullivan, K. E. New insights into the immunopathogenesis of systemic lupus erythematosus. Nat. Rev. Rheumatol. 12, 716–730 (2016).

    CAS  PubMed  Google Scholar 

  124. Mavragani, C. P. & Moutsopoulos, H. M. Sjögren’s syndrome. Annu. Rev. Pathol. Mech. Dis. 9, 273–285 (2014).

    CAS  Google Scholar 

  125. Sedger, L. M. & McDermott, M. F. TNF and TNF-receptors: from mediators of cell death and inflammation to therapeutic giants – past, present and future. Cytokine Growth Factor. Rev. 25, 453–472 (2014).

    CAS  PubMed  Google Scholar 

  126. Hofmann, K., Clauder, A.-K. & Manz, R. A. Targeting B cells and plasma cells in autoimmune diseases. Front. Immunol. 9, 835 (2018).

    PubMed  PubMed Central  Google Scholar 

  127. Rao, D. A. et al. Pathologically expanded peripheral T helper cell subset drives B cells in rheumatoid arthritis. Nature 542, 110–114 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Fonseka, C. Y. et al. Mixed-effects association of single cells identifies an expanded effector CD4+ T cell subset in rheumatoid arthritis. Sci. Transl Med. 10, eaaq0305 (2018).

    PubMed  PubMed Central  Google Scholar 

  129. Al-Mossawi, M. H. et al. Unique transcriptome signatures and GM-CSF expression in lymphocytes from patients with spondyloarthritis. Nat. Commun. 8, 1510 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Noster, R. et al. IL-17 and GM-CSF expression are antagonistically regulated by human T helper cells. Sci. Transl Med. 6, 241ra80 (2014).

    PubMed  Google Scholar 

  131. Hartmann, F. J. et al. Multiple sclerosis-associated IL2RA polymorphism controls GM-CSF production in human TH cells. Nat. Commun. 5, 5056 (2014).

    CAS  PubMed  Google Scholar 

  132. O’Gorman, W. E. et al. Single-cell systems-level analysis of human Toll-like receptor activation defines a chemokine signature in patients with systemic lupus erythematosus. J. Allergy Clin. Immunol. 136, 1326–1336 (2015).

    PubMed  PubMed Central  Google Scholar 

  133. O’Gorman, W. E. et al. Mass cytometry identifies a distinct monocyte cytokine signature shared by clinically heterogeneous pediatric SLE patients. J. Autoimmun. 81, 74–89 (2017).

    Google Scholar 

  134. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02535689 (2018).

  135. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02446899 (2019).

  136. Ramsköld, D. et al. B cell alterations during BAFF inhibition with belimumab in SLE. EBioMedicine 40, 517–527 (2019).

    PubMed  Google Scholar 

  137. Rubtsova, K., Rubtsov, A. V., Cancro, M. P. & Marrack, P. Age-associated B cells: a T-bet-dependent effector with roles in protective and pathogenic immunity. J. Immunol. 195, 1933–1937 (2015).

    CAS  PubMed  Google Scholar 

  138. Wang, S. et al. IL-21 drives expansion and plasma cell differentiation of autoreactive CD11chiT-bet+ B cells in SLE. Nat. Commun. 9, 1758 (2018).

    PubMed  PubMed Central  Google Scholar 

  139. Mingueneau, M. et al. Cytometry by time-of-flight immunophenotyping identifies a blood Sjögren’s signature correlating with disease activity and glandular inflammation. J. Allergy Clin. Immunol. 137, 1809–1821.e12 (2016).

    PubMed  Google Scholar 

  140. Christophersen, A. et al. Distinct phenotype of CD4+ T cells driving celiac disease identified in multiple autoimmune conditions. Nat. Med. 25, 734–737 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Lopez, R., Regier, J., Cole, M. B., Jordan, M. I. & Yosef, N. Deep generative modeling for single-cell transcriptomics. Nat. Methods 15, 1053–1058 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Falk, T. et al. U-Net: deep learning for cell counting, detection, and morphometry. Nat. Methods 16, 67–70 (2019).

    CAS  PubMed  Google Scholar 

  143. Gupta, A. et al. Deep learning in image cytometry: a review. Cytometry A 95, 366–380 (2018).

    PubMed  PubMed Central  Google Scholar 

  144. Rovira-Clave, X. et al. Subcellular localization of drug distribution by super-resolution ion beam imaging. Preprint at bioRxiv https://doi.org/10.1101/557603 (2019).

  145. Coskun, A. F. et al. Ion beam subcellular tomography. Preprint at bioRxiv https://doi.org/10.1101/557728 (2019).

  146. Olin, A. et al. Stereotypic immune system development in newborn children. Cell 174, 1277–1292.e14 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  147. Pedersen, H. K. et al. A computational framework to integrate high-throughput ‘-omics’ datasets for the identification of potential mechanistic links. Nat. Protoc. 13, 2781–2800 (2018).

    CAS  PubMed  Google Scholar 

  148. Ghaemi, M. S. et al. Multiomics modeling of the immunome, transcriptome, microbiome, proteome and metabolome adaptations during human pregnancy. Bioinformatics 35, 95–103 (2018).

    PubMed Central  Google Scholar 

  149. Huang, S., Chaudhary, K. & Garmire, L. X. More is better: recent progress in multi-omics data integration methods. Front. Genet. 8, 84 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  150. Cheung, P. et al. Single-cell chromatin modification profiling reveals increased epigenetic variations with aging. Cell 173, 1385–1397.e14 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  151. Zhang, Z. & Zhang, R. Epigenetics in autoimmune diseases: pathogenesis and prospects for therapy. Autoimmun. Rev. 14, 854–863 (2015).

    CAS  PubMed  Google Scholar 

  152. Jeffries, M. A. & Sawalha, A. H. Autoimmune disease in the epigenetic era: how has epigenetics changed our understanding of disease and how can we expect the field to evolve? Expert. Rev. Clin. Immunol. 11, 45–58 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  153. Munroe, M. E. et al. Discerning risk of disease transition in relatives of systemic lupus erythematosus patients utilizing soluble mediators and clinical features. Arthritis Rheumatol. 69, 630–642 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  154. van der Woude, D. et al. Epitope spreading of the anti-citrullinated protein antibody response occurs before disease onset and is associated with the disease course of early arthritis. Ann. Rheum. Dis. 69, 1554–1561 (2010).

    PubMed  Google Scholar 

  155. Leong, J. Y. et al. Immunome perturbation is present in patients with juvenile idiopathic arthritis who are in remission and will relapse upon anti-TNFα withdrawal. Ann. Rheum. Dis. 78, 1712–1721 (2019).

    PubMed  Google Scholar 

  156. Blicharz, T. M. et al. Microneedle-based device for the one-step painless collection of capillary blood samples. Nat. Biomed. Eng. 2, 151–157 (2018).

    CAS  PubMed  Google Scholar 

  157. Josyula, V. S., Lakshmikanth, T., Mikes, J., Chen, Y. & Brodin, P. Systems-level immunomonitoring using self-sampled capillary blood. Preprint at bioRxiv https://doi.org/10.1101/694521 (2019).

  158. Tatovic, D. et al. Fine-needle aspiration biopsy of the lymph node: a novel tool for the monitoring of immune responses after skin antigen delivery. J. Immunol. 195, 386–392 (2015).

    CAS  PubMed  Google Scholar 

  159. Mandal, A. et al. Cell and fluid sampling microneedle patches for monitoring skin-resident immunity. Sci. Transl Med. 10, eaar2227 (2018).

    PubMed  Google Scholar 

  160. Perfetto, S. P., Chattopadhyay, P. K. & Roederer, M. Seventeen-colour flow cytometry: unravelling the immune system. Nat. Rev. Immunol. 4, 648–655 (2004).

    CAS  PubMed  Google Scholar 

  161. Cossarizza, A. et al. Guidelines for the use of flow cytometry and cell sorting in immunological studies (second edition). Eur. J. Immunol. 49, 1457–1973 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  162. Bendall, S. C., Nolan, G. P., Roederer, M. & Chattopadhyay, P. K. A deep profiler’s guide to cytometry. Trends Immunol. 33, 323–332 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The work of F.J.H. is supported by the EMBO organization (EMBO Long-Term Fellowship ALTF 1141-2017), the Novartis Foundation for Medical-Biological Research (16C148) and the Swiss National Science Foundation (SNF Early Postdoc Mobility P2ZHP3-171741). The work of S.C.B. is supported by the Damon Runyon Cancer Research Foundation Fellowship (DRG-2017-09), the NIH (1DP2OD022550-01, 1R01AG056287-01, 1R01AG057915-01, 1-R00-GM104148-01, 1U24CA224309-01, 5U19AI116484-02 and U19 AI104209) and a Translational Research Award from the Stanford Cancer Institute.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Sean C. Bendall.

Ethics declarations

Competing interests

S.C.B. declares that he is an inventor of multiplexed ion beam imaging technology and a scientific founder of IONpath Inc., the company that commercialized this technology. F.J.H. declares no competing interests.

Additional information

Peer review information

Nature Reviews Rheumatology thanks J. Lederer, P. Brodin and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Inductively coupled plasma

A type of plasma in which the energy is supplied through electromagnetic induction (changes in magnetic fields).

Time-of-flight

The time taken by a particle to travel through a medium; measuring the time-of-flight of ions in an electric field can be used to infer the ions’ mass-to-charge ratio and therefore its identity.

Cell barcoding

A method of labelling cells with a sample-specific signature that can be used to subsequently pool cells from several samples for downstream staining and processing.

Rastering

A pattern of scanning in which an area is scanned (for example, with an ion beam) in lines from side to side, starting at the top.

Image segmentation

The process of identifying and partitioning an image into meaningful objects (such as cells) in order to facilitate their downstream analysis.

Deep learning

A type of machine learning in which artificial neural networks with multiple layers of adjustable nodes are used to learn how to perform specific tasks from large amounts of data.

Classifier

An algorithm that has been trained to predict the class of data points.

Artificial neural networks

A type of machine learning framework inspired by the biological structure of the brain, in which (potentially many) layers of interconnected nodes transmit information to each other and apply transformations to perform classification or prediction tasks.

Minimum spanning tree

In a graph consisting of points (nodes) connected through edges, the minimum spanning tree represents the subset of the graph that connects all nodes with the minimum total edge weight, usually representing the length of the edge.

Force-directed layouts

Graphical renderings that assign spring-like (attractive and repulsive) forces between the edges and nodes of a graph to position them in 2D space.

Clustering

Grouping a set of points that are similar to each other.

Self-organizing maps

A type of unsupervised clustering and dimensionality reduction approach that preserves the topological information of the input data.

Representation learning

The automated process of transforming raw data into useful features that are subsequently used in other machine learning applications.

Simpson’s diversity index

A measurement of diversity that takes into account the number of different groups present in a dataset, as well as their relative abundance.

Autoencoders

A type of artificial neural network that aims to learn a lower-dimensional data representation from which the original input can be reconstructed as closely as possible.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hartmann, F.J., Bendall, S.C. Immune monitoring using mass cytometry and related high-dimensional imaging approaches. Nat Rev Rheumatol 16, 87–99 (2020). https://doi.org/10.1038/s41584-019-0338-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41584-019-0338-z

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research