Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The IL-23–IL-17 pathway as a therapeutic target in axial spondyloarthritis

Abstract

The cytokines IL-23 and IL-17 have an important role in the pathogenesis of, and as a therapeutic target in, both animal models of chronic inflammation and some human chronic inflammatory diseases. The traditional view is that a main source of IL-17 is T cells and that IL-17 production is under the control of IL-23. IL-17 inhibition has shown good efficacy in clinical trials for ankylosing spondylitis (AS), a subtype of axial spondyloarthritis (axSpA) characterized by radiographic evidence of sacroiliitis. On the basis of data from animal models, genetic studies and the investigation of tissue and blood samples from patients with AS, IL-23 had also been predicted to be important in the pathogenesis of this disease and was therefore considered a potential therapeutic target for axSpA. However, two placebo-controlled, double-blind clinical trials in axSpA of monoclonal antibodies directed against either the p40 protein or the p19 protein of the IL-23 molecule had clear negative results. These findings indicate that IL-23 and IL-17 are at least partly uncoupled in axSpA. Reasons as to why, when and how such an uncoupling might occur are discussed in this Review, with special reference to the unique microenvironment of the subchondral bone marrow in axSpA.

Key points

  • The IL-17 pathway has an important role in the pathogenesis of axial spondyloarthritis (axSpA); IL-23 is thought to be involved too as it stimulates the production of IL-17.

  • IL-17 inhibitors and TNF inhibitors are currently the only effective and approved biological DMARDs for axSpA.

  • IL-23 inhibitors are effective against psoriasis and psoriatic arthritis, but not against axSpA; however, IL-23 inhibitors might have an effect on peripheral enthesitis in axSpA, which should be investigated further.

  • On the basis of negative trial data, a role for IL-23 in the pathogenesis of axSpA is uncertain.

  • Whether IL-17 inhibitors have an effect on new bone formation in axSpA has still to be clarified, but an effect of IL-23 inhibitors is unlikely.

  • The discrepancy in efficacy between effective IL-17 inhibitors and non-effective IL-23 inhibitors in axSpA is unique among immune-mediated diseases and might be explained by an uncoupling of IL-17 and IL-23.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Potential differences in the IL-23–IL-17 pathway in psoriasis and spondyloarthritis.
Fig. 2: Effects of cytokine exposure on bone and ligaments.

Similar content being viewed by others

References

  1. Sieper, J. & Poddubnyy, D. Axial spondyloarthritis. Lancet 390, 73–84 (2017).

    PubMed  Google Scholar 

  2. Ranganathan, V., Gracey, E., Brown, M. A., Inman, R. D. & Haroon, N. Pathogenesis of ankylosing spondylitis — recent advances and future directions. Nat. Rev. Rheumatol. 13, 359–367 (2017).

    CAS  PubMed  Google Scholar 

  3. Sieper, J. & Poddubnyy, D. New evidence on the management of spondyloarthritis. Nat. Rev. Rheumatol. 12, 282–295 (2016).

    CAS  PubMed  Google Scholar 

  4. Teng, M. W. et al. IL-12 and IL-23 cytokines: from discovery to targeted therapies for immune-mediated inflammatory diseases. Nat. Med. 21, 719–729 (2015).

    CAS  PubMed  Google Scholar 

  5. Beringer, A., Noack, M. & Miossec, P. IL-17 in chronic inflammation: from discovery to targeting. Trends Mol. Med. 22, 230–241 (2016).

    CAS  PubMed  Google Scholar 

  6. Smolen, J. S. et al. A randomised phase II study evaluating the efficacy and safety of subcutaneously administered ustekinumab and guselkumab in patients with active rheumatoid arthritis despite treatment with methotrexate. Ann. Rheum. Dis. 76, 831–839 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Blanco, F. J. et al. Secukinumab in active rheumatoid arthritis: a phase III randomized, double-blind, active comparator- and placebo-controlled study. Arthritis Rheumatol. 69, 1144–1153 (2017).

    CAS  PubMed  Google Scholar 

  8. Mease, P. J. et al. Secukinumab inhibition of interleukin-17A in patients with psoriatic arthritis. N. Engl. J. Med. 373, 1329–1339 (2015).

    CAS  PubMed  Google Scholar 

  9. Mease, P. J. et al. Ixekizumab, an interleukin-17A specific monoclonal antibody, for the treatment of biologic-naive patients with active psoriatic arthritis: results from the 24-week randomised, double-blind, placebo-controlled and active (adalimumab)-controlled period of the phase III trial SPIRIT-P1. Ann. Rheum. Dis. 76, 79–87 (2017).

    CAS  PubMed  Google Scholar 

  10. Deodhar, A. et al. Efficacy and safety of guselkumab in patients with active psoriatic arthritis: a randomised, double-blind, placebo-controlled, phase 2 study. Lancet 391, 2213–2224 (2018).

    CAS  PubMed  Google Scholar 

  11. Gordon, K. B. et al. A phase 2 trial of guselkumab versus adalimumab for plaque psoriasis. N. Engl. J. Med. 373, 136–144 (2015).

    CAS  PubMed  Google Scholar 

  12. Thaci, D. et al. Secukinumab is superior to ustekinumab in clearing skin of subjects with moderate to severe plaque psoriasis: CLEAR, a randomized controlled trial. J. Am. Acad. Dermatol. 73, 400–409 (2015).

    CAS  PubMed  Google Scholar 

  13. Feagan, B. G. et al. Ustekinumab as induction and maintenance therapy for Crohn’s disease. N. Engl. J. Med. 375, 1946–1960 (2016).

    CAS  PubMed  Google Scholar 

  14. Feagan, B. G. et al. Risankizumab in patients with moderate to severe Crohn’s disease: an open-label extension study. Lancet Gastroenterol. Hepatol. 3, 671–680 (2018).

    PubMed  Google Scholar 

  15. Hueber, W. et al. Secukinumab, a human anti-IL-17A monoclonal antibody, for moderate to severe Crohn’s disease: unexpected results of a randomised, double-blind placebo-controlled trial. Gut 61, 1693–1700 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Deodhar, A. et al. Three multicenter, randomized, double-blind, placebo-controlled studies evaluating the efficacy and safety of ustekinumab in axial spondyloarthritis. Arthritis Rheumatol. 71, 258–270 (2019).

    CAS  PubMed  Google Scholar 

  17. Baeten, D. et al. Risankizumab, an IL-23 inhibitor, for ankylosing spondylitis: results of a randomised, double-blind, placebo-controlled, proof-of-concept, dose-finding phase 2 study. Ann. Rheum. Dis. 77, 1295–1302 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Baeten, D. et al. Secukinumab, an interleukin-17A inhibitor, in ankylosing spondylitis. N. Engl. J. Med. 373, 2534–2548 (2015).

    CAS  PubMed  Google Scholar 

  19. van der Heijde, D. et al. Ixekizumab, an interleukin-17A antagonist in the treatment of ankylosing spondylitis or radiographic axial spondyloarthritis in patients previously untreated with biological disease-modifying anti-rheumatic drugs (COAST-V): 16 week results of a phase 3 randomised, double-blind, active-controlled and placebo-controlled trial. Lancet 392, 2441–2451 (2018).

    PubMed  Google Scholar 

  20. McGonagle, D., Gibbon, W. & Emery, P. Classification of inflammatory arthritis by enthesitis. Lancet 352, 1137–1140 (1998).

    CAS  PubMed  Google Scholar 

  21. Watad, A. et al. The early phases of ankylosing spondylitis: emerging insights from clinical and basic science. Front. Immunol. 9, 2668 (2018).

    PubMed  PubMed Central  Google Scholar 

  22. Schett, G. et al. Enthesitis: from pathophysiology to treatment. Nat. Rev. Rheumatol. 13, 731–741 (2017).

    CAS  PubMed  Google Scholar 

  23. Bleil, J. et al. Granulation tissue eroding the subchondral bone also promotes new bone formation in ankylosing spondylitis. Arthritis Rheumatol. 68, 2456–2465 (2016).

    CAS  PubMed  Google Scholar 

  24. Rudwaleit, M. et al. The early disease stage in axial spondylarthritis: results from the German spondyloarthritis inception cohort. Arthritis Rheum. 60, 717–727 (2009).

    CAS  PubMed  Google Scholar 

  25. van der Heijde, D. et al. 2016 update of the ASAS-EULAR management recommendations for axial spondyloarthritis. Ann. Rheum. Dis. 76, 978–991 (2017).

    PubMed  Google Scholar 

  26. Gossec, L. et al. European League Against Rheumatism (EULAR) recommendations for the management of psoriatic arthritis with pharmacological therapies: 2015 update. Ann. Rheum. Dis. 75, 499–510 (2016).

    CAS  PubMed  Google Scholar 

  27. Singh, J. A. et al. Special article: 2018 American College of Rheumatology/National Psoriasis Foundation Guideline for the treatment of psoriatic arthritis. Arthritis Care Res. 71, 2–29 (2019).

    Google Scholar 

  28. Fossiez, F. et al. T cell interleukin-17 induces stromal cells to produce proinflammatory and hematopoietic cytokines. J. Exp. Med. 183, 2593–2603 (1996).

    CAS  PubMed  Google Scholar 

  29. Aggarwal, S. & Gurney, A. L. IL-17: prototype member of an emerging cytokine family. J. Leukoc. Biol. 71, 1–8 (2002).

    CAS  PubMed  Google Scholar 

  30. Zrioual, S. et al. Genome-wide comparison between IL-17A- and IL-17F-induced effects in human rheumatoid arthritis synoviocytes. J. Immunol. 182, 3112–3120 (2009).

    CAS  PubMed  Google Scholar 

  31. Korn, T., Bettelli, E., Oukka, M. & Kuchroo, V. K. IL-17 and Th17 cells. Annu. Rev. Immunol. 27, 485–517 (2009).

    CAS  PubMed  Google Scholar 

  32. Korn, T., Oukka, M., Kuchroo, V. & Bettelli, E. Th17 cells: effector T cells with inflammatory properties. Semin. Immunol. 19, 362–371 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Noordenbos, T. et al. Human mast cells capture, store, and release bioactive, exogenous IL-17A. J. Leukoc. Biol. 100, 453–462 (2016).

    CAS  PubMed  Google Scholar 

  34. Tamassia, N. et al. A reappraisal on the potential ability of human neutrophils to express and produce IL-17 family members in vitro: failure to reproducibly detect it. Front. Immunol. 9, 795 (2018).

    PubMed  PubMed Central  Google Scholar 

  35. Cua, D. J. et al. Interleukin-23 rather than interleukin-12 is the critical cytokine for autoimmune inflammation of the brain. Nature 421, 744–748 (2003).

    CAS  Google Scholar 

  36. Sherlock, J. P., Taylor, P. C., Buckley, C. D. & Cua, D. J. Spondyloarthropathy: interleukin 23 and disease modification. Lancet 385, 2017–2018 (2015).

    PubMed  Google Scholar 

  37. Gravallese, E. M. & Schett, G. Effects of the IL-23-IL-17 pathway on bone in spondyloarthritis. Nat. Rev. Rheumatol. 14, 631–640 (2018).

    CAS  PubMed  Google Scholar 

  38. Appel, H. et al. Analysis of IL-17(+) cells in facet joints of patients with spondyloarthritis suggests that the innate immune pathway might be of greater relevance than the Th17-mediated adaptive immune response. Arthritis Res. Ther. 13, R95 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Appel, H. et al. In situ analysis of interleukin-23- and interleukin-12-positive cells in the spine of patients with ankylosing spondylitis. Arthritis Rheum. 65, 1522–1529 (2013).

    CAS  PubMed  Google Scholar 

  40. Layh-Schmitt, G. & Colbert, R. A. The interleukin-23/interleukin-17 axis in spondyloarthritis. Curr. Opin. Rheumatol. 20, 392–397 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Brown, M. A., Kenna, T. & Wordsworth, B. P. Genetics of ankylosing spondylitis — insights into pathogenesis. Nat. Rev. Rheumatol. 12, 81–91 (2016).

    CAS  PubMed  Google Scholar 

  42. Wellcome Trust Case Control Consortium et al. Association scan of 14,500 nonsynonymous SNPs in four diseases identifies autoimmunity variants. Nat. Genet. 39, 1329–1337 (2007).

    Google Scholar 

  43. Sherlock, J. P. et al. IL-23 induces spondyloarthropathy by acting on ROR-γt+ CD3+CD4-CD8- entheseal resident T cells. Nat. Med. 18, 1069–1076 (2012).

    CAS  PubMed  Google Scholar 

  44. van der Heijde, D. et al. Dual neutralisation of IL-17A and IL-17F with bimekizumab in patients with active ankylosing spondylitis (AS): 12-week results from a phase 2b, randomised, double-blind, placebo-controlled, dose-ranging study [abstract LB0001]. Ann. Rheum. Dis. 77, 70 (2018).

    Google Scholar 

  45. Erdes, S. et al. Primary efficacy of netakimab, a novel interleukin-17 inhibitor, in the treatment of active ankylosing spondylitis in adults. Clin. Exp. Rheumatol. 16 Apr 2019 [epub ahead of print].

  46. Sieper, J. et al. Secukinumab efficacy in anti-TNF-naive and anti-TNF-experienced subjects with active ankylosing spondylitis: results from the MEASURE 2 study. Ann. Rheum. Dis. 76, 571–592 (2017).

    CAS  PubMed  Google Scholar 

  47. Deodhar, A. et al. Efficacy and safety of ixekizumab in the treatment of radiographic axial spondyloarthritis: 16 week results of a phase 3 randomized, double-blind, placebo controlled trial in patients with prior inadequate response or intolerance to tumor necrosis factor inhibitors. Arthritis Rheumatol. 71, 599–611 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Pavelka, K. et al. Efficacy, safety, and tolerability of secukinumab in patients with active ankylosing spondylitis: a randomized, double-blind phase 3 study, MEASURE 3. Arthritis Res. Ther. 19, 285 (2017).

    PubMed  PubMed Central  Google Scholar 

  49. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02757352 (2019).

  50. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02696031 (2019).

  51. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02980705 (2019).

  52. Papp, K. A. et al. Risankizumab versus ustekinumab for moderate-to-severe plaque psoriasis. N. Engl. J. Med. 376, 1551–1560 (2017).

    CAS  PubMed  Google Scholar 

  53. McInnes, I. B. et al. Efficacy and safety of ustekinumab in patients with active psoriatic arthritis: 1 year results of the phase 3, multicentre, double-blind, placebo-controlled PSUMMIT 1 trial. Lancet 382, 780–789 (2013).

    CAS  PubMed  Google Scholar 

  54. Siebert, S., Millar, N. L. & McInnes, I. B. Why did IL-23p19 inhibition fail in AS: a tale of tissues, trials or translation? Ann. Rheum. Dis. 78, 1015–1018 (2018).

    PubMed  PubMed Central  Google Scholar 

  55. Poddubnyy, D. & Sieper, J. Mechanism of new bone formation in axial spondyloarthritis. Curr. Rheumatol. Rep. 19, 55 (2017).

    PubMed  Google Scholar 

  56. Braun, J. et al. Secukinumab shows sustained efficacy and low structural progression in ankylosing spondylitis: 4-year results from the MEASURE 1 study. Rheumatology 58, 859–868 (2018).

    Google Scholar 

  57. Sieper, J. et al. Effect of continuous versus on-demand treatment of ankylosing spondylitis with diclofenac over 2 years on radiographic progression of the spine: results from a randomised multicentre trial (ENRADAS). Ann. Rheum. Dis. 75, 1438–1443 (2016).

    CAS  PubMed  Google Scholar 

  58. van der Heijde, D. et al. Limited radiographic progression and sustained reductions in MRI inflammation in patients with axial spondyloarthritis: 4-year imaging outcomes from the RAPID-axSpA phase III randomised trial. Ann. Rheum. Dis. 77, 699–705 (2018).

    PubMed  PubMed Central  Google Scholar 

  59. Dougados, M. et al. A randomised, multicentre, double-blind, placebo-controlled trial of etanercept in adults with refractory heel enthesitis in spondyloarthritis: the HEEL trial. Ann. Rheum. Dis. 69, 1430–1435 (2010).

    CAS  PubMed  Google Scholar 

  60. Mease, P. et al. Randomized controlled trial of adalimumab in patients with nonpsoriatic peripheral spondyloarthritis. Arthritis Rheumatol. 67, 914–923 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. McInnes, I. B. et al. Secukinumab, a human anti-interleukin-17A monoclonal antibody, in patients with psoriatic arthritis (FUTURE 2): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet 386, 1137–1146 (2015).

    CAS  PubMed  Google Scholar 

  62. McInnes, I. B. et al. Secukinumab sustains improvement in signs and symptoms of psoriatic arthritis: 2 year results from the phase 3 FUTURE 2 study. Rheumatology 56, 1993–2003 (2017).

    CAS  PubMed  Google Scholar 

  63. Araujo, E. G. et al. Effects of ustekinumab versus tumor necrosis factor inhibition on enthesitis: results from the enthesial clearance in psoriatic arthritis (ECLIPSA) study. Semin. Arthritis Rheum. 48, 632–637 (2018).

    PubMed  Google Scholar 

  64. Savage, L. et al. Regression of peripheral subclinical enthesopathy in therapy-naive patients treated with ustekinumab for moderate-to-severe chronic plaque psoriasis. Arthritis Rheumatol. 71, 626–631 (2018).

    Google Scholar 

  65. Bettelli, E. et al. Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature 441, 235–238 (2006).

    CAS  PubMed  Google Scholar 

  66. Lee, Y. et al. Induction and molecular signature of pathogenic TH17 cells. Nat. Immunol. 13, 991–999 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Page, G. et al. Plasma cell-like morphology of Th1-cytokine-producing cells associated with the loss of CD3 expression. Am. J. Pathol. 164, 409–417 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Noack, M., Ndongo-Thiam, N. & Miossec, P. Interaction among activated lymphocytes and mesenchymal cells through podoplanin is critical for a high IL-17 secretion. Arthritis Res. Ther. 18, 148 (2016).

    PubMed  PubMed Central  Google Scholar 

  69. Schett, G., Landewe, R. & van der Heijde, D. Tumour necrosis factor blockers and structural remodelling in ankylosing spondylitis: what is reality and what is fiction? Ann. Rheum. Dis. 66, 709–711 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Chabaud, M. & Miossec, P. The combination of tumor necrosis factor alpha blockade with interleukin-1 and interleukin-17 blockade is more effective for controlling synovial inflammation and bone resorption in an ex vivo model. Arthritis Rheum. 44, 1293–1303 (2001).

    CAS  PubMed  Google Scholar 

  71. Cambre, I. et al. Mechanical strain determines the site-specific localization of inflammation and tissue damage in arthritis. Nat. Commun. 9, 4613 (2018).

    PubMed  PubMed Central  Google Scholar 

  72. Sieper, J., Appel, H., Braun, J. & Rudwaleit, M. Critical appraisal of assessment of structural damage in ankylosing spondylitis: implications for treatment outcomes. Arthritis Rheum. 58, 649–656 (2008).

    PubMed  Google Scholar 

  73. Osta, B., Lavocat, F., Eljaafari, A. & Miossec, P. Effects of interleukin-17A on osteogenic differentiation of isolated human mesenchymal stem cells. Front. Immunol. 5, 425 (2014).

    PubMed  PubMed Central  Google Scholar 

  74. Li, J. Y. et al. IL-17 receptor signaling in osteoblasts/osteocytes mediates PTH-induced bone loss and enhances osteocytic RANKL production. J. Bone Miner. Res. 34, 349–360 (2019).

    CAS  PubMed  Google Scholar 

  75. Jones, D. C. et al. Regulation of adult bone mass by the zinc finger adapter protein Schnurri-3. Science 312, 1223–1227 (2006).

    CAS  PubMed  Google Scholar 

  76. Wein, M. N. et al. Control of bone resorption in mice by Schnurri-3. Proc. Natl Acad. Sci. USA 109, 8173–8178 (2012).

    CAS  PubMed  Google Scholar 

  77. Yago, T. et al. IL-23 induces human osteoclastogenesis via IL-17 in vitro, and anti-IL-23 antibody attenuates collagen-induced arthritis in rats. Arthritis Res. Ther. 9, R96 (2007).

    PubMed  PubMed Central  Google Scholar 

  78. Noack, M., Ndongo-Thiam, N. & Miossec, P. Role of podoplanin in the high interleukin-17A secretion resulting from interactions between activated lymphocytes and psoriatic skin-derived mesenchymal cells. Clin. Exp. Immunol. 186, 64–74 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Lee, J. S. et al. Interleukin-23-independent IL-17 production regulates intestinal epithelial permeability. Immunity 43, 727–738 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Reinhardt, A. et al. Interleukin-23-dependent gamma/delta T cells produce interleukin-17 and accumulate in the enthesis, aortic valve, and ciliary body in mice. Arthritis Rheumatol. 68, 2476–2486 (2016).

    CAS  PubMed  Google Scholar 

  81. Maxwell, J. R. et al. Differential roles for interleukin-23 and interleukin-17 in intestinal immunoregulation. Immunuity 43, 739–750 (2015).

    CAS  Google Scholar 

  82. Moschen, A. R., Tilg, H. & Raine, T. IL-12, IL-23 and IL-17 in IBD: immunobiology and therapeutic targeting. Nat. Rev. Gastroenterol. Hepatol. 16, 185–196 (2019).

    CAS  PubMed  Google Scholar 

  83. Mangan, P. R. et al. Dual inhibition of interleukin-23 and interleukin-17 offers superior efficacy in mouse models of autoimmunity. J. Pharmacol. Exp. Ther. 354, 152–165 (2015).

    CAS  PubMed  Google Scholar 

  84. Spits, H. & Di Santo, J. P. The expanding family of innate lymphoid cells: regulators and effectors of immunity and tissue remodeling. Nat. Immunol. 12, 21–27 (2011).

    CAS  PubMed  Google Scholar 

  85. Buonocore, S. et al. Innate lymphoid cells drive interleukin-23-dependent innate intestinal pathology. Nature 464, 1371–1375 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Cuthbert, R. J. et al. Brief report: group 3 innate lymphoid cells in human enthesis. Arthritis Rheumatol. 69, 1816–1822 (2017).

    CAS  PubMed  Google Scholar 

  87. Bachelez, H. Interleukin 23 inhibitors for psoriasis: not just another number. Lancet 390, 208–210 (2017).

    PubMed  Google Scholar 

  88. Poddubnyy, D. & Sieper, J. What is the best treatment target in axial spondyloarthritis: tumour necrosis factor alpha, interleukin 17, or both? Rheumatology 57, 1145–1150 (2017).

    Article  PubMed  Google Scholar 

  89. McInnes, I. B. & Siebert, S. The extending scope of kinase inhibition in immune diseases. Lancet 392, 2328–2331 (2018).

    PubMed  Google Scholar 

  90. van der Heijde, D. et al. Tofacitinib in patients with ankylosing spondylitis: a phase II, 16-week, randomised, placebo-controlled, dose-ranging study. Ann. Rheum. Dis. 76, 1340–1347 (2017).

    PubMed  PubMed Central  Google Scholar 

  91. van der Heijde, D. et al. Efficacy and safety of filgotinib, a selective Janus kinase 1 inhibitor, in patients with active ankylosing spondylitis (TORTUGA): results from a randomised, placebo-controlled, phase 2 trial. Lancet 392, 2378–2387 (2018).

    PubMed  Google Scholar 

  92. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03178487 (2019).

  93. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03502616 (2019).

  94. Papp, K. et al. Phase 2 trial of selective tyrosine kinase 2 inhibition in psoriasis. N. Engl. J. Med. 379, 1313–1321 (2018).

    CAS  PubMed  Google Scholar 

  95. van der Heijde, D. et al. Efficacy and safety of adalimumab in patients with ankylosing spondylitis: results of a multicenter, randomized, double-blind, placebo-controlled trial. Arthritis Rheum. 54, 2136–2146 (2006).

    PubMed  Google Scholar 

  96. Landewe, R. et al. Efficacy of certolizumab pegol on signs and symptoms of axial spondyloarthritis including ankylosing spondylitis: 24-week results of a double-blind randomised placebo-controlled phase 3 study. Ann. Rheum. Dis. 73, 39–47 (2014).

    CAS  PubMed  Google Scholar 

  97. Sieper, J. et al. Effect of certolizumab pegol over ninety-six weeks in patients with axial spondyloarthritis: results from a phase III randomized trial. Arthritis Rheumatol. 67, 668–677 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Davis, J. C. Jr et al. Recombinant human tumor necrosis factor receptor (etanercept) for treating ankylosing spondylitis: a randomized, controlled trial. Arthritis Rheum. 48, 3230–3236 (2003).

    CAS  PubMed  Google Scholar 

  99. Inman, R. D. et al. Efficacy and safety of golimumab in patients with ankylosing spondylitis: results of a randomized, double-blind, placebo-controlled, phase III trial. Arthritis Rheum. 58, 3402–3412 (2008).

    CAS  PubMed  Google Scholar 

  100. Braun, J. et al. Golimumab, a new, human, TNF-alpha antibody administered subcutaneously every 4 weeks, in ankylosing spondylitis (AS): 24-week efficacy and safety results of the randomized, placebo-controlled GO-RAISE study [abstract L10]. Ann. Rheum. Dis. 68, 629 (2008).

    Google Scholar 

  101. van der Heijde, D. et al. Efficacy and safety of infliximab in patients with ankylosing spondylitis: results of a randomized, placebo-controlled trial (ASSERT). Arthritis Rheum. 52, 582–591 (2005).

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors researched data for the article, provided substantial contributions to discussions of content, wrote the article and reviewed and/or edited the article before submission.

Corresponding author

Correspondence to Joachim Sieper.

Ethics declarations

Competing interests

J.S. declares that he has received honoraria for consultancies or for being a member of the speakers’ bureau from Abbvie, Boehringer-Ingelheim, Janssen, Lilly, Merck, Novartis, Pfizer and UCB. D.P. declares that he has received honoraria for consultancies or for being a member of the speakers’ bureau from Abbvie, Celgene, Lilly, Merck, Novartis, Pfizer, Roche and UCB. P.M. declares no competing interests.

Additional information

Peer review information

Nature Reviews Rheumatology thanks J. Sherlock, D. Wendling, E. Bianchi and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sieper, J., Poddubnyy, D. & Miossec, P. The IL-23–IL-17 pathway as a therapeutic target in axial spondyloarthritis. Nat Rev Rheumatol 15, 747–757 (2019). https://doi.org/10.1038/s41584-019-0294-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41584-019-0294-7

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing