The IL-1 family of cytokines and receptors in rheumatic diseases

Abstract

More than any other cytokine family, the 11 members of the IL-1 family are associated with innate immune responses, which occur in acute inflammation and chronic inflammatory conditions such as rheumatic diseases. In many rheumatic diseases, the severity of the condition can result from the balance between the pro-inflammatory and anti-inflammatory members of the IL-1 family. Pro-inflammatory family members (IL-1α, IL-1β, IL-18, IL-33, IL-36α, IL-36β and IL-36γ) are found in the articular environment during arthritis and often correlate with the degree of inflammation present. IL-1β has emerged as pivotal for promoting inflammation, particularly in autoinflammatory diseases, whereas IL-1α and the IL-36 subfamily are associated with skin diseases. IL-33 regulates T helper 2 (TH2) cell-mediated diseases, in sharp contrast to IL-18, which mainly regulates TH1 cell-mediated responses. The IL-1 family also contains four members that suppress inflammation: two specific receptor antagonists (IL-1 receptor antagonist (IL-1Ra) and IL-36 receptor antagonist (IL-36Ra)), and two members that broadly suppress innate inflammation by non-specifically reducing several cytokines and chemokines (IL-37 and IL-38). In this Review, each of the eleven IL-1 family cytokines and their receptors are discussed, along with their putative roles in rheumatic disease and therapeutic options for targeting or promoting these cytokines.

Key points

  • The IL-1 family of cytokines contains 11 members that either promote inflammation or specifically or non-specifically limit inflammation.

  • The main functions of the IL-1 family are innate immune reactions and inflammation, rather than acquired immunity.

  • IL-1β has emerged as an important cytokine in the pathogenesis of several rheumatic diseases, and can be targeted to treat these diseases and their associated co-morbidities.

  • IL-18 and IL-1β are the main targets for treating macrophage activation syndrome, a dangerous condition that can occur in several rheumatic diseases.

  • The role of the six newer members of the IL-1 family (IL-36α, IL-36β, IL-36γ, IL-36 receptor antagonist, IL-37 and IL-38) in rheumatic diseases is still being investigated.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: IL-1 cytokine subfamilies and receptors.
Fig. 2: IL-1 receptor signalling.
Fig. 3: Expression, synthesis, processing and release of IL-1β.
Fig. 4: Systemic manifestations of adult-onset Still’s disease.
Fig. 5: IL-1 family members in macrophage activation syndrome.

References

  1. 1.

    Dinarello, C. A., Goldin, N. P. & Wolff, S. M. Demonstration and characterization of two distinct human leukocytic pyrogens. J. Exp. Med. 139, 1369–1381 (1974).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. 2.

    Dinarello, C. A., Renfer, L. & Wolff, S. M. Human leukocytic pyrogen: purification and development of a radioimmunoassay. Proc. Natl Acad. Sci. USA 74, 4624–4627 (1977).

    CAS  PubMed  Google Scholar 

  3. 3.

    Auron, P. E. et al. Nucleotide sequence of human monocyte interleukin 1 precursor cDNA. Proc. Natl Acad. Sci. USA 81, 7907–7911 (1984).

    CAS  PubMed  Google Scholar 

  4. 4.

    Dinarello, C. A. Biological basis for interleukin-1 in disease. Blood 87, 2095–2147 (1996).

    CAS  PubMed  Google Scholar 

  5. 5.

    Lomedico, P. T. et al. Cloning and expression of murine interleukin-1 cDNA in Escherichia coli. Nature 312, 458–462 (1984).

    CAS  PubMed  Google Scholar 

  6. 6.

    Dayer, J. M., Robinson, D. R. & Krane, S. M. Prostaglandin production by rheumatoid synovial cells: stimulation by a factor from human mononuclear Cells. J. Exp. Med. 145, 1399–1404 (1977).

    CAS  PubMed  Google Scholar 

  7. 7.

    Mizel, S. B., Dayer, J. M., Krane, S. M. & Mergenhagen, S. E. Stimulation of rheumatoid synovial cell collagenase and prostaglandin production by partially purified lymphocyte-activating factor (interleukin 1). Proc. Natl Acad. Sci. USA 78, 2474–2477 (1981).

    CAS  PubMed  Google Scholar 

  8. 8.

    Saklatvala, J. & Dingle, J. T. Identification of catabolin, a protein from synovium which induces degradation of cartilage in organ culture. Biochem. Biophys. Res. Commun. 96, 1225–1231 (1980).

    CAS  PubMed  Google Scholar 

  9. 9.

    Dinarello, C. A., Rosenwasser, L. J. & Wolff, S. M. Demonstration of a circulating suppressor factor of thymocyte proliferation during endotoxin fever in humans. J. Immunol. 127, 2517–2519 (1981).

    CAS  PubMed  Google Scholar 

  10. 10.

    Arend, W. P., Joslin, F. G. & Massoni, R. J. Effects of immune complexes on production by human monocytes of interleukin 1 or an interleukin 1 inhibitor. J. Immunol. 134, 3868–3875 (1985).

    CAS  PubMed  Google Scholar 

  11. 11.

    Prieur, A. M., Kaufmann, M. T., Griscelli, C. & Dayer, J. M. Specific interleukin-1 inhibitor in serum and urine of children with systemic juvenile chronic arthritis. Lancet 2, 1240–1242 (1987).

    CAS  PubMed  Google Scholar 

  12. 12.

    Seckinger, P., Lowenthal, J. W., Williamson, K., Dayer, J. M. & MacDonald, H. R. A urine inhibitor of interleukin 1 activity that blocks ligand binding. J. Immunol. 139, 1546–1549 (1987).

    CAS  PubMed  Google Scholar 

  13. 13.

    Eisenberg, S. P. et al. Primary structure and functional expression from complementary DNA of a human interleukin-1 receptor antagonist. Nature 343, 341–346 (1990).

    CAS  PubMed  Google Scholar 

  14. 14.

    Cavalli, G. & Dinarello, C. A. Anakinra therapy for non-cancer inflammatory diseases. Front. Pharmacol. 9, 1157 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. 15.

    Okamura, H. et al. Cloning of a new cytokine that induces interferon-g. Nature 378, 88–91 (1995).

    CAS  PubMed  Google Scholar 

  16. 16.

    Schmitz, J. et al. IL-33, an interleukin-1-like cytokine that signals via the IL-1 receptor-related protein ST2 and induces T helper type 2-associated cytokines. Immunity 23, 479–490 (2005).

    CAS  PubMed  Google Scholar 

  17. 17.

    Kumar, S. et al. Identification and initial characterization of four novel members of the interleukin-1 family. J. Biol. Chem. 275, 10308–10314 (2000).

    CAS  PubMed  Google Scholar 

  18. 18.

    Nicklin, M. J. et al. A sequence-based map of the nine genes of the human interleukin-1 cluster. Genomics 79, 718–725 (2002).

    CAS  PubMed  Google Scholar 

  19. 19.

    Dinarello, C. A. et al. Suppression of innate inflammation and immunity by interleukin-37. Eur. J. Immunol. 46, 1067–1081 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. 20.

    Cavalli, G. & Dinarello, C. A. Suppression of inflammation and acquired immunity by IL-37. Immunol. Rev. 281, 179–190 (2018).

    CAS  PubMed  Google Scholar 

  21. 21.

    van de Veerdonk, F. L., de Graaf, D. M., Joosten, L. A. & Dinarello, C. A. Biology of IL-38 and its role in disease. Immunol. Rev. 281, 191–196 (2018).

    PubMed  Google Scholar 

  22. 22.

    Garlanda, C., Dinarello, C. A. & Mantovani, A. The interleukin-1 family: back to the future. Immunity 39, 1003–1018 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. 23.

    Dinarello, C. A. Overview of the IL-1 family in innate inflammation and acquired immunity. Immunol. Rev. 281, 8–27 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. 24.

    Towne, J. E. et al. Interleukin-36 (IL-36) ligands require processing for full agonist (IL-36α, IL-36β, and IL-36γ) or antagonist (IL-36Ra) activity. J. Biol. Chem. 286, 42594–42602 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. 25.

    Thornberry, N. A. et al. A novel heterodimeric cysteine protease is required for interleukin-1β processing in monocytes. Nature 356, 768–774 (1992).

    CAS  PubMed  Google Scholar 

  26. 26.

    Cerretti, D. P. et al. Molecular cloning of the interleukin-1 beta converting enzyme. Science 256, 97–100 (1992).

    CAS  PubMed  Google Scholar 

  27. 27.

    Lefrancais, E. et al. IL-33 is processed into mature bioactive forms by neutrophil elastase and cathepsin G. Proc. Natl Acad. Sci. USA 109, 1673–1678 (2012).

    CAS  PubMed  Google Scholar 

  28. 28.

    Ainscough, J. S. et al. Cathepsin S is the major activator of the psoriasis-associated proinflammatory cytokine IL-36γ. Proc. Natl. Acad. Sci. USA 114, E2748–E2757 (2017).

    CAS  PubMed  Google Scholar 

  29. 29.

    Zhang, M., Kenny, S. J., Ge, L., Xu, K. & Schekman, R. Translocation of interleukin-1β into a vesicle intermediate in autophagy-mediated secretion. eLife 4, e11205 (2015).

    PubMed  PubMed Central  Google Scholar 

  30. 30.

    Carrie, A. et al. A new member of the IL-1 receptor family highly expressed in hippocampus and involved in X-linked mental retardation. Nat. Genet. 23, 25–31 (1999).

    CAS  PubMed  Google Scholar 

  31. 31.

    Pavlowsky, A. et al. Neuronal JNK pathway activation by IL-1 is mediated through IL1RAPL1, a protein required for development of cognitive functions. Commun. Integr. Biol. 3, 245–247 (2010).

    PubMed  PubMed Central  Google Scholar 

  32. 32.

    Bulek, K. et al. The essential role of single Ig IL-1 receptor-related molecule/Toll IL-1R8 in regulation of Th2 immune response. J. Immunol. 182, 2601–2609 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. 33.

    Riva, F. et al. TIR8/SIGIRR is an Interleukin-1 receptor/Toll like receptor family member with regulatory functions in inflammation and immunity. Front. Immunol. 3, 322 (2012).

    PubMed  PubMed Central  Google Scholar 

  34. 34.

    Gunther, S. et al. IL-1 family cytokines use distinct molecular mechanisms to signal through their shared co-receptor. Immunity 47, 510–523 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. 35.

    Tsutsumi, N. et al. The structural basis for receptor recognition of human interleukin-18. Nat. Commun. 5, 5340 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. 36.

    Kato, Z. et al. The structure and binding mode of interleukin-18. Nat. Struct. Biol. 10, 966–971 (2003).

    CAS  PubMed  Google Scholar 

  37. 37.

    Li, S. et al. Extracellular forms of IL-37 inhibit innate inflammation in vitro and in vivo but require the IL-1 family decoy receptor IL-1R8. Proc. Natl Acad. Sci. USA 112, 2497–2502 (2015).

    CAS  PubMed  Google Scholar 

  38. 38.

    Nold-Petry, C. A. et al. IL-37 requires the receptors IL-18Rα and IL-1R8 (SIGIRR) to carry out its multifaceted anti-inflammatory program upon innate signal transduction. Nat. Immunol. 16, 354–365 (2015).

    CAS  PubMed  Google Scholar 

  39. 39.

    Cavalli, G. et al. Treating experimental arthritis with the innate immune inhibitor interleukin-37 reduces joint and systemic inflammation. Rheumatology 55, 2220–2229 (2016).

    CAS  PubMed  Google Scholar 

  40. 40.

    Lunding, L. et al. IL-37 requires IL-18Rα and SIGIRR/IL-1R8 to diminish allergic airway inflammation in mice. Allergy 79, 366–373 (2015).

    Google Scholar 

  41. 41.

    Zeng, Q. et al. Interleukin-37 suppresses the osteogenic responses of human aortic valve interstitial cells in vitro and alleviates valve lesions in mice. Proc. Natl Acad. Sci. USA 114, 1631–1636 (2017).

    CAS  PubMed  Google Scholar 

  42. 42.

    Boraschi, D., Italiani, P., Weil, S. & Martin, M. U. The family of the interleukin-1 receptors. Immunol. Rev. 281, 197–232 (2018).

    CAS  PubMed  Google Scholar 

  43. 43.

    Greenfeder, S. A. et al. Molecular cloning and characterization of a second subunit of the interleukin-1 receptor complex. J. Biol. Chem. 270, 13757–13765 (1995).

    CAS  PubMed  Google Scholar 

  44. 44.

    Thomas, C., Bazan, J. F. & Garcia, K. C. Structure of the activating IL-1 receptor signaling complex. Nat. Struct. Mol. Biol. 19, 455–457 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. 45.

    Wang, D. et al. Structural insights into the assembly and activation of IL-1β with its receptors. Nat. Immunol. 11, 905–911 (2010).

    CAS  PubMed  Google Scholar 

  46. 46.

    Greenfeder, S. A. et al. Insertion of a structural domain of interleukin (IL)-1β confers agonist activity to the IL-1 receptor antagonist. Implications for IL-1 bioactivity. J. Biol. Chem. 270, 22460–22466 (1995).

    CAS  PubMed  Google Scholar 

  47. 47.

    Colotta, F. et al. Interleukin-1 type II receptor: a decoy target for IL-1 that is regulated by IL-4. Science 261, 472–475 (1993).

    CAS  PubMed  Google Scholar 

  48. 48.

    Smith, D. E. et al. The soluble form of IL-1 receptor accessory protein enhances the ability of soluble type II IL-1 receptor to inhibit IL-1 action. Immunity 18, 87–96 (2003).

    CAS  PubMed  Google Scholar 

  49. 49.

    Hojen, J. F. et al. IL-1R3 blockade broadly attenuates the functions of six members of the IL-1 family, revealing their contribution to models of disease. Nat. Immunol. 20, 1138–1149 (2019).

    PubMed  Google Scholar 

  50. 50.

    Liu, X. et al. Structural insights into the interaction of IL-33 with its receptors. Proc. Natl Acad. Sci. USA 110, 14918–14923 (2013).

    CAS  PubMed  Google Scholar 

  51. 51.

    McDonald, G. B. et al. Predictive value of clinical findings and plasma biomarkers after fourteen days of prednisone treatment for acute graft-versus-host disease. Biol. Blood Marrow Transpl. 23, 1257–1263 (2017).

    CAS  Google Scholar 

  52. 52.

    Werman, A. et al. The precursor form of IL-1α is an intracrine proinflammatory activator of transcription. Proc. Natl Acad. Sci. USA 101, 2434–2439 (2004).

    CAS  PubMed  Google Scholar 

  53. 53.

    Stevenson, F. T., Turck, J., Locksley, R. M. & Lovett, D. H. The N-terminal propiece of interleukin 1α is a transforming nuclear oncoprotein. Proc. Natl Acad. Sci. USA 94, 508–513 (1997).

    CAS  PubMed  Google Scholar 

  54. 54.

    Cohen, I. et al. IL-1α is a DNA damage sensor linking genotoxic stress signaling to sterile inflammation and innate immunity. Sci. Rep. 5, 14756 (2015).

    CAS  PubMed  Google Scholar 

  55. 55.

    Rider, P., Carmi, Y., Voronov, E. & Apte, R. N. Interleukin-1α. Semin. Immunol. 25, 430–438 (2013).

    CAS  PubMed  Google Scholar 

  56. 56.

    Di Paolo, N. C. & Shayakhmetov, D. M. Interleukin 1α and the inflammatory process. Nat. Immunol. 17, 906–913 (2016).

    PubMed  PubMed Central  Google Scholar 

  57. 57.

    Rider, P. et al. IL-1α and IL-1β recruit different myeloid cells and promote different stages of sterile inflammation. J. Immunol. 187, 4835–4843 (2011).

    CAS  PubMed  Google Scholar 

  58. 58.

    Rider, P., Voronov, E., Dinarello, C. A., Apte, R. N. & Cohen, I. Alarmins: feel the stress. J. Immunol. 198, 1395–1402 (2017).

    CAS  PubMed  Google Scholar 

  59. 59.

    Kim, B. et al. The interleukin-1α precursor is biologically active and is likely a key alarmin in the IL-1 family of cytokines. Front. Immunol. 4, 391 (2013).

    PubMed  PubMed Central  Google Scholar 

  60. 60.

    Kurt-Jones, E. A., Beller, D. I., Mizel, S. B. & Unanue, E. R. Identification of a membrane-associated interleukin-1 in macrophages. Proc. Natl Acad. Sci. USA 82, 1204–1208 (1985).

    CAS  PubMed  Google Scholar 

  61. 61.

    Kaplanski, G. et al. Interleukin-1 induces interleukin-8 secretion from endothelial cells by a juxtacrine mechanism. Blood 84, 4242–4248 (1994).

    CAS  PubMed  Google Scholar 

  62. 62.

    Hacham, M., Argov, S., White, R. M., Segal, S. & Apte, R. N. Different patterns of interleukin-1alpha and interleukin-1beta expression in organs of normal young and old mice. Eur. Cytokine Netw. 13, 55–65 (2002).

    CAS  PubMed  Google Scholar 

  63. 63.

    Cohen, I. et al. Differential release of chromatin-bound IL-1alpha discriminates between necrotic and apoptotic cell death by the ability to induce sterile inflammation. Proc. Natl Acad. Sci. USA 107, 2574–2579 (2010).

    CAS  PubMed  Google Scholar 

  64. 64.

    Ter Horst, R. et al. Host and environmental factors influencing individual human cytokine responses. Cell 167, 1111–1124 (2016).

    PubMed  PubMed Central  Google Scholar 

  65. 65.

    Tunjungputri, R. N. et al. The inter-relationship of platelets with interleukin-1beta-mediated inflammation in humans. Thromb. Haemost. 118, 2112–2125 (2018).

    PubMed  Google Scholar 

  66. 66.

    Lachmann, H. J. et al. Use of canakinumab in the cryopyrin-associated periodic syndrome. N. Engl. J. Med. 360, 2416–2425 (2009).

    CAS  PubMed  Google Scholar 

  67. 67.

    Lachmann, H. J. et al. In vivo regulation of interleukin 1β in patients with cryopyrin-associated periodic syndromes. J. Exp. Med. 206, 1029–1036 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. 68.

    Zheng, Y., Humphry, M., Maguire, J. J., Bennett, M. R. & Clarke, M. C. Intracellular interleukin-1 receptor 2 binding prevents cleavage and activity of interleukin-1α, controlling necrosis-induced sterile inflammation. Immunity 38, 285–295 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. 69.

    de Dieuleveult, A. L., Siemonsma, P. C., van Erp, J. B. & Brouwer, A. M. Effects of aging in multisensory integration: a systematic review. Front. Aging Neurosci. 9, 80 (2017).

    PubMed  PubMed Central  Google Scholar 

  70. 70.

    Fernandes, J. C., Martel-Pelletier, J. & Pelletier, J. P. The role of cytokines in osteoarthritis pathophysiology. Biorheology 39, 237–246 (2002).

    CAS  PubMed  Google Scholar 

  71. 71.

    Meulenbelt, I. et al. Association of the interleukin-1 gene cluster with radiographic signs of osteoarthritis of the hip. Arthritis Rheum. 50, 1179–1186 (2004).

    CAS  PubMed  Google Scholar 

  72. 72.

    Nasi, S., Ea, H. K., So, A. & Busso, N. Revisiting the role of interleukin-1 pathway in osteoarthritis: interleukin-1α and -1β, and NLRP3 inflammasome are not involved in the pathological features of the murine menisectomy model of osteoarthritis. Front. Pharmacol. 8, 282 (2017).

    PubMed  PubMed Central  Google Scholar 

  73. 73.

    Gruber, J. et al. Induction of interleukin-1 in articular cartilage by explantation and cutting. Arthritis Rheum. 50, 2539–2546 (2004).

    CAS  PubMed  Google Scholar 

  74. 74.

    Ismail, H. M. et al. Interleukin-1 acts via the JNK-2 signaling pathway to induce aggrecan degradation by human chondrocytes. Arthritis Rheumatol. 67, 1826–1836 (2015).

    CAS  PubMed  Google Scholar 

  75. 75.

    Joosten, L. A. et al. Interleukin-18 promotes joint inflammation and induces interleukin-1-driven cartilage destruction. Am. J. Pathol. 165, 959–967 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. 76.

    Koenders, M. I. et al. Interleukin-1 drives pathogenic Th17 cells during spontaneous arthritis in interleukin-1 receptor antagonist-deficient mice. Arthritis Rheum. 58, 3461–3470 (2008).

    CAS  PubMed  Google Scholar 

  77. 77.

    Zwerina, J. et al. TNF-induced structural joint damage is mediated by IL-1. Proc. Natl Acad. Sci. USA 104, 11742–11747 (2007).

    CAS  Google Scholar 

  78. 78.

    Jiang, Y. et al. A multicenter, double-blind, dose-ranging, randomized, placebo- controlled study of recombinant human interleukin-1 receptor antagonist in patients with rheumatoid arthritis: radiologic progression and correlation of Genant and Larsen scores. Arthritis Rheum. 43, 1001–1009 (2000).

    CAS  PubMed  Google Scholar 

  79. 79.

    Berda-Haddad, Y. et al. Sterile inflammation of endothelial cell-derived apoptotic bodies is mediated by interleukin-1α. Proc. Natl Acad. Sci. USA 108, 20684–20689 (2011).

    CAS  PubMed  Google Scholar 

  80. 80.

    Wakita, D. et al. Role of interleukin-1 signaling in a mouse model of Kawasaki Disease-associated abdominal aortic aneurysm. Arterioscler. Thromb. Vasc. Biol. 36, 886–897 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. 81.

    Campbell, A. J. & Burns, J. C. Adjunctive therapies for Kawasaki disease. J. Infect. 72(Suppl), S1–S5 (2016).

    PubMed  Google Scholar 

  82. 82.

    Kone-Paut, I. et al. The use of interleukin 1 receptor antagonist (anakinra) in Kawasaki disease: a retrospective cases series. Autoimmun. Rev. 17, 768–774 (2018).

    CAS  PubMed  Google Scholar 

  83. 83.

    Guillaume, M. P., Reumaux, H. & Dubos, F. Usefulness and safety of anakinra in refractory Kawasaki disease complicated by coronary artery aneurysm. Cardiol. Young 28, 739–742 (2018).

    PubMed  Google Scholar 

  84. 84.

    Tremoulet, A. H. et al. Rationale and study design for a phase I/IIa trial of anakinra in children with Kawasaki disease and early coronary artery abnormalities (the ANAKID trial). Contemp. Clin. Trials 48, 70–75 (2016).

    PubMed  PubMed Central  Google Scholar 

  85. 85.

    Carrasco, D., Stecher, M., Lefebvre, G. C., Logan, A. C. & Moy, R. An open label, phase 2 study of MABp1 monotherapy for the treatment of acne vulgaris and psychiatric comorbidity. J. Drugs Dermatol. 14, 560–564 (2015).

    CAS  PubMed  Google Scholar 

  86. 86.

    Coleman, K. M., Gudjonsson, J. E. & Stecher, M. Open-label trial of MABp1, a true human monoclonal antibody targeting interleukin 1α, for the treatment of psoriasis. JAMA Dermatol. 151, 555–556 (2015).

    PubMed  Google Scholar 

  87. 87.

    Hickish, T. et al. MABp1 as a novel antibody treatment for advanced colorectal cancer: a randomised, double-blind, placebo-controlled, phase 3 study. Lancet Oncol. 18, 192–201 (2017).

    CAS  PubMed  Google Scholar 

  88. 88.

    Hong, D. S. et al. MABp1, a first-in-class true human antibody targeting interleukin-1α in refractory cancers: an open-label, phase 1 dose-escalation and expansion study. Lancet Oncol. 15, 656–666 (2014).

    CAS  PubMed  Google Scholar 

  89. 89.

    Hong, D. S. et al. Xilonix, a novel true human antibody targeting the inflammatory cytokine interleukin-1 alpha, in non-small cell lung cancer. Invest. New Drugs 33, 621–631 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. 90.

    Kanni, T. et al. MABp1 targeting IL-1alpha for moderate to severe hidradenitis suppurativa not eligible for adalimumab: a randomized study. J. Invest. Dermatol. 138, 795–801 (2018).

    CAS  PubMed  Google Scholar 

  91. 91.

    Tzanetakou, V. et al. Safety and efficacy of anakinra in severe hidradenitis suppurativa: a randomized clinical trial. JAMA Dermatol. 152, 52–59 (2016).

    PubMed  Google Scholar 

  92. 92.

    Kawaguchi, Y., Hara, M. & Wright, T. M. Endogenous IL-1α from systemic sclerosis fibroblasts induces IL-6 and PDGF-A. J. Clin. Invest. 103, 1253–1260 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. 93.

    Zhang, L. et al. Association of interleukin 1 family with systemic sclerosis. Inflammation 37, 1213–1220 (2014).

    CAS  PubMed  Google Scholar 

  94. 94.

    Joosten, L. A. et al. Alpha-1-anti-trypsin-Fc fusion protein ameliorates gouty arthritis by reducing release and extracellular processing of IL-1β and by the induction of endogenous IL-1Ra. Ann. Rheum. Dis. 75, 1219–1227 (2016).

    CAS  PubMed  Google Scholar 

  95. 95.

    Joosten, L. A. et al. Engagement of fatty acids with Toll-like receptor 2 drives interleukin-1β production via the ASC/caspase 1 pathway in monosodium urate monohydrate crystal-induced gouty arthritis. Arthritis Rheum. 62, 3237–3248 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. 96.

    Jouvenne, P., Fossiez, F., Banchereau, J. & Miossec, P. High levels of neutralizing autoantibodies against IL-1 alpha are associated with a better prognosis in chronic polyarthritis: a follow-up study. Scand. J. Immunol. 46, 413–418 (1997).

    CAS  PubMed  Google Scholar 

  97. 97.

    Vincent, T., Plawecki, M., Goulabchand, R., Guilpain, P. & Eliaou, J. F. Emerging clinical phenotypes associated with anti-cytokine autoantibodies. Autoimmun. Rev. 14, 528–535 (2015).

    CAS  PubMed  Google Scholar 

  98. 98.

    Sugihara, T. et al. A new murine model to define the critical pathologic and therapeutic mediators of polymyositis. Arthritis Rheum. 56, 1304–1314 (2007).

    CAS  PubMed  Google Scholar 

  99. 99.

    Sugihara, T., Okiyama, N., Watanabe, N., Miyasaka, N. & Kohsaka, H. IL-1 and tumor necrosis factor α blockade for treatment of experimental polymyositis. Arthritis Rheum. 64, 2655–2662 (2012).

    CAS  PubMed  Google Scholar 

  100. 100.

    Botsios, C., Sfriso, P., Furlan, A., Punzi, L. & Dinarello, C. A. Resistant Behcet disease responsive to anakinra. Ann. Intern. Med. 149, 284–286 (2008).

    PubMed  Google Scholar 

  101. 101.

    Zong, M. et al. Anakinra treatment in patients with refractory inflammatory myopathies and possible predictive response biomarkers: a mechanistic study with 12 months follow-up. Ann. Rheum. Dis. 73, 913–920 (2014).

    CAS  PubMed  Google Scholar 

  102. 102.

    Munroe, M. E. et al. Pathways of impending disease flare in African-American systemic lupus erythematosus patients. J. Autoimmun. 78, 70–78 (2017).

    PubMed  PubMed Central  Google Scholar 

  103. 103.

    Ostendorf, B. et al. Preliminary results of safety and efficacy of the interleukin 1 receptor antagonist anakinra in patients with severe lupus arthritis. Ann. Rheum Dis. 64, 630–633 (2005).

    CAS  PubMed  Google Scholar 

  104. 104.

    Tayer-Shifman, O. E. & Ben-Chetrit, E. Refractory macrophage activation syndrome in a patient with SLE and APLA syndrome – successful use of PET-CT and Anakinra in its diagnosis and treatment. Mod. Rheumatol. 25, 954–957 (2015).

    PubMed  Google Scholar 

  105. 105.

    Egues Dubuc, C. A. et al. Hemophagocytic syndrome as the initial manifestation of systemic lupus erythematosus. Reumatol. Clin. 10, 321–324 (2014).

    PubMed  Google Scholar 

  106. 106.

    Dinarello, C. A., Simon, A. & Van Der Meer, J. W. Treating inflammation by blocking interleukin-1 in a broad spectrum of diseases. Nat. Rev. Drug. Discov. 11, 633–652 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. 107.

    Dinarello, C. A. et al. Interleukin 1 induces interleukin 1. I. Induction of circulating interleukin 1 in rabbits in vivo and in human mononuclear cells in vitro. J. Immunol. 139, 1902–1910 (1987).

    CAS  PubMed  Google Scholar 

  108. 108.

    Zhang, F. et al. Defining inflammatory cell states in rheumatoid arthritis joint synovial tissues by integrating single-cell transcriptomics and mass cytometry. Nat. Immunol. 20, 928–942 (2019).

    PubMed  Google Scholar 

  109. 109.

    Ridker, P. M. et al. Antiinflammatory therapy with canakinumab for atherosclerotic disease. N. Engl. J. Med. 377, 1119–1131 (2017).

    CAS  PubMed  Google Scholar 

  110. 110.

    Libby, P. Interleukin-1 beta as a target for atherosclerosis therapy: biological basis of CANTOS and beyond. J. Am. Coll. Cardiol. 70, 2278–2289 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. 111.

    Schlesinger, N. et al. Canakinumab for acute gouty arthritis in patients with limited treatment options: results from two randomised, multicentre, active-controlled, double-blind trials and their initial extensions. Ann. Rheum. Dis. 71, 1839–1848 (2012).

    CAS  PubMed  Google Scholar 

  112. 112.

    Chevalier, X. et al. Safety study of intraarticular injection of interleukin 1 receptor antagonist in patients with painful knee osteoarthritis: a multicenter study. J. Rheumatol. 32, 1317–1323 (2005).

    CAS  PubMed  Google Scholar 

  113. 113.

    Larsen, C. M. et al. Interleukin-1-receptor antagonist in type 2 diabetes mellitus. N. Engl. J. Med. 356, 1517–1526 (2007).

    CAS  PubMed  Google Scholar 

  114. 114.

    Cavelti-Weder, C. et al. Effects of gevokizumab on glycemia and inflammatory markers in type 2 diabetes. Diabetes Care 35, 1654–1662 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. 115.

    Everett, B. M. et al. Anti-inflammatory therapy with canakinumab for the prevention and management of diabetes. J. Am. Coll. Cardiol. 71, 2392–2401 (2018).

    CAS  PubMed  Google Scholar 

  116. 116.

    Van Tassell, B. W. et al. Interleukin-1 blockade in recently decompensated systolic heart failure: Results from REDHART (Recently decompensated heart failure anakinra response trial). Circ. Heart Fail. 10, e004373 (2017).

    PubMed  PubMed Central  Google Scholar 

  117. 117.

    Everett, B. M. et al. Anti-inflammatory therapy with canakinumab for the prevention of hospitalization for heart failure. Circulation 139, 1289–1299 (2019).

    CAS  PubMed  Google Scholar 

  118. 118.

    Ridker, P. M. et al. Effect of interleukin-1β inhibition with canakinumab on incident lung cancer in patients with atherosclerosis: exploratory results from a randomised, double-blind, placebo-controlled trial. Lancet 390, 1833–1842 (2017).

    CAS  PubMed  Google Scholar 

  119. 119.

    Dinarello, C. A. Why not treat human cancer with interleukin-1 blockade? Cancer Metastasis Rev. 29, 317–329 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. 120.

    Lust, J. A. et al. Reduction in C-reactive protein indicates successful targeting of the IL-1/IL-6 axis resulting in improved survival in early stage multiple myeloma. Am. J. Hematol. 91, 571–574 (2016).

    CAS  PubMed  Google Scholar 

  121. 121.

    Andrei, C. et al. The secretory route of the leaderless protein interleukin 1β involves exocytosis of endolysosome-related vesicles. Mol. Biol. Cell. 10, 1463–1475 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. 122.

    Andrei, C. et al. Phospholipases C and A2 control lysosome-mediated IL-1β secretion: implications for inflammatory processes. Proc. Natl Acad. Sci. USA. 101, 9745–9750 (2004).

    CAS  PubMed  Google Scholar 

  123. 123.

    Gardella, S. et al. Secretion of bioactive interleukin-1β by dendritic cells is modulated by interaction with antigen specific T cells. Blood 95, 3809–3815 (2000).

    CAS  PubMed  Google Scholar 

  124. 124.

    Semino, C., Carta, S., Gattorno, M., Sitia, R. & Rubartelli, A. Progressive waves of IL-1β release by primary human monocytes via sequential activation of vesicular and gasdermin D-mediated secretory pathways. Cell Death Dis. 9, 1088–1102 (2018).

    PubMed  PubMed Central  Google Scholar 

  125. 125.

    Qu, Y., Franchi, L., Nunez, G. & Dubyak, G. R. Nonclassical IL-1β secretion stimulated by P2X7 receptors is dependent on inflammasome activation and correlated with exosome release in murine macrophages. J. Immunol. 179, 1913–1925 (2007).

    CAS  PubMed  Google Scholar 

  126. 126.

    Kuriakose, T. & Kanneganti, T. D. Gasdermin D flashes an exit signal for IL-1. Immunity 48, 1–3 (2018).

    CAS  PubMed  Google Scholar 

  127. 127.

    Evavold, C. L. et al. The pore-forming protein gasdermin D regulates interleukin-1 secretion from living macrophages. Immunity 48, 35–44 (2018).

    CAS  PubMed  Google Scholar 

  128. 128.

    Brough, D., Pelegrin, P. & Nickel, W. An emerging case for membrane pore formation as a common mechanism for the unconventional secretion of FGF2 and IL-1β. J. Cell Sci. 130, 3197–3202 (2017).

    CAS  PubMed  Google Scholar 

  129. 129.

    Orning, P. et al. Pathogen blockade of TAK1 triggers caspase-8-dependent cleavage of gasdermin D and cell death. Science 362, 1064–1069 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. 130.

    Bergsbaken, T., Fink, S. L. & Cookson, B. T. Pyroptosis: host cell death and inflammation. Nat. Rev. Microbiol. 7, 99–109 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  131. 131.

    Zhang, D. et al. Gasdermin D serves as a key executioner of pyroptosis in experimental cerebral ischemia and reperfusion model both in vivo and in vitro. J. Neurosci. Res. 97, 645–660 (2019).

    CAS  PubMed  Google Scholar 

  132. 132.

    Xiao, J. et al. Gasdermin D mediates the pathogenesis of neonatal-onset multisystem inflammatory disease in mice. PLOS Biol. 16, e3000047 (2018).

    PubMed  PubMed Central  Google Scholar 

  133. 133.

    Netea, M. G. et al. Differential requirement for the activation of the inflammasome for processing and release of IL-1beta in monocytes and macrophages. Blood 113, 2324–2335 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  134. 134.

    Fantuzzi, G. et al. Response to local inflammation of IL-1 beta-converting enzyme-deficient mice. J. Immunol. 158, 1818–1824 (1997).

    CAS  PubMed  Google Scholar 

  135. 135.

    Joosten, L. A. et al. Inflammatory arthritis in caspase 1 gene-deficient mice: Contribution of proteinase 3 to caspase 1-independent production of bioactive interleukin-1beta. Arthritis Rheum. 60, 3651–3662 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  136. 136.

    Kastner, D. L., Aksentijevich, I. & Goldbach-Mansky, R. Autoinflammatory disease reloaded: a clinical perspective. Cell 140, 784–790 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  137. 137.

    Manthiram, K., Zhou, Q., Aksentijevich, I. & Kastner, D. L. The monogenic autoinflammatory diseases define new pathways in human innate immunity and inflammation. Nat. Immunol. 18, 832–842 (2017).

    CAS  PubMed  Google Scholar 

  138. 138.

    Agostini, L. et al. NALP3 forms an IL-1β processing inflammasome with increased activity in Muckle-Wells auto-inflammatory disorder. Immunity 20, 319–325 (2004).

    CAS  PubMed  Google Scholar 

  139. 139.

    Schett, G., Dayer, J. M. & Manger, B. Interleukin-1 function and role in rheumatic disease. Nat. Rev. Rheumatol. 12, 14–24 (2016).

    CAS  PubMed  Google Scholar 

  140. 140.

    Masters, S. L., Simon, A., Aksentijevich, I. & Kastner, D. L. Horror autoinflammaticus: the molecular pathophysiology of autoinflammatory disease. Annu. Rev. Immunol. 27, 621–668 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  141. 141.

    Chae, J. J. et al. The B30.2 domain of pyrin, the familial Mediterranean fever protein, interacts directly with caspase-1 to modulate IL-1β production. Proc. Natl Acad. Sci. USA. 103, 9982–9987 (2006).

    CAS  PubMed  Google Scholar 

  142. 142.

    Shoham, N. G. et al. Pyrin binds the PSTPIP1/CD2BP1 protein, defining familial Mediterranean fever and PAPA syndrome as disorders in the same pathway. Proc. Natl Acad. Sci. USA 100, 13501–13506 (2003).

    CAS  PubMed  Google Scholar 

  143. 143.

    Drenth, J. P., van der Meer, J. W. & Kushner, I. Unstimulated peripheral blood mononuclear cells from patients with the hyper-IgD syndrome produce cytokines capable of potent induction of C-reactive protein and serum amyloid A in Hep3B cells. J. Immunol. 157, 400–404 (1996).

    CAS  PubMed  Google Scholar 

  144. 144.

    Gattorno, M. et al. The pattern of response to anti-interleukin-1 treatment distinguishes two subsets of patients with systemic-onset juvenile idiopathic arthritis. Arthritis Rheum. 58, 1505–1515 (2008).

    CAS  PubMed  Google Scholar 

  145. 145.

    Gattorno, M. et al. Pattern of interleukin-1β secretion in response to lipopolysaccharide and ATP before and after interleukin-1 blockade in patients with CIAS1 mutations. Arthritis Rheum. 56, 3138–3148 (2007).

    CAS  PubMed  Google Scholar 

  146. 146.

    Goldbach-Mansky, R. et al. Neonatal-onset multisystem inflammatory disease responsive to interleukin-1β inhibition. N. Engl. J. Med. 355, 581–592 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  147. 147.

    Giamarellos-Bourboulis, E. J. et al. Crystals of monosodium urate monohydrate enhance lipopolysaccharide-induced release of interleukin 1β by mononuclear cells through a caspase 1-mediated process. Ann. Rheum. Dis. 68, 273–278 (2009).

    CAS  PubMed  Google Scholar 

  148. 148.

    Seibert, K. et al. Pharmacological and biochemical demonstration of the role of cyclooxygenase 2 in inflammation and pain. Proc. Natl Acad. Sci. USA 91, 12013–12017 (1994).

    CAS  PubMed  Google Scholar 

  149. 149.

    So, A., De Smedt, T., Revaz, S. & Tschopp, J. A pilot study of IL-1 inhibition by anakinra in acute gout. Arthritis Res. Ther. 9, R28 (2007).

    PubMed  PubMed Central  Google Scholar 

  150. 150.

    Wang, H. J., Jiang, Y. F., Wang, X. R., Zhang, M. L. & Gao, P. J. Elevated serum interleukin-38 level at baseline predicts virological response in telbivudine-treated patients with chronic hepatitis B. World J. Gastroenterol. 22, 4529–4537 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  151. 151.

    Terkeltaub, R. et al. The interleukin 1 inhibitor rilonacept in treatment of chronic gouty arthritis: results of a placebo-controlled, monosequence crossover, non-randomised, single-blind pilot study. Ann. Rheum. Dis. 68, 1613–1617 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  152. 152.

    Janssen, C. A. et al. Anakinra for the treatment of acute gout flares: a randomized, double-blind, placebo-controlled, active-comparator, non-inferiority trial. Rheumatology 58, 1344–1352 (2019).

    Google Scholar 

  153. 153.

    Marchetti, C. et al. OLT1177, a beta-sulfonyl nitrile compound, safe in humans, inhibits the NLRP3 inflammasome and reverses the metabolic cost of inflammation. Proc. Natl Acad. Sci. USA 115, E1530–E1539 (2018).

    CAS  PubMed  Google Scholar 

  154. 154.

    Klück, V. et al. OLT1177™, an oral NLRP3 inflammasome inhibitor, inhibits acute joint inflammation and circulating IL-1β during gout flares in humans. Ann. Rheum. Dis. 78 (Suppl 1), A69 (2019).

    Google Scholar 

  155. 155.

    Jansen, T. L. et al. The first Phase 2a proof-of-concept study of a selective NLRP3 inflammasome inhibitor, dapansutrile (OLT1177™), in acute gout. Ann. Rheum. Dis. 78 (Suppl 1), A70 (2019).

    Google Scholar 

  156. 156.

    Cicero, A. F. et al. Association between serum uric acid, hypertension, vascular stiffness and subclinical atherosclerosis: data from the Brisighella heart study. J. Hypertens. 32, 57–64 (2014).

    CAS  PubMed  Google Scholar 

  157. 157.

    Athyros, V. G. & Mikhailidis, D. P. Uric acid, chronic kidney disease and type 2 diabetes: a cluster of vascular risk factors. J. Diabetes Complications 28, 122–123 (2014).

    PubMed  Google Scholar 

  158. 158.

    Gustafsson, D. & Unwin, R. The pathophysiology of hyperuricaemia and its possible relationship to cardiovascular disease, morbidity and mortality. BMC Nephrol. 14, 164 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  159. 159.

    Crisan, T. O. et al. Soluble uric acid primes TLR-induced proinflammatory cytokine production by human primary cells via inhibition of IL-1Ra. Ann. Rheum. Dis. 75, 755–762 (2016).

    CAS  PubMed  Google Scholar 

  160. 160.

    Crisan, T. O. et al. Uric acid priming in human monocytes is driven by the AKT-PRAS40 autophagy pathway. Proc. Natl Acad. Sci. USA 114, 5485–5490 (2017).

    CAS  PubMed  Google Scholar 

  161. 161.

    Pascual, V., Allantaz, F., Arce, E., Punaro, M. & Banchereau, J. Role of interleukin-1 (IL-1) in the pathogenesis of systemic onset juvenile idiopathic arthritis and clinical response to IL-1 blockade. J. Exp. Med. 201, 1479–1486 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  162. 162.

    Fitzgerald, A. A., Leclercq, S. A., Yan, A., Homik, J. E. & Dinarello, C. A. Rapid responses to anakinra in patients with refractory adult-onset Still’s disease. Arthritis Rheum. 52, 1794–1803 (2005).

    CAS  PubMed  Google Scholar 

  163. 163.

    Quartier, P. et al. A multicentre, randomised, double-blind, placebo-controlled trial with the interleukin-1 receptor antagonist anakinra in patients with systemic-onset juvenile idiopathic arthritis (ANAJIS trial). Ann. Rheum. Dis. 70, 747–754 (2011).

    CAS  PubMed  Google Scholar 

  164. 164.

    Horneff, G., Peitz, J., Kekow, J. & Foell, D. Canakinumab for first line steroid-free treatment in a child with systemic-onset juvenile idiopathic arthritis. Scand. J. Rheumatol. 46, 500–501 (2017).

    CAS  PubMed  Google Scholar 

  165. 165.

    Wulffraat, N. M. & Woo, P. Canakinumab in pediatric rheumatic diseases. Expert Opin. Biol. Ther. 13, 615–622 (2013).

    CAS  PubMed  Google Scholar 

  166. 166.

    Vojinovic, J. et al. Safety and efficacy of an oral histone deacetylase inhibitor in systemic onset juvenile idiopathic arthritis. Arthritis Rheum. 63, 1452–1458 (2011).

    CAS  PubMed  Google Scholar 

  167. 167.

    Leoni, F. et al. The histone deacetylase inhibitor ITF2357 reduces production of pro-inflammatory cytokines in vitro and systemic inflammation in vivo. Mol. Med. 11, 1–15 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  168. 168.

    Furlan, A. et al. Pharmacokinetics, safety and inducible cytokine responses during a phase 1 trial of the oral histone deacetylase inhibitor ITF2357 (givinostat). Mol. Med. 17, 353–362 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  169. 169.

    Rudinskaya, A. & Trock, D. H. Successful treatment of a patient with refractory adult-onset Still’s disease with anakinra. J. Clin. Rheumatol. 9, 330–332 (2003).

    PubMed  Google Scholar 

  170. 170.

    Vasques Godinho, F. M., Parreira Santos, M. J. & Canas da Silva, J. Refractory adult onset Still’s disease successfully treated with anakinra. Ann. Rheum. Dis. 64, 647–648 (2005).

    CAS  PubMed  Google Scholar 

  171. 171.

    Colafrancesco, S. et al. Response to interleukin-1 inhibitors in 140 Italian patients with adult-onset Still’s disease: a multicentre retrospective observational study. Front. Pharmacol. 8, 369 (2017).

    PubMed  PubMed Central  Google Scholar 

  172. 172.

    Junge, G., Mason, J. & Feist, E. Adult onset Still’s disease — the evidence that anti-interleukin-1 treatment is effective and well-tolerated (a comprehensive literature review). Semin. Arthritis Rheum. 47, 295–302 (2017).

    CAS  PubMed  Google Scholar 

  173. 173.

    Ruscitti, P., Ursini, F., Cipriani, P., De Sarro, G. & Giacomelli, R. Biologic drugs in adult onset Still’s disease: a systematic review and meta-analysis of observational studies. Expert Rev. Clin. Immunol. 13, 1089–1097 (2017).

    CAS  PubMed  Google Scholar 

  174. 174.

    Parisi, F., Paglionico, A., Varriano, V., Ferraccioli, G. & Gremese, E. Refractory adult-onset Still disease complicated by macrophage activation syndrome and acute myocarditis: a case report treated with high doses (8 mg/kg/d) of anakinra. Medicine 96, e6656 (2017).

    PubMed  PubMed Central  Google Scholar 

  175. 175.

    Fabiani, C. et al. Interleukin (IL)-1 inhibition with anakinra and canakinumab in Behcet’s disease-related uveitis: a multicenter retrospective observational study. Clin. Rheumatol. 36, 191–197 (2017).

    PubMed  Google Scholar 

  176. 176.

    Kiltz, U. et al. Prolonged treatment with Tadekinig alfa in adult-onset Still’s disease. Ann. Rheum. Dis. https://doi.org/10.1136/annrheumdis-2018-214496 (2018).

    Article  PubMed  Google Scholar 

  177. 177.

    Gabay, C. et al. Open-label, multicentre, dose-escalating phase II clinical trial on the safety and efficacy of tadekinig alfa (IL-18BP) in adult-onset Still’s disease. Ann. Rheum. Dis. 77, 840–847 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  178. 178.

    Ombrello, M. J. et al. HLA-DRB1*11 and variants of the MHC class II locus are strong risk factors for systemic juvenile idiopathic arthritis. Proc. Natl Acad. Sci. USA 112, 15970–15975 (2015).

    CAS  PubMed  Google Scholar 

  179. 179.

    Wang, F. F. et al. A genetic role for macrophage migration inhibitory factor (MIF) in adult-onset Still’s disease. Arthritis Res. Ther. 15, R65 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  180. 180.

    Cavalli, G. et al. Identification of rare coding variants in IL-1-related pathways in patients with adult onset Still’s Disease [abstract]. Ann. Rheum. Dis. 78 (Suppl. 2), 190 (2018).

    Google Scholar 

  181. 181.

    Cepika, A. M. et al. A multidimensional blood stimulation assay reveals immune alterations underlying systemic juvenile idiopathic arthritis. J. Exp. Med. 214, 3449–3466 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  182. 182.

    Kim, H. A. et al. Phase 2 enzyme inducer sulphoraphane blocks prostaglandin and nitric oxide synthesis in human articular chondrocytes and inhibits cartilage matrix degradation. Rheumatology 51, 1006–1016 (2012).

    CAS  PubMed  Google Scholar 

  183. 183.

    Smith, M. D., Triantafillou, S., Parker, A., Youssef, P. P. & Coleman, M. Synovial membrane inflammation and cytokine production in patients with early osteoarthritis. J. Rheumatol. 24, 365–371 (1997).

    CAS  PubMed  Google Scholar 

  184. 184.

    Adams, S. B. Jr et al. Global metabolic profiling of human osteoarthritic synovium. Osteoarthritis Cartilage 20, 64–67 (2012).

    PubMed  Google Scholar 

  185. 185.

    Benito, M. J., Veale, D. J., FitzGerald, O., van den Berg, W. B. & Bresnihan, B. Synovial tissue inflammation in early and late osteoarthritis. Ann. Rheum. Dis. 64, 1263–1267 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  186. 186.

    Goekoop, R. J. et al. Low innate production of interleukin-1β and interleukin-6 is associated with the absence of osteoarthritis in old age. Osteoarthritis Cartilage 18, 942–947 (2010).

    CAS  PubMed  Google Scholar 

  187. 187.

    Fraenkel, L. et al. The association of peripheral monocyte derived interleukin 1β (IL-1β), IL-1 receptor antagonist, and tumor necrosis factor-α with osteoarthritis in the elderly. J. Rheumatol. 25, 1820–1826 (1998).

    CAS  PubMed  Google Scholar 

  188. 188.

    Lee, J. K. et al. Differences in signaling pathways by IL-1β and IL-18. Proc. Natl Acad. Sci. USA 101, 8815–8820 (2004).

    CAS  PubMed  Google Scholar 

  189. 189.

    Jovanovic, D. et al. Effect of IL-13 on cytokines, cytokine receptors and inhibitors on human osteoarthritis synovium and synovial fibroblasts. Osteoarthritis Cartilage 6, 40–49 (1998).

    CAS  PubMed  Google Scholar 

  190. 190.

    Fujikawa, Y., Shingu, M., Torisu, T. & Masumi, S. Interleukin-1 receptor antagonist production in cultured synovial cells from patients with rheumatoid arthritis and osteoarthritis. Ann. Rheum. Dis. 54, 318–320 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  191. 191.

    Ismail, H. M. et al. JNK-2 controls aggrecan degradation in murine articular cartilage and the development of experimental osteoarthritis. Arthritis Rheumatol. 68, 1165–1171 (2016).

    CAS  PubMed  Google Scholar 

  192. 192.

    Kloppenburg, M. et al. Phase IIa, placebo-controlled, randomised study of lutikizumab, an anti-interleukin-1α and anti-interleukin-1β dual variable domain immunoglobulin, in patients with erosive hand osteoarthritis. Ann. Rheum. Dis. 78, 413–420 (2018).

    PubMed  PubMed Central  Google Scholar 

  193. 193.

    Wang, S. X. et al. Safety, tolerability, and pharmacodynamics of an anti-interleukin-1α/β dual variable domain immunoglobulin in patients with osteoarthritis of the knee: a randomized phase 1 study. Osteoarthritis Cartilage 25, 1952–1961 (2017).

    CAS  PubMed  Google Scholar 

  194. 194.

    Fleischmann, R. M. et al. A phase II trial of lutikizumab, an anti-interleukin-1α/β dual variable domain immunoglobulin, in knee osteoarthritis patients with synovitis. Arthritis Rheumatol. 71, 1056–1069 (2019).

    CAS  PubMed  Google Scholar 

  195. 195.

    Chevalier, X. et al. Intraarticular injection of anakinra in osteoarthritis of the knee: a multicenter, randomized, double-blind, placebo-controlled study. Arthritis Rheum. 61, 344–352 (2009).

    CAS  PubMed  Google Scholar 

  196. 196.

    Evans, C. H., Ghivizzani, S. C. & Robbins, P. D. Gene delivery to joints by intra-articular injection. Hum. Gene Ther. 29, 2–14 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  197. 197.

    Cohen, S. B. et al. A randomized, double-blind study of AMG 108 (a fully human monoclonal antibody to IL-1R1) in patients with osteoarthritis of the knee. Arthritis Res. Ther. 13, R125 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  198. 198.

    Mangan, M. S. J. et al. Targeting the NLRP3 inflammasome in inflammatory diseases. Nat. Rev. Drug Discov. 17, 588–606 (2018).

    CAS  PubMed  Google Scholar 

  199. 199.

    Marchetti, C. et al. NLRP3 inflammasome inhibitor OLT1177 suppresses joint inflammation in murine models of acute arthritis. Arthritis Res. Ther. 20, 169 (2018).

    PubMed  PubMed Central  Google Scholar 

  200. 200.

    Kim, H. A., Yeo, Y., Kim, W. U. & Kim, S. Phase 2 enzyme inducer sulphoraphane blocks matrix metalloproteinase production in articular chondrocytes. Rheumatology 48, 932–938 (2009).

    PubMed  Google Scholar 

  201. 201.

    Ali, S. et al. IL-1 receptor accessory protein is essential for IL-33-induced activation of T lymphocytes and mast cells. Proc. Natl Acad. Sci. USA 104, 18660–18665 (2007).

    CAS  PubMed  Google Scholar 

  202. 202.

    Lingel, A. et al. Structure of IL-33 and its interaction with the ST2 and IL-1RAcP receptors-insight into heterotrimeric IL-1 signaling complexes. Structure 17, 1398–1410 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  203. 203.

    Cevikbas, F. & Steinhoff, M. IL-33: a novel danger signal system in atopic dermatitis. J. Invest. Dermatol. 132, 1326–1329 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  204. 204.

    Liew, F. Y., Girard, J. P. & Turnquist, H. R. Interleukin-33 in health and disease. Nat. Rev. Immunol. 16, 676–689 (2016).

    CAS  PubMed  Google Scholar 

  205. 205.

    Yang, Q. et al. IL-33 synergizes with TCR and IL-12 signaling to promote the effector function of CD8+ T cells. Eur. J. Immunol. 41, 3351–3360 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  206. 206.

    Cayrol, C. & Girard, J. P. The IL-1-like cytokine IL-33 is inactivated after maturation by caspase-1. Proc. Natl Acad. Sci. USA 106, 9021–9026 (2009).

    CAS  PubMed  Google Scholar 

  207. 207.

    Carriere, V. et al. IL-33, the IL-1-like cytokine ligand for ST2 receptor, is a chromatin-associated nuclear factor in vivo. Proc. Natl Acad. Sci. USA 104, 282–287 (2007).

    CAS  PubMed  Google Scholar 

  208. 208.

    Bessa, J. et al. Altered subcellular localization of IL-33 leads to non-resolving lethal inflammation. J. Autoimmun. 55, 33–41 (2014).

    CAS  PubMed  Google Scholar 

  209. 209.

    Chen, Z., Bozec, A., Ramming, A. & Schett, G. Anti-inflammatory and immune-regulatory cytokines in rheumatoid arthritis. Nat. Rev. Rheumatol. 15, 9–17 (2019).

    CAS  PubMed  Google Scholar 

  210. 210.

    Biton, J. et al. In vivo expansion of activated FOXP3+ regulatory T cells and establishment of a type 2 immune response upon IL-33 treatment protect against experimental arthritis. J. Immunol. 197, 1708–1719 (2016).

    CAS  PubMed  Google Scholar 

  211. 211.

    Palmer, G. et al. Inhibition of interleukin-33 signaling attenuates the severity of experimental arthritis. Arthritis Rheum. 60, 738–749 (2009).

    CAS  PubMed  Google Scholar 

  212. 212.

    Martin, P. et al. Disease severity in K/BxN serum transfer-induced arthritis is not affected by IL-33 deficiency. Arthritis Res. Ther. 15, R13 (2013).

    Google Scholar 

  213. 213.

    Athari, S. K. et al. Collagen-induced arthritis and imiquimod-induced psoriasis develop independently of interleukin-33. Arthritis Res. Ther. 18, 143 (2016).

    PubMed  PubMed Central  Google Scholar 

  214. 214.

    Shen, J. et al. IL-33 and soluble ST2 levels as novel predictors for remission and progression of carotid plaque in early rheumatoid arthritis: a prospective study. Semin. Arthritis Rheum. 45, 18–27 (2015).

    CAS  PubMed  Google Scholar 

  215. 215.

    Hong, Y. S. et al. Measurement of interleukin-33 (IL-33) and IL-33 receptors (sST2 and ST2L) in patients with rheumatoid arthritis. J. Korean Med. Sci. 26, 1132–1139 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  216. 216.

    Matsuyama, Y. et al. Sustained elevation of interleukin-33 in sera and synovial fluids from patients with rheumatoid arthritis non-responsive to anti-tumor necrosis factor: possible association with persistent IL-1β signaling and a poor clinical response. Rheumatol. Int. 32, 1397–1401 (2012).

    CAS  PubMed  Google Scholar 

  217. 217.

    Tang, S. et al. Increased IL-33 in synovial fluid and paired serum is associated with disease activity and autoantibodies in rheumatoid arthritis. Clin. Dev. Immunol. 2013, 985301 (2013).

    PubMed  PubMed Central  Google Scholar 

  218. 218.

    Kunisch, E., Chakilam, S., Gandesiri, M. & Kinne, R. W. IL-33 regulates TNF-alpha dependent effects in synovial fibroblasts. Int. J. Mol. Med. 29, 530–540 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  219. 219.

    Rivellese, F. et al. Ability of interleukin-33- and immune complex-triggered activation of human mast cells to down-regulate monocyte-mediated immune responses. Arthritis Rheumatol 67, 2343–2353 (2015).

    CAS  PubMed  Google Scholar 

  220. 220.

    US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03469934 (2019).

  221. 221.

    Dinarello, C. A., Novick, D., Kim, S. & Kaplanski, G. Interleukin-18 and IL-18 binding protein. Front. Immunol. 4, 289–303 (2013).

    PubMed  PubMed Central  Google Scholar 

  222. 222.

    Kaplanski, G. Interleukin-18: biological properties and role in disease pathogenesis. Immunol. Rev. 281, 138–153 (2018).

    CAS  PubMed  Google Scholar 

  223. 223.

    Puren, A. J., Fantuzzi, G. & Dinarello, C. A. Gene expression, synthesis and secretion of IL-1β and IL-18 are differentially regulated in human blood mononuclear cells and mouse spleen cells. Proc. Natl Acad. Sci. USA 96, 2256–2261 (1999).

    CAS  PubMed  Google Scholar 

  224. 224.

    Okamura, H. et al. A novel costimulatory factor for gamma interferon induction found in the livers of mice causes endotoxic shock. Infect. Immun. 63, 3966–3972 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  225. 225.

    Novick, D. et al. Interleukin-18 binding protein: a novel modulator of the Th1 cytokine response. Immunity 10, 127–136 (1999).

    CAS  PubMed  Google Scholar 

  226. 226.

    Novick, D. et al. A novel IL-18BP ELISA shows elevated serum IL-18BP in sepsis and extensive decrease of free IL-18. Cytokine 14, 334–342 (2001).

    CAS  PubMed  Google Scholar 

  227. 227.

    Girard, C. et al. Elevated serum levels of free interleukin-18 in adult-onset Still’s disease. Rheumatology 55, 2237–2247 (2016).

    CAS  PubMed  Google Scholar 

  228. 228.

    Novick, D. et al. High circulating levels of free interleukin-18 in patients with active SLE in the presence of elevated levels of interleukin-18 binding protein. J. Autoimmun. 34, 121–126 (2011).

    Google Scholar 

  229. 229.

    Novick, D., Elbirt, D., Dinarello, C. A., Rubinstein, M. & Sthoeger, Z. M. Interleukin-18 binding protein in the sera of patients with Wegener’s granulomatosis. J. Clin. Immunol. 29, 38–45 (2009).

    CAS  PubMed  Google Scholar 

  230. 230.

    Ludwiczek, O. et al. Elevated systemic levels of free interleukin-18 (IL-18) in patients with Crohn’s disease. Eur. Cytokine Netw. 16, 27–33 (2005).

    CAS  PubMed  Google Scholar 

  231. 231.

    Mazodier, K. et al. Severe imbalance of IL-18/IL-18BP in patients with secondary hemophagocytic syndrome. Blood 106, 3483–3489 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  232. 232.

    Canna, S. W. et al. Life-threatening NLRC4-associated hyperinflammation successfully treated with IL-18 inhibition. J. Allergy Clin. Immunol. 139, 1698–1701 (2017).

    CAS  PubMed  Google Scholar 

  233. 233.

    Minoia, F. et al. Clinical features, treatment, and outcome of macrophage activation syndrome complicating systemic juvenile idiopathic arthritis: a multinational, multicenter study of 362 patients. Arthritis Rheumatol. 66, 3160–3169 (2014).

    PubMed  Google Scholar 

  234. 234.

    Grom, A. A. Macrophage activation syndrome and reactive hemophagocytic lymphohistiocytosis: the same entities? Curr. Opin. Rheumatol. 15, 587–590 (2003).

    PubMed  Google Scholar 

  235. 235.

    Grom, A. A. & Mellins, E. D. Macrophage activation syndrome: advances towards understanding pathogenesis. Curr. Opin. Rheumatol. 22, 561–566 (2011).

    Google Scholar 

  236. 236.

    Grom, A. A. et al. Natural killer cell dysfunction in patients with systemic-onset juvenile rheumatoid arthritis and macrophage activation syndrome. J. Pediatr. 142, 292–296 (2003).

    CAS  PubMed  Google Scholar 

  237. 237.

    Janka, G. E. Familial and acquired hemophagocytic lymphohistiocytosis. Annu. Rev. Med. 63, 233–246 (2012).

    CAS  PubMed  Google Scholar 

  238. 238.

    Weiss, E. S. et al. Interleukin-18 diagnostically distinguishes and pathogenically promotes human and murine macrophage activation syndrome. Blood 131, 1442–1455 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  239. 239.

    Gao, Z., Wang, Y., Wang, J., Zhang, J. & Wang, Z. Soluble ST2 and CD163 as potential biomarkers to differentiate primary hemophagocytic lymphohistiocytosis from macrophage activation syndrome. Mediterr. J. Hematol. Infect. Dis. 11, e2019008 (2019).

    PubMed  PubMed Central  Google Scholar 

  240. 240.

    Maruyama, J. & Inokuma, S. Cytokine profiles of macrophage activation syndrome associated with rheumatic diseases. J. Rheumatol. 37, 967–973 (2010).

    CAS  PubMed  Google Scholar 

  241. 241.

    Crayne, C. B., Albeituni, S., Nichols, K. E. & Cron, R. Q. The immunology of macrophage activation syndrome. Front. Immunol. 10, 119 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  242. 242.

    Lin, F. C. et al. IFN-γ causes aplastic anemia by altering hematopoietic stem/progenitor cell composition and disrupting lineage differentiation. Blood 124, 3699–3708 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  243. 243.

    Canna, S. W. et al. Interferon-γ mediates anemia but is dispensable for fulminant Toll-like receptor 9-induced macrophage activation syndrome and hemophagocytosis. Arthritis Rheum. 65, 1764–1775 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  244. 244.

    Ravelli, A. et al. Expert consensus on dynamics of laboratory tests for diagnosis of macrophage activation syndrome complicating systemic juvenile idiopathic arthritis. RMD Open 2, e000161 (2016).

    PubMed  PubMed Central  Google Scholar 

  245. 245.

    Schulert, G. S. & Grom, A. A. Pathogenesis of macrophage activation syndrome and potential for cytokine-directed therapies. Annu. Rev. Med. 66, 145–159 (2015).

    CAS  PubMed  Google Scholar 

  246. 246.

    Shimizu, M. et al. Distinct cytokine profiles of systemic-onset juvenile idiopathic arthritis-associated macrophage activation syndrome with particular emphasis on the role of interleukin-18 in its pathogenesis. Rheumatology 49, 1645–1653 (2010).

    CAS  PubMed  Google Scholar 

  247. 247.

    Wada, T. et al. Sustained elevation of serum interleukin-18 and its association with hemophagocytic lymphohistiocytosis in XIAP deficiency. Cytokine 65, 74–78 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  248. 248.

    Canna, S. W. et al. An activating NLRC4 inflammasome mutation causes autoinflammation with recurrent macrophage activation syndrome. Nat. Genet. 46, 1140–1146 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  249. 249.

    Duncan, J. A. & Canna, S. W. The NLRC4 inflammasome. Immunol. Rev. 281, 115–123 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  250. 250.

    Moghaddas, F. et al. Autoinflammatory mutation in NLRC4 reveals a leucine-rich repeat (LRR)-LRR oligomerization interface. J. Allergy Clin. Immunol. 142, 1956–1967 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  251. 251.

    Romberg, N., Vogel, T. P. & Canna, S. W. NLRC4 inflammasomopathies. Curr. Opin. Allergy Clin. Immunol. 17, 398–404 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  252. 252.

    Ravelli, A., Grom, A. A., Behrens, E. M. & Cron, R. Q. Macrophage activation syndrome as part of systemic juvenile idiopathic arthritis: diagnosis, genetics, pathophysiology and treatment. Genes Immun. 13, 289–298 (2012).

    CAS  PubMed  Google Scholar 

  253. 253.

    Sonmez, H. E., Demir, S., Bilginer, Y. & Ozen, S. Anakinra treatment in macrophage activation syndrome: a single center experience and systemic review of literature. Clin. Rheumatol. 37, 3329–3335 (2018).

    PubMed  Google Scholar 

  254. 254.

    Toldo, S. et al. Interleukin-18 mediates interleukin-1-induced cardiac dysfunction. Am. J. Physiol. Heart Circ. Physiol. 306, H1025–H1031 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  255. 255.

    Fisher, C. J. Jr. et al. Recombinant human interleukin 1 receptor antagonist in the treatment of patients with sepsis syndrome. Results from a randomized, double-blind, placebo-controlled trial. Phase III rhIL-1ra Sepsis Syndrome Study Group. JAMA 271, 1836–1843 (1994).

    PubMed  Google Scholar 

  256. 256.

    Opal, S. M. et al. Confirmatory interleukin-1 receptor antagonist trial in severe sepsis: a phase III, randomized, double-blind, placebo-controlled, multicenter trial. The Interleukin-1 Receptor Antagonist Sepsis Investigator Group. Crit. Care Med. 25, 1115–1124 (1997).

    CAS  PubMed  Google Scholar 

  257. 257.

    Shakoory, B. et al. Interleukin-1 receptor blockade is associated with reduced mortality in sepsis patients with features of macrophage activation syndrome: reanalysis of a prior phase III trial. Crit. Care Med. 44, 275–281 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  258. 258.

    Ji, J. D. & Lee, W. J. Interleukin-18 gene polymorphisms and rheumatoid arthritis: a meta-analysis. Gene 523, 27–32 (2013).

    CAS  PubMed  Google Scholar 

  259. 259.

    Bokarewa, M. & Hultgren, O. Is interleukin-18 useful for monitoring rheumatoid arthritis? Scand. J. Rheumatol. 34, 433–436 (2005).

    CAS  PubMed  Google Scholar 

  260. 260.

    Gracie, J. A. et al. A proinflammatory role for IL-18 in rheumatoid arthritis. J. Clin. Invest. 104, 1393–1401 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  261. 261.

    Adis International. Tadekinig alfa — Merck Serono. Adis Insight https://adisinsight.springer.com/drugs/800013227 (2009).

  262. 262.

    Wu, C. Y., Yang, H. Y., Yao, T. C., Liu, S. H. & Huang, J. L. Serum IL-18 as biomarker in predicting long-term renal outcome among pediatric-onset systemic lupus erythematosus patients. Medicine 95, e5037 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  263. 263.

    Koenig, K. F. et al. Serum cytokine profile in patients with active lupus nephritis. Cytokine 60, 410–416 (2012).

    CAS  PubMed  Google Scholar 

  264. 264.

    Favilli, F. et al. IL-18 activity in systemic lupus erythematosus. Ann. NY Acad. Sci. 1173, 301–309 (2009).

    CAS  PubMed  Google Scholar 

  265. 265.

    Italiani, P. et al. IL-1 family cytokines and soluble receptors in systemic lupus erythematosus. Arthritis Res. Ther. 20, 27 (2018).

    PubMed  PubMed Central  Google Scholar 

  266. 266.

    Aghdashi, M., Aribi, S. & Salami, S. Serum levels of IL-18 in Iranian females with systemic lupus erythematosus. Med. Arch. 67, 237–240 (2013).

    PubMed  Google Scholar 

  267. 267.

    Maczynska, I. et al. Proinflammatory cytokine (IL-1β, IL-6, IL-12, IL-18 and TNF-α) levels in sera of patients with subacute cutaneous lupus erythematosus (SCLE). Immunol. Lett. 102, 79–82 (2006).

    CAS  PubMed  Google Scholar 

  268. 268.

    Pan, G. et al. IL-1H, an interleukin 1-related protein that binds IL-18 receptor/IL-1Rrp. Cytokine 13, 1–7 (2001).

    CAS  PubMed  Google Scholar 

  269. 269.

    Kumar, S. et al. Interleukin-1F7B (IL-1H4/IL-1F7) is processed by caspase-1 and mature IL-1F7B binds to the IL-18 receptor but does not induce IFN-gamma production. Cytokine 18, 61–71 (2002).

    CAS  PubMed  Google Scholar 

  270. 270.

    Nold, M. F. et al. IL-37 is a fundamental inhibitor of innate immunity. Nat. Immunol. 11, 1014–1022 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  271. 271.

    Garlanda, C., Riva, F., Bonavita, E. & Mantovani, A. Negative regulatory receptors of the IL-1 family. Semin. Immunol. 25, 4087–4415 (2013).

    Google Scholar 

  272. 272.

    Molgora, M. et al. IL-1R8 is a checkpoint in NK cells regulating anti-tumour and anti-viral activity. Nature 551, 110–114 (2017).

    PubMed  PubMed Central  Google Scholar 

  273. 273.

    Cavalli, G. et al. Interleukin 37 reverses the metabolic cost of inflammation, increases oxidative respiration, and improves exercise tolerance. Proc. Natl Acad. Sci. USA 114, 2313–2318 (2017).

    CAS  PubMed  Google Scholar 

  274. 274.

    Luo, Y. et al. Suppression of antigen-specific adaptive immunity by IL-37 via induction of tolerogenic dendritic cells. Proc. Natl Acad. Sci. USA 111, 15178–15183 (2014).

    CAS  PubMed  Google Scholar 

  275. 275.

    Ballak, D. B. et al. Interleukin-37 treatment of mice with metabolic syndrome improves insulin sensitivity and reduces pro-inflammatory cytokine production in adipose tissue. J. Biol. Chem. 293, 14224–14236 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  276. 276.

    Ballak, D. B. et al. IL-37 protects against obesity-induced inflammation and insulin resistance. Nat. Commun. 5, 4711 (2014).

    CAS  PubMed  Google Scholar 

  277. 277.

    Pei, B. et al. Associations of the IL-1F7 gene polymorphisms with rheumatoid arthritis in Chinese Han population. Int. J. Immunogenet. 40, 199–203 (2013).

    CAS  PubMed  Google Scholar 

  278. 278.

    Shi, L. P., He, Y. & Liu, Z. D. Correlation between single nucleotide polymorphism of rs3811047 in IL-1 F7 gene and rheumatoid arthritis susceptibility among Han population in central plains of China. Asian Pac. J. Trop. Med. 6, 73–75 (2013).

    CAS  PubMed  Google Scholar 

  279. 279.

    Kang, B., Cheng, S., Peng, J., Yan, J. & Zhang, S. Interleukin-37 gene variants segregated anciently coexist during hominid evolution. Eur. J. Hum. Genet. 23, 1392–1398 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  280. 280.

    Zhao, P. W. et al. Plasma levels of IL-37 and correlation with TNF-α, IL-17A, and disease activity during DMARD treatment of rheumatoid arthritis. PLOS ONE 9, e95346 (2014).

    PubMed  PubMed Central  Google Scholar 

  281. 281.

    Yang, L., Zhang, J., Tao, J. & Lu, T. Elevated serum levels of interleukin-37 are associated with inflammatory cytokines and disease activity in rheumatoid arthritis. APMIS 123, 1025–1031 (2015).

    CAS  PubMed  Google Scholar 

  282. 282.

    Xia, T. et al. Plasma interleukin-37 is elevated in patients with rheumatoid arthritis: its correlation with disease activity and Th1/Th2/Th17-related cytokines. Dis. Markers 2015, 795043 (2015).

    PubMed  PubMed Central  Google Scholar 

  283. 283.

    Xia, L., Shen, H. & Lu, J. Elevated serum and synovial fluid levels of interleukin-37 in patients with rheumatoid arthritis: attenuated the production of inflammatory cytokines. Cytokine 76, 553–557 (2015).

    CAS  PubMed  Google Scholar 

  284. 284.

    Wang, L., Wang, Y., Xia, L., Shen, H. & Lu, J. Elevated frequency of IL-37- and IL-18Rα-positive T cells in the peripheral blood of rheumatoid arthritis patients. Cytokine 110, 291–297 (2018).

    CAS  PubMed  Google Scholar 

  285. 285.

    Wang, M. et al. Detection of the novel IL-1 family cytokines by QAH-IL1F-1 assay in rheumatoid arthritis. Cell. Mol. Biol. 62, 31–34 (2016).

    CAS  PubMed  Google Scholar 

  286. 286.

    Feng, M. et al. Plasma interleukin-37 is increased and inhibits the production of inflammatory cytokines in peripheral blood mononuclear cells in systemic juvenile idiopathic arthritis patients. J. Transl. Med. 16, 277 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  287. 287.

    El-Barbary, A. M. et al. Role of interleukin 37 as a novel proangiogenic factor in juvenile idiopathic arthritis. J. Clin. Rheumatol. 25, 85–90 (2018).

    Google Scholar 

  288. 288.

    Chi, H. et al. Interleukin-37 is increased in adult-onset Still’s disease and associated with disease activity. Arthritis Res. Ther. 20, 54 (2018).

    PubMed  PubMed Central  Google Scholar 

  289. 289.

    Song, L. et al. High interleukin-37 (IL-37) expression and increased mucin-domain containing-3 (TIM-3) on peripheral T cells in patients with rheumatoid arthritis. Med. Sci. Monit. 24, 5660–5667 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  290. 290.

    Ragab, D., Mobasher, S. & Shabaan, E. Elevated levels of IL-37 correlate with T cell activation status in rheumatoid arthritis patients. Cytokine 113, 305–310 (2019).

    CAS  PubMed  Google Scholar 

  291. 291.

    Eisenmesser, E. Z. et al. Interleukin-37 monomer is the active form for reducing innate immunity. Proc. Natl Acad. Sci. USA 116, 5514–5522 (2019).

    CAS  PubMed  Google Scholar 

  292. 292.

    Ellisdon, A. M. et al. Homodimerization attenuates the anti-inflammatory activity of interleukin-37. Sci. Immunol. 2, 1548 (2017).

    Google Scholar 

  293. 293.

    Chen, B. et al. Interleukin-37 is increased in ankylosing spondylitis patients and associated with disease activity. J. Transl. Med. 13, 36 (2015).

    PubMed  PubMed Central  Google Scholar 

  294. 294.

    Keermann, M. et al. Expression of IL-36 family cytokines and IL-37 but not IL-38 is altered in psoriatic skin. J. Dermatol. Sci. 80, 150–152 (2015).

    CAS  PubMed  Google Scholar 

  295. 295.

    Song, L. et al. Glucocorticoid regulates interleukin-37 in systemic lupus erythematosus. J. Clin. Immunol. 33, 111–117 (2013).

    CAS  PubMed  Google Scholar 

  296. 296.

    Ye, Z., Wang, C., Kijlstra, A., Zhou, X. & Yang, P. A possible role for interleukin 37 in the pathogenesis of Behcet’s disease. Curr. Mol. Med. 14, 535–542 (2014).

    CAS  PubMed  Google Scholar 

  297. 297.

    Bouali, E., Kaabachi, W., Hamzaoui, A. & Hamzaoui, K. Interleukin-37 expression is decreased in Behcet’s disease and is associated with inflammation. Immunol. Lett. 167, 87–94 (2015).

    CAS  PubMed  Google Scholar 

  298. 298.

    Charrad, R. et al. Anti-inflammatory activity of IL-37 in asthmatic children: correlation with inflammatory cytokines TNF-α, IL-β, IL-6 and IL-17A. Immunobiology 221, 182–187 (2016).

    CAS  PubMed  Google Scholar 

  299. 299.

    Saglam, M. et al. Levels of interleukin-37 in gingival crevicular fluid, saliva, or plasma in periodontal disease. J. Periodontal Res. 50, 614–621 (2014).

    PubMed  Google Scholar 

  300. 300.

    Liu, W. et al. Anti-inflammatory effect of IL-37b in children with allergic rhinitis. Mediators Inflamm. 2014, 746846 (2014).

    PubMed  PubMed Central  Google Scholar 

  301. 301.

    Grabherr, F. et al. Ethanol-mediated suppression of IL-37 licenses alcoholic liver disease. Liver Int. 38, 1095–1101 (2017).

    PubMed  Google Scholar 

  302. 302.

    Ge, G. et al. Interleukin-37 suppresses tumor growth through inhibition of angiogenesis in non-small cell lung carcinoma. J. Exp. Clin. Cancer Res. 35, 13–23 (2016).

    PubMed  PubMed Central  Google Scholar 

  303. 303.

    Busfield, S. J. et al. Identification and gene organization of three novel members of the IL-1 family on human chromosome 2. Genomics 66, 213–216 (2000).

    CAS  PubMed  Google Scholar 

  304. 304.

    Debets, R. et al. Two novel IL-1 family members, IL-1 delta and IL-1 epsilon, function as an antagonist and agonist of NF-kappa B activation through the orphan IL-1 receptor-related protein 2. J. Immunol. 167, 1440–1446 (2001).

    CAS  PubMed  Google Scholar 

  305. 305.

    Lachner, J., Mlitz, V., Tschachler, E. & Eckhart, L. Epidermal cornification is preceded by the expression of a keratinocyte-specific set of pyroptosis-related genes. Sci. Rep. 7, 17446 (2017).

    PubMed  PubMed Central  Google Scholar 

  306. 306.

    Onoufriadis, A. et al. Mutations in IL36RN/IL1F5 are associated with the severe episodic inflammatory skin disease known as generalized pustular psoriasis. Am. J. Hum. Genet. 89, 432–437 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  307. 307.

    Teoh, Y. L. & Tay, Y. K. Generalized pustular psoriasis with a novel mutation of interleukin-36 receptor antagonist, responding to methotrexate. JAAD Case Rep. 1, 51–53 (2015).

    PubMed  PubMed Central  Google Scholar 

  308. 308.

    Marrakchi, S. et al. Interleukin-36-receptor antagonist deficiency and generalized pustular psoriasis. N. Engl. J. Med. 365, 620–628 (2011).

    CAS  PubMed  Google Scholar 

  309. 309.

    Sullivan, G. P. et al. Identification of small-molecule elastase inhibitors as antagonists of IL-36 cytokine activation. FEBS Open Bio. 8, 751–763 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  310. 310.

    Sullivan, G. P. et al. Suppressing IL-36-driven inflammation using peptide pseudosubstrates for neutrophil proteases. Cell Death Dis. 9, 378 (2018).

    PubMed  PubMed Central  Google Scholar 

  311. 311.

    Vigne, S. et al. IL-36R ligands are potent regulators of dendritic and T cells. Blood 118, 5813–5823 (2011).

    CAS  PubMed  Google Scholar 

  312. 312.

    Buhl, A. L. & Wenzel, J. Interleukin-36 in infectious and inflammatory skin diseases. Front. Immunol. 10, 1162 (2019).

    PubMed  PubMed Central  Google Scholar 

  313. 313.

    Boutet, M. A., Nerviani, A. & Pitzalis, C. IL-36, IL-37, and IL-38 cytokines in skin and joint inflammation: a comprehensive review of their therapeutic potential. Int. J. Mol. Sci. 20, e1257 (2019).

    PubMed  Google Scholar 

  314. 314.

    Ding, L., Wang, X., Hong, X., Lu, L. & Liu, D. IL-36 cytokines in autoimmunity and inflammatory disease. Oncotarget 9, 2895–2901 (2018).

    PubMed  Google Scholar 

  315. 315.

    Bassoy, E. Y., Towne, J. E. & Gabay, C. Regulation and function of interleukin-36 cytokines. Immunol. Rev. 281, 169–178 (2018).

    CAS  PubMed  Google Scholar 

  316. 316.

    Boutet, M. A. et al. Distinct expression of interleukin (IL)-36α, β and γ, their antagonist IL-36Ra and IL-38 in psoriasis, rheumatoid arthritis and Crohn’s disease. Clin. Exp. Immunol. 184, 159–173 (2016).

    CAS  PubMed  Google Scholar 

  317. 317.

    Boutet, M. A. et al. IL-38 overexpression induces anti-inflammatory effects in mice arthritis models and in human macrophages in vitro. Ann. Rheum. Dis. 76, 1304–1312 (2017).

    PubMed  Google Scholar 

  318. 318.

    Ciccia, F. et al. Interleukin-36α axis is modulated in patients with primary Sjögren’s syndrome. Clin. Exp. Immunol. 181, 230–238 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  319. 319.

    Li, J. et al. New interleukins in psoriasis and psoriatic arthritis patients: the possible roles of interleukin-33 to interleukin-38 in disease activities and bone erosions. Dermatology 233, 37–46 (2017).

    CAS  PubMed  Google Scholar 

  320. 320.

    Van De Veerdonk, F. L. et al. IL-38 binds to the IL-36 receptor and has biological effects on immune cells similar to IL-36 receptor antagonist. Proc. Natl Acad. Sci. USA 109, 3001–3005 (2012).

    PubMed  Google Scholar 

  321. 321.

    Mora, J. et al. Interleukin-38 is released from apoptotic cells to limit inflammatory macrophage responses. J. Mol. Cell Biol. 8, 426–438 (2016).

    CAS  Google Scholar 

  322. 322.

    Dehghan, A. et al. Meta-analysis of genome-wide association studies in >80 000 subjects identifies multiple loci for C-reactive protein levels. Circulation 123, 731–738 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  323. 323.

    Mercurio, L. et al. IL-38 has an anti-inflammatory action in psoriasis and its expression correlates with disease severity and therapeutic response to anti-IL-17A treatment. Cell Death Dis. 9, 1104 (2018).

    PubMed  PubMed Central  Google Scholar 

  324. 324.

    Yang, N. et al. Elevated interleukin-38 level associates with clinical response to atorvastatin in patients with hyperlipidemia. Cell. Physiol. Biochem. 49, 653–661 (2018).

    CAS  PubMed  Google Scholar 

  325. 325.

    Chu, M. et al. Aberrant expression of novel cytokine IL-38 and regulatory T lymphocytes in childhood asthma. Molecules 21, e933 (2016).

    PubMed  Google Scholar 

  326. 326.

    Xu, F. et al. Interleukin 38 protects against lethal sepsis. J. Infect. Dis. 218, 1175–1184 (2018).

    PubMed  Google Scholar 

  327. 327.

    Rudloff, I. et al. Interleukin-38 exerts antiinflammatory functions and is associated with disease activity in systemic lupus erythematosus. Arthritis Rheumatol. 67, 3219–3225 (2015).

    CAS  PubMed  Google Scholar 

  328. 328.

    Sana, T. R., Debets, R., Timans, J. C., Bazan, J. F. & Kastelein, R. A. Computational identification, cloning, and characterization of IL-1R9, a novel interleukin-1 receptor-like gene encoded over an unusually large interval of human chromosome Xq22.2-q22.3. Genomics 69, 252–262 (2000).

    CAS  PubMed  Google Scholar 

  329. 329.

    Takenaka, S. I. et al. IL-38: A new factor in rheumatoid arthritis. Biochem. Biophys. Rep. 4, 386–391 (2015).

    PubMed  PubMed Central  Google Scholar 

  330. 330.

    Lin, H. et al. Cloning and characterization of IL-1HY2, a novel interleukin-1 family member. J. Biol. Chem. 276, 20597–20602 (2001).

    CAS  PubMed  Google Scholar 

  331. 331.

    Bensen, J. T., Dawson, P. A., Mychaleckyj, J. C. & Bowden, D. W. Identification of a novel human cytokine gene in the interleukin gene cluster on chromosome 2q12-14. J. Interferon Cytokine Res. 21, 899–904 (2001).

    CAS  PubMed  Google Scholar 

  332. 332.

    De Graaf, D. M. et al. Human IL-38 reduces joint inflammation in a mouse model of gouty arthritis [abstract]. Ann. Rheum. Dis. 77 (Suppl 2), 135 (2018).

    Google Scholar 

  333. 333.

    Chu, M. et al. In vivo anti-inflammatory activities of novel cytokine IL-38 in Murphy Roths Large (MRL)/lpr mice. Immunobiology 222, 483–493 (2017).

    CAS  PubMed  Google Scholar 

  334. 334.

    Rossi-Semerano, L. et al. Tolerance and efficacy of off-label anti-interleukin-1 treatments in France: a nationwide survey. Orphanet. J. Rare Dis. 10, 19 (2015).

    PubMed  PubMed Central  Google Scholar 

  335. 335.

    Vitale, A. et al. A snapshot on the on-label and off-label use of the interleukin-1 inhibitors in Italy among rheumatologists and pediatric rheumatologists: a nationwide multi-center retrospective observational study. Front. Pharmacol. 7, 380 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  336. 336.

    Vitale, A., Cantarini, L., Rigante, D., Bardelli, M. & Galeazzi, M. Anakinra treatment in patients with gout and type 2 diabetes. Clin. Rheumatol. 34, 981–984 (2015).

    PubMed  Google Scholar 

  337. 337.

    Abbate, A., Canada, J. M., Van Tassell, B. W., Wise, C. M. & Dinarello, C. A. Interleukin-1 blockade in rheumatoid arthritis and heart failure: a missed opportunity? Int. J. Cardiol. 171, e125–e126 (2014).

    PubMed  Google Scholar 

  338. 338.

    Ruscitti, P. et al. IL-1 inhibition improves insulin resistance and adipokines in rheumatoid arthritis patients with comorbid type 2 diabetes: an observational study. Medicine 98, e14587 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  339. 339.

    Ruscitti, P. et al. Anti-interleukin-1 treatment in patients with rheumatoid arthritis and type 2 diabetes (TRACK): a multicentre, randomised, open, prospective, controlled, parallel-group trial. PLOS. Med. in the press (2019).

  340. 340.

    Economides, A. N. et al. Cytokine traps: multi-component, high-affinity blockers of cytokine action. Nat. Med. 9, 47–52 (2003).

    CAS  PubMed  Google Scholar 

  341. 341.

    Kucuksahin, O. et al. Anti-interleukin-1 treatment in 26 patients with refractory familial Mediterranean fever. Mod. Rheumatol. 27, 350–355 (2017).

    CAS  PubMed  Google Scholar 

  342. 342.

    Haviv, R. & Hashkes, P. J. Canakinumab investigated for treating familial Mediterranean fever. Expert Opin. Biol. Ther. 16, 1425–1434 (2016).

    CAS  PubMed  Google Scholar 

  343. 343.

    Ozdogan, H. & Ugurlu, S. Canakinumab for the treatment of familial Mediterranean fever. Expert Rev. Clin. Immunol. 13, 393–404 (2017).

    CAS  PubMed  Google Scholar 

  344. 344.

    de Koning, H. D. et al. Sustained efficacy of the monoclonal anti-interleukin-1β antibody canakinumab in a 9-month trial in Schnitzler’s syndrome. Ann. Rheum. Dis. 72, 1634–1638 (2013).

    PubMed  Google Scholar 

  345. 345.

    de Koning, H. D. et al. The role of interleukin-1 beta in the pathophysiology of Schnitzler’s syndrome. Arthritis Res. Ther. 17, 187 (2015).

    PubMed  PubMed Central  Google Scholar 

  346. 346.

    Krause, K. et al. Efficacy and safety of canakinumab in Schnitzler syndrome: a multicenter randomized placebo-controlled study. J. Allergy Clin. Immunol. 139, 1311–1320 (2017).

    CAS  PubMed  Google Scholar 

  347. 347.

    Alten, R. et al. Efficacy and safety of the human anti-IL-1β monoclonal antibody canakinumab in rheumatoid arthritis: results of a 12-week, phase II, dose-finding study. BMC Musculoskelet. Disord. 12, 153 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  348. 348.

    Solomon, D. H. et al. Relationship of interleukin-1beta blockade with incident gout and serum uric acid levels. Ann. Intern. Med. 169, 535–542 (2018).

    PubMed  Google Scholar 

  349. 349.

    Gul, A. et al. Interleukin-1β-regulating antibody XOMA 052 (gevokizumab) in the treatment of acute exacerbations of resistant uveitis of Behcet’s disease: an open-label pilot study. Ann. Rheum. Dis. 71, 563–566 (2012).

    CAS  PubMed  Google Scholar 

  350. 350.

    Cardiel, M. H. et al. A phase 2 randomized, double-blind study of AMG 108, a fully human monoclonal antibody to IL-1R, in patients with rheumatoid arthritis. Arthritis Res. Ther. 12, R192 (2010).

    PubMed  PubMed Central  Google Scholar 

  351. 351.

    Lacy, S. E. et al. Generation and characterization of ABT-981, a dual variable domain immunoglobulin (DVD-IgTM) molecule that specifically and potently neutralizes both IL-1α and IL-1β. MAbs 7, 605–619 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  352. 352.

    Ridker, P. M. et al. Low-dose methotrexate for the prevention of atherosclerotic events. N. Engl. J. Med. 380, 752–762 (2019).

    CAS  PubMed  Google Scholar 

  353. 353.

    Tak, P. P., Bacchi, M. & Bertolino, M. Pharmacokinetics of IL-18 binding protein in healthy volunteers and subjects with rheumatoid arthritis or plaque psoriasis. Eur. J. Drug Metab. Pharmacokinet. 31, 109–116 (2006).

    CAS  PubMed  Google Scholar 

  354. 354.

    US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03512314 (2019).

  355. 355.

    Striz, I. Cytokines of the IL-1 family: recognized targets in chronic inflammation underrated in organ transplantations. Clin. Sci. 131, 2241–2256 (2017).

    CAS  PubMed  Google Scholar 

  356. 356.

    US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02345928 (2017).

  357. 357.

    Towne, J. E. & Sims, J. E. IL-36 in psoriasis. Curr. Opin. Pharmacol. 12, 486–490 (2012).

    CAS  PubMed  Google Scholar 

  358. 358.

    Gay, N. J. & Keith, F. J. Drosophila Toll and IL-1 receptor. Nature 351, 355–356 (1991).

    CAS  PubMed  Google Scholar 

  359. 359.

    Heguy, A., Baldari, C. T., Macchia, G., Telford, J. L. & Melli, M. Amino acids conserved in interleukin-1 receptors (IL-1Rs) and the Drosophila Toll protein are essential for IL-1R signal transduction. J. Biol. Chem. 267, 2605–2609 (1992).

    CAS  PubMed  Google Scholar 

  360. 360.

    Opal, S. M. et al. Effect of eritoran, an antagonist of MD2-TLR4, on mortality in patients with severe sepsis: the ACCESS randomized trial. JAMA 309, 1154–1162 (2013).

    CAS  PubMed  Google Scholar 

  361. 361.

    Dinarello, C. A. & Van Der Meer, J. W. Treating inflammation by blocking interleukin-1 in humans. Semin. Immunol. 25, 469–484 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  362. 362.

    Hoffman, H. M. Rilonacept for the treatment of cryopyrin-associated periodic syndromes (CAPS). Expert Opin. Biol. Ther. 9, 519–531 (2009).

    CAS  PubMed  Google Scholar 

  363. 363.

    Petryna, O., Cush, J. J. & Efthimiou, P. IL-1 Trap rilonacept in refractory adult onset Still’s disease. Ann. Rheum. Dis. 71, 2056–2057 (2012).

    PubMed  Google Scholar 

  364. 364.

    Ruperto, N. et al. A phase II, multicenter, open-label study evaluating dosing and preliminary safety and efficacy of canakinumab in systemic juvenile idiopathic arthritis with active systemic features. Arthritis Rheum. 64, 557–567 (2012).

    CAS  PubMed  Google Scholar 

  365. 365.

    Kosloski, M. P. et al. Pharmacokinetics and tolerability of a dual variable domain immunoglobulin ABT-981 against IL-1α and IL-1β in healthy subjects and patients with osteoarthritis of the knee. J. Clin. Pharmacol. 56, 1582–1590 (2016).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The work of C.A.D. is supported by NIH Grant AI-15614. C.A.D. thanks P. Libby, A. Rubartelli, J.-M. Dayer, L. A. B. Joosten, M. Netea, M. Donath, T. Mandrup-Poulsen, D. B. Skouras, T. L. Jansen, M. Janssen, G. Cavalli, G. Kaplanski and D. Novick for helpful discussions and for providing information and feedback in the preparation of this manuscript.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Charles Anthony Dinarello.

Ethics declarations

Competing interests

C.A.D. serves as chair of the SAB of Olatec Therapeutics, LLC, which develops the NLRP3 inhibitor OLT1177 (Dapansutrile).

Additional information

Peer review information

Nature Reviews Rheumatology thanks F. Blanchard and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Dinarello, C.A. The IL-1 family of cytokines and receptors in rheumatic diseases. Nat Rev Rheumatol 15, 612–632 (2019). https://doi.org/10.1038/s41584-019-0277-8

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing