Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

HLA associations in inflammatory arthritis: emerging mechanisms and clinical implications

Abstract

Our understanding of the mechanisms underlying HLA associations with inflammatory arthritis continues to evolve. Disease associations have been refined, and interactions of HLA genotype with other genes and environmental risk factors in determining disease risk have been identified. This Review provides basic information on the genetics and molecular function of HLA molecules, as well as general features of HLA associations with disease. Evidence is discussed regarding the various peptide-dependent and peptide-independent mechanisms by which HLA alleles might contribute to the pathogenesis of three types of inflammatory arthritis: rheumatoid arthritis, spondyloarthritis and systemic juvenile idiopathic arthritis. Also discussed are HLA allelic associations that shed light on the genetic heterogeneity of inflammatory arthritides and on the relationships between adult and paediatric forms of arthritis. Clinical implications range from improved diagnosis and outcome prediction to the possibility of using HLA associations in developing personalized strategies for the treatment and prevention of these diseases.

Key points

  • The HLA gene complex is one of the best-studied regions of the human genome, and technical advances continue to deepen our understanding of its associations with inflammatory arthritis.

  • HLA genotypes corroborate distinct clinical and immunological subtypes between patients with the same clinical diagnosis or within the juvenile idiopathic arthritis umbrella.

  • HLA associations are helping to clarify mechanistic overlap between paediatric and adult forms of arthritis.

  • In some rheumatic conditions, potential mechanisms to explain HLA associations are emerging: shared epitope (SE)-dependent neoantigen presentation in anti-citrullinated protein antibody (ACPA)-positive rheumatoid arthritis and HLA-B27 open conformations stimulating innate immune receptors in spondyloarthritis, among others.

  • HLA associations can provide adjuncts to diagnosis and prognosis of rheumatic conditions, and novel therapeutic and preventive approaches might develop from further mechanistic studies of these associations.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Organization of the HLA gene region.
Fig. 2: MHC class I and class II proteins: maturation and function.
Fig. 3: Neoantigen formation and presentation in RA.
Fig. 4: Mechanisms of HLA-B*27 association with spondyloarthritis.

Similar content being viewed by others

References

  1. Trowsdale, J. & Knight, J. C. Major histocompatibility complex genomics and human disease. Annu. Rev. Genomics Hum. Genet. 14, 301–323 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Dendrou, C. A., Petersen, J., Rossjohn, J. & Fugger, L. HLA variation and disease. Nat. Rev. Immunol. 18, 325–339 (2018).

    Article  CAS  PubMed  Google Scholar 

  3. Snell, G. D. & Higgins, G. F. Alleles at the histocompatibility-2 locus in the mouse as determined by tumor transplantation. Genetics 36, 306–310 (1951).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Brewerton, D. A. et al. Ankylosing spondylitis and HL-A 27. Lancet 1, 904–907 (1973).

    Article  CAS  PubMed  Google Scholar 

  5. Schlosstein, L., Terasaki, P. I., Bluestone, R. & Pearson, C. M. High association of an HL-A antigen, W27, with ankylosing spondylitis. N. Engl. J. Med. 288, 704–706 (1973).

    Article  CAS  PubMed  Google Scholar 

  6. Brewerton, D. A. et al. Reiter’s disease and HL-A 27. Lancet 302, 996–998 (1973).

    Article  CAS  PubMed  Google Scholar 

  7. Bowness, P. HLA-B27. Annu. Rev. Immunol. 33, 29–48 (2015).

    Article  CAS  PubMed  Google Scholar 

  8. Stastny, P. Association of the B cell alloantigen DRw4 with rheumatoid arthritis. N. Engl. J. Med. 298, 869–871 (1978).

    Article  CAS  PubMed  Google Scholar 

  9. Gregersen, P. K., Silver, J. & Winchester, R. J. The shared epitope hypothesis. An approach to understanding the molecular genetics of susceptibility to rheumatoid arthritis. Arthritis Rheum. 30, 1205–1213 (1987).

    CAS  PubMed  Google Scholar 

  10. Newton, J. L., Harney, S. M., Wordsworth, B. P. & Brown, M. A. A review of the MHC genetics of rheumatoid arthritis. Genes Immun. 5, 151–157 (2004).

    Article  CAS  PubMed  Google Scholar 

  11. Viatte, S., Plant, D. & Raychaudhuri, S. Genetics and epigenetics of rheumatoid arthritis. Nat. Rev. Rheumatol. 9, 141–153 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Brown, M. A., Kenna, T. & Wordsworth, B. P. Genetics of ankylosing spondylitis—insights into pathogenesis. Nat. Rev. Rheumatol. 12, 81–91 (2016).

    Article  CAS  PubMed  Google Scholar 

  13. Chairta, P., Nicolaou, P. & Christodoulou, K. Genomic and genetic studies of systemic sclerosis: a systematic review. Hum. Immunol. 78, 153–165 (2017).

    Article  CAS  PubMed  Google Scholar 

  14. Rothwell, S. et al. Dense genotyping of immune-related loci in idiopathic inflammatory myopathies confirms HLA alleles as the strongest genetic risk factor and suggests different genetic background for major clinical subgroups. Ann. Rheum. Dis. 75, 1558–1566 (2016).

    Article  CAS  PubMed  Google Scholar 

  15. Kim, K. et al. The HLA-DRβ1 amino acid positions 11-13-26 explain the majority of SLE-MHC associations. Nat. Commun. 5, 5902 (2014).

    Article  CAS  PubMed  Google Scholar 

  16. Wellcome Trust Case Control, C. Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature 447, 661–678 (2007).

    Article  CAS  Google Scholar 

  17. Australo-Anglo-American Spondyloarthritis Consortium (TASC). Genome-wide association study of ankylosing spondylitis identifies non-MHC susceptibility loci. Nat. Genet. 42, 123–127 (2010).

    Article  CAS  Google Scholar 

  18. Deighton, C. M., Walker, D. J., Griffiths, I. D. & Roberts, D. F. The contribution of HLA to rheumatoid arthritis. Clin. Genet. 36, 178–182 (1989).

    Article  CAS  PubMed  Google Scholar 

  19. Rubin, L. A. et al. Investigating the genetic basis for ankylosing spondylitis. Linkage studies with the major histocompatibility complex region. Arthritis Rheum. 37, 1212–1220 (1994).

    Article  CAS  PubMed  Google Scholar 

  20. Diogo, D. et al. Rare, low-frequency, and common variants in the protein-coding sequence of biological candidate genes from GWASs contribute to risk of rheumatoid arthritis. Am. J. Hum. Genet. 92, 15–27 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Stahl, E. A. et al. Bayesian inference analyses of the polygenic architecture of rheumatoid arthritis. Nat. Genet. 44, 483–489 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Cortes, A. et al. Identification of multiple risk variants for ankylosing spondylitis through high-density genotyping of immune-related loci. Nat. Genet. 45, 730–738 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Angelotti, F. et al. One year in review 2017: pathogenesis of rheumatoid arthritis. Clin. Exp. Rheumatol. 35, 368–378 (2017).

    PubMed  Google Scholar 

  24. Yewdell, J. W. & Bennink, J. R. The binary logic of antigen processing and presentation to T cells. Cell 62, 203–206 (1990).

    Article  CAS  PubMed  Google Scholar 

  25. Spottiswoode, C. N. & Busch, R. Vive la difference! Self/non-self recognition and the evolution of signatures of identity in arms races with parasites. Phil. Trans. R. Soc. B 374, 20180206 (2019).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  26. Rammensee, H. G., Friede, T. & Stevanoviic, S. MHC ligands and peptide motifs: first listing. Immunogenetics 41, 178–228 (1995).

    Article  CAS  PubMed  Google Scholar 

  27. Vita, R. et al. The immune epitope database (IEDB) 3.0. Nucleic Acids Res. 43, D405–D412 (2015).

    Article  CAS  PubMed  Google Scholar 

  28. Jensen, K. K. et al. Improved methods for predicting peptide binding affinity to MHC class II molecules. Immunology 154, 394–406 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Karosiene, E., Lundegaard, C., Lund, O. & Nielsen, M. NetMHCcons: a consensus method for the major histocompatibility complex class I predictions. Immunogenetics 64, 177–186 (2012).

    Article  CAS  PubMed  Google Scholar 

  30. Beck, S. & Trowsdale, J. The human major histocompatability complex: lessons from the DNA sequence. Annu. Rev. Genomics Hum. Genet. 1, 117–137 (2000).

    Article  CAS  PubMed  Google Scholar 

  31. Stewart, C. A. et al. Complete MHC haplotype sequencing for common disease gene mapping. Genome Res. 14, 1176–1187 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Cortes, A. et al. Major histocompatibility complex associations of ankylosing spondylitis are complex and involve further epistasis with ERAP1. Nat. Commun. 6, 7146 (2015).

    Article  PubMed  Google Scholar 

  33. Hinks, A. et al. Fine-mapping the MHC locus in juvenile idiopathic arthritis (JIA) reveals genetic heterogeneity corresponding to distinct adult inflammatory arthritic diseases. Ann. Rheum. Dis. 76, 765–772 (2017).

    Article  CAS  PubMed  Google Scholar 

  34. Raychaudhuri, S. et al. Five amino acids in three HLA proteins explain most of the association between MHC and seropositive rheumatoid arthritis. Nat. Genet. 44, 291–296 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Okada, Y. et al. Risk for ACPA-positive rheumatoid arthritis is driven by shared HLA amino acid polymorphisms in Asian and European populations. Hum. Mol. Genet. 23, 6916–6926 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Raj, P. et al. Regulatory polymorphisms modulate the expression of HLA class II molecules and promote autoimmunity. eLife 5, e12089 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Mayes, M. D. et al. Immunochip analysis identifies multiple susceptibility loci for systemic sclerosis. Am. J. Hum. Genet. 94, 47–61 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Evans, D. M. et al. Interaction between ERAP1 and HLA-B27 in ankylosing spondylitis implicates peptide handling in the mechanism for HLA-B27 in disease susceptibility. Nat. Genet. 43, 761–767 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Okada, Y. et al. Contribution of a non-classical HLA gene, HLA-DOA, to the risk of rheumatoid arthritis. Am. J. Hum. Genet. 99, 366–374 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Morgan, A. W. et al. The shared epitope hypothesis in rheumatoid arthritis: evaluation of alternative classification criteria in a large UK Caucasian cohort. Arthritis Rheum. 58, 1275–1283 (2008).

    Article  PubMed  Google Scholar 

  41. Nepom, B. S. et al. Specific HLA-DR4-associated histocompatibility molecules characterize patients with seropositive juvenile rheumatoid arthritis. J. Clin. Invest. 74, 287–291 (1984).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Jaakkola, E. et al. Finnish HLA studies confirm the increased risk conferred by HLA-B27 homozygosity in ankylosing spondylitis. Ann. Rheum. Dis. 65, 775–780 (2006).

    Article  CAS  PubMed  Google Scholar 

  43. Murray, K. J. et al. Age-specific effects of juvenile rheumatoid arthritis-associated HLA alleles. Arthritis Rheum. 42, 1843–1853 (1999).

    Article  CAS  PubMed  Google Scholar 

  44. Furukawa, H. et al. The role of common protective alleles HLA-DRB1*13 among systemic autoimmune diseases. Genes Immun. 18, 1–7 (2017).

    Article  CAS  PubMed  Google Scholar 

  45. Hinks, A. et al. Brief report: the genetic profile of rheumatoid factor-positive polyarticular juvenile idiopathic arthritis resembles that of adult rheumatoid arthritis. Arthritis Rheumatol. 70, 957–962 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Aletaha, D. et al. 2010 rheumatoid arthritis classification criteria: an American College of Rheumatology/European League Against Rheumatism collaborative initiative. Arthritis Rheum. 62, 2569–2581 (2010).

    Article  PubMed  Google Scholar 

  47. MacGregor, A. J. et al. Characterizing the quantitative genetic contribution to rheumatoid arthritis using data from twins. Arthritis Rheum. 43, 30–37 (2000).

    Article  CAS  PubMed  Google Scholar 

  48. van der Woude, D. et al. Quantitative heritability of anti-citrullinated protein antibody-positive and anti-citrullinated protein antibody-negative rheumatoid arthritis. Arthritis Rheum. 60, 916–923 (2009).

    Article  PubMed  Google Scholar 

  49. Terao, C. et al. A twin study of rheumatoid arthritis in the Japanese population. Mod. Rheumatol. 26, 685–689 (2016).

    Article  PubMed  Google Scholar 

  50. Han, B. et al. Fine mapping seronegative and seropositive rheumatoid arthritis to shared and distinct HLA alleles by adjusting for the effects of heterogeneity. Am. J. Hum. Genet. 94, 522–532 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Dessen, A., Lawrence, C. M., Cupo, S., Zaller, D. M. & Wiley, D. C. X-ray crystal structure of HLA-DR4 (DRA*0101, DRB1*0401) complexed with a peptide from human collagen II. Immunity 7, 473–481 (1997).

    Article  CAS  PubMed  Google Scholar 

  52. Wordsworth, B. P. et al. HLA-DR4 subtype frequencies in rheumatoid arthritis indicate that DRB1 is the major susceptibility locus within the HLA class II region. Proc. Natl Acad. Sci. USA 86, 10049–10053 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Gao, X. J. et al. A variant of HLA-DR4 determines susceptibility to rheumatoid arthritis in a subset of Israeli Jews. Arthritis Rheum. 34, 547–551 (1991).

    Article  CAS  PubMed  Google Scholar 

  54. van der Woude, D. et al. Protection against anti-citrullinated protein antibody-positive rheumatoid arthritis is predominantly associated with HLA-DRB1*1301: a meta-analysis of HLA-DRB1 associations with anti-citrullinated protein antibody-positive and anti-citrullinated protein antibody-negative rheumatoid arthritis in four European populations. Arthritis Rheum. 62, 1236–1245 (2010).

    Article  PubMed  CAS  Google Scholar 

  55. van der Helm-van Mil, A. H. et al. An independent role of protective HLA class II alleles in rheumatoid arthritis severity and susceptibility. Arthritis Rheum. 52, 2637–2644 (2005).

    Article  PubMed  CAS  Google Scholar 

  56. Mackie, S. L. et al. A spectrum of susceptibility to rheumatoid arthritis within HLA-DRB1: stratification by autoantibody status in a large UK population. Genes Immun. 13, 120–128 (2012).

    Article  CAS  PubMed  Google Scholar 

  57. Harney, S., Newton, J., Milicic, A., Brown, M. A. & Wordsworth, B. P. Non-inherited maternal HLA alleles are associated with rheumatoid arthritis. Rheumatology (Oxford) 42, 171–174 (2003).

    Article  CAS  Google Scholar 

  58. Hsieh, H. J. et al. Using the maternal-fetal genotype incompatibility test to assess non-inherited maternal HLA-DRB1 antigen coding alleles as rheumatoid arthritis risk factors. BMC Proc. 1 (Suppl. 1), 124 (2007).

    Article  Google Scholar 

  59. Sparks, J. A. & Karlson, E. W. The roles of cigarette smoking and the lung in the transitions between phases of preclinical rheumatoid arthritis. Curr. Rheumatol. Rep. 18, 15 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Murphy, D., Mattey, D. & Hutchinson, D. Anti-citrullinated protein antibody positive rheumatoid arthritis is primarily determined by rheumatoid factor titre and the shared epitope rather than smoking per se. PLOS ONE 12, e0180655 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Kim, K. et al. Interactions between amino acid-defined major histocompatibility complex class II variants and smoking in seropositive rheumatoid arthritis. Arthritis Rheumatol. 67, 2611–2623 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Sakkas, L. I., Daoussis, D., Liossis, S. N. & Bogdanos, D. P. The infectious basis of ACPA-positive rheumatoid arthritis. Front. Microbiol. 8, 1853 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Lundberg, K., Wegner, N., Yucel-Lindberg, T. & Venables, P. J. Periodontitis in RA-the citrullinated enolase connection. Nat. Rev. Rheumatol. 6, 727–730 (2010).

    Article  CAS  PubMed  Google Scholar 

  64. Wang, S. & Wang, Y. Peptidylarginine deiminases in citrullination, gene regulation, health and pathogenesis. Biochim. Biophys. Acta 1829, 1126–1135 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Rothbard, J. B. et al. Reversal of HLA restriction by a point mutation in an antigenic peptide. Int. Immunol. 1, 487–495 (1989).

    Article  CAS  PubMed  Google Scholar 

  66. Busch, R. The Interaction of Peptides with Human Class II Histocompatibility Antigens. Thesis, Univ. London (1992).

  67. Sette, A. et al. HLA DR4w4-binding motifs illustrate the biochemical basis of degeneracy and specificity in peptide-DR interactions. J. Immunol. 151, 3163–3170 (1993).

    CAS  PubMed  Google Scholar 

  68. Hill, J. A. et al. Cutting edge: the conversion of arginine to citrulline allows for a high-affinity peptide interaction with the rheumatoid arthritis-associated HLA-DRB1*0401 MHC class II molecule. J. Immunol. 171, 538–541 (2003).

    Article  CAS  PubMed  Google Scholar 

  69. Scally, S. W. et al. A molecular basis for the association of the HLA-DRB1 locus, citrullination, and rheumatoid arthritis. J. Exp. Med. 210, 2569–2582 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Ting, Y. T. et al. The interplay between citrullination and HLA-DRB1 polymorphism in shaping peptide binding hierarchies in rheumatoid arthritis. J. Biol. Chem. 293, 3236–3251 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. James, E. A. et al. HLA-DR1001 presents “altered-self” peptides derived from joint-associated proteins by accepting citrulline in three of its binding pockets. Arthritis Rheum. 62, 2909–2918 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Sidney, J. et al. Citrullination only infrequently impacts peptide binding to HLA class II MHC. PLOS ONE 12, e0177140 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. van Heemst, J. et al. Crossreactivity to vinculin and microbes provides a molecular basis for HLA-based protection against rheumatoid arthritis. Nat. Commun. 6, 6681 (2015).

    Article  PubMed  CAS  Google Scholar 

  74. Shi, J. et al. Autoantibodies recognizing carbamylated proteins are present in sera of patients with rheumatoid arthritis and predict joint damage. Proc. Natl Acad. Sci. USA 108, 17372–17377 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Jiang, X. et al. Anti-CarP antibodies in two large cohorts of patients with rheumatoid arthritis and their relationship to genetic risk factors, cigarette smoking and other autoantibodies. Ann. Rheum. Dis. 73, 1761–1768 (2014).

    Article  CAS  PubMed  Google Scholar 

  76. Busch, R. et al. On the perils of poor editing: regulation of peptide loading by HLA-DQ and H2-A molecules associated with celiac disease and type 1 diabetes. Expert Rev. Mol. Med. 14, e15 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Roep, B. O., Kracht, M. J., van Lummel, M. & Zaldumbide, A. A roadmap of the generation of neoantigens as targets of the immune system in type 1 diabetes. Curr. Opin. Immunol. 43, 67–73 (2016).

    Article  CAS  PubMed  Google Scholar 

  78. Lu, Y. C., Weng, W. C. & Lee, H. Functional roles of calreticulin in cancer biology. Biomed. Res. Int. 2015, 526524 (2015).

    PubMed  PubMed Central  Google Scholar 

  79. Ling, S., Cheng, A., Pumpens, P., Michalak, M. & Holoshitz, J. Identification of the rheumatoid arthritis shared epitope binding site on calreticulin. PLOS ONE 5, e11703 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Ling, S., Pi, X. & Holoshitz, J. The rheumatoid arthritis shared epitope triggers innate immune signaling via cell surface calreticulin. J. Immunol. 179, 6359–6367 (2007).

    Article  CAS  PubMed  Google Scholar 

  81. De Almeida, D. E. et al. Immune dysregulation by the rheumatoid arthritis shared epitope. J. Immunol. 185, 1927–1934 (2010).

    Article  PubMed  CAS  Google Scholar 

  82. Fu, J. et al. A small shared epitope-mimetic compound potently accelerates osteoclast-mediated bone damage in autoimmune arthritis. J. Immunol. 191, 2096–2103 (2013).

    Article  CAS  PubMed  Google Scholar 

  83. Holoshitz, J. et al. An HLA-DRB1-coded signal transduction ligand facilitates inflammatory arthritis: a new mechanism of autoimmunity. J. Immunol. 190, 48–57 (2013).

    Article  CAS  PubMed  Google Scholar 

  84. Ling, S., Cline, E. N., Haug, T. S., Fox, D. A. & Holoshitz, J. Citrullinated calreticulin potentiates rheumatoid arthritis shared epitope signaling. Arthritis Rheum. 65, 618–626 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Patil, N. S. et al. Rheumatoid arthritis (RA)-associated HLA-DR alleles form less stable complexes with class II-associated invariant chain peptide than non-RA-associated HLA-DR alleles. J. Immunol. 167, 7157–7168 (2001).

    Article  CAS  PubMed  Google Scholar 

  86. Busch, R. et al. Achieving stability through editing and chaperoning: regulation of MHC class II peptide binding and expression. Immunol. Rev. 207, 242–260 (2005).

    Article  CAS  PubMed  Google Scholar 

  87. Rinderknecht, C. H. et al. DM influences the abundance of major histocompatibility complex class II alleles with low affinity for class II-associated invariant chain peptides via multiple mechanisms. Immunology 131, 18–32 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Anczurowski, M. & Hirano, N. Mechanisms of HLA-DP antigen processing and presentation revisited. Trends Immunol. 39, 960–964 (2018).

    Article  CAS  PubMed  Google Scholar 

  89. Anczurowski, M. et al. Mechanisms underlying the lack of endogenous processing and CLIP-mediated binding of the invariant chain by HLA-DP(84Gly). Sci. Rep. 8, 4804 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. Yamashita, Y. et al. HLA-DP(84Gly) constitutively presents endogenous peptides generated by the class I antigen processing pathway. Nat. Commun. 8, 15244 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  91. Ito, Y. et al. Rapid CLIP dissociation from MHC II promotes an unusual antigen presentation pathway in autoimmunity. J. Exp. Med. 215, 2617–2635 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Scher, J. U. et al. Expansion of intestinal Prevotella copri correlates with enhanced susceptibility to arthritis. eLife 2, e01202 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  93. Gomez, A. et al. Loss of sex and age driven differences in the gut microbiome characterize arthritis-susceptible 0401 mice but not arthritis-resistant 0402 mice. PLOS ONE 7, e36095 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Khan, M. A. Polymorphism of HLA-B27: 105 subtypes currently known. Curr. Rheumatol. Rep. 15, 362 (2013).

    Article  PubMed  CAS  Google Scholar 

  95. Sieper, J. & van der Heijde, D. Review: nonradiographic axial spondyloarthritis: new definition of an old disease? Arthritis Rheum. 65, 543–551 (2013).

    Article  PubMed  Google Scholar 

  96. Braem, K. & Lories, R. J. Insights into the pathophysiology of ankylosing spondylitis: contributions from animal models. Joint Bone Spine 79, 243–248 (2012).

    Article  CAS  PubMed  Google Scholar 

  97. Brown, M. A. et al. Susceptibility to ankylosing spondylitis in twins: the role of genes, HLA, and the environment. Arthritis Rheum. 40, 1823–1828 (1997).

    Article  CAS  PubMed  Google Scholar 

  98. Evnouchidou, I. et al. Cutting edge: coding single nucleotide polymorphisms of endoplasmic reticulum aminopeptidase 1 can affect antigenic peptide generation in vitro by influencing basic enzymatic properties of the enzyme. J. Immunol. 186, 1909–1913 (2011).

    Article  CAS  PubMed  Google Scholar 

  99. Kochan, G. et al. Crystal structures of the endoplasmic reticulum aminopeptidase-1 (ERAP1) reveal the molecular basis for N-terminal peptide trimming. Proc. Natl Acad. Sci. USA 108, 7745–7750 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Chen, L. et al. Critical role of endoplasmic reticulum aminopeptidase 1 in determining the length and sequence of peptides bound and presented by HLA-B27. Arthritis Rheumatol. 66, 284–294 (2014).

    Article  CAS  PubMed  Google Scholar 

  101. Wei, J. C. et al. Interaction between HLA-B60 and HLA-B27 as a better predictor of ankylosing spondylitis in a taiwanese population. PLOS ONE 10, e0137189 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  102. van Gaalen, F. A. et al. Epistasis between two HLA antigens defines a subset of individuals at a very high risk for ankylosing spondylitis. Ann. Rheum. Dis. 72, 974–978 (2013).

    Article  PubMed  Google Scholar 

  103. Gaston, J. S. H. & Jadon, D. R. Th17 cell responses in spondyloarthritis. Best Pract. Res. Clin. Rheumatol. 31, 777–796 (2017).

    Article  CAS  PubMed  Google Scholar 

  104. Neerinckx, B., Kollnberger, S., Shaw, J. & Lories, R. No evidence for a direct role of HLA-B27 in pathological bone formation in axial SpA. RMD Open 3, e000451 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  105. Li, Z. et al. Epigenetic and gene expression analysis of ankylosing spondylitis-associated loci implicate immune cells and the gut in the disease pathogenesis. Genes Immun. 18, 135–143 (2017).

    Article  CAS  PubMed  Google Scholar 

  106. Crux, N. B. & Elahi, S. Human leukocyte antigen (HLA) and immune regulation: how do classical and non-classical HLA alleles modulate immune response to human immunodeficiency virus and hepatitis C virus infections? Front. Immunol. 8, 832 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  107. Appel, H. et al. Use of HLA-B27 tetramers to identify low-frequency antigen-specific T cells in chlamydia-triggered reactive arthritis. Arthritis Res. Ther. 6, R521–R534 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Fiorillo, M. T. et al. Allele-dependent similarity between viral and self-peptide presentation by HLA-B27 subtypes. J. Biol. Chem. 280, 2962–2971 (2005).

    Article  CAS  PubMed  Google Scholar 

  109. Narzi, D. et al. Dynamical characterization of two differentially disease associated MHC class I proteins in complex with viral and self-peptides. J. Mol. Biol. 415, 429–442 (2012).

    Article  CAS  PubMed  Google Scholar 

  110. Frauendorf, E., von Goessel, H., May, E. & Marker-Hermann, E. HLA-B27-restricted T cells from patients with ankylosing spondylitis recognize peptides from B*2705 that are similar to bacteria-derived peptides. Clin. Exp. Immunol. 134, 351–359 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Hulsmeyer, M. et al. Dual, HLA-B27 subtype-dependent conformation of a self-peptide. J. Exp. Med. 199, 271–281 (2004).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  112. Schittenhelm, R. B., Sian, T. C., Wilmann, P. G., Dudek, N. L. & Purcell, A. W. Revisiting the arthritogenic peptide theory: quantitative not qualitative changes in the peptide repertoire of HLA-B27 allotypes. Arthritis Rheumatol. 67, 702–713 (2015).

    Article  CAS  PubMed  Google Scholar 

  113. Faham, M. et al. Discovery of T cell receptor β motifs specific to HLA-B27-positive ankylosing spondylitis by deep repertoire sequence analysis. Arthritis Rheumatol. 69, 774–784 (2017).

    Article  CAS  PubMed  Google Scholar 

  114. Duchmann, R., Lambert, C., May, E., Hohler, T. & Marker-Hermann, E. CD4+ and CD8+ clonal T cell expansions indicate a role of antigens in ankylosing spondylitis; a study in HLA-B27+ monozygotic twins. Clin. Exp. Immunol. 123, 315–322 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Dulphy, N. et al. Common intra-articular T cell expansions in patients with reactive arthritis: identical β-chain junctional sequences and cytotoxicity toward HLA-B27. J. Immunol. 162, 3830–3839 (1999).

    CAS  PubMed  Google Scholar 

  116. Menon, B. et al. Interleukin-17+CD8+ T cells are enriched in the joints of patients with psoriatic arthritis and correlate with disease activity and joint damage progression. Arthritis Rheumatol. 66, 1272–1281 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Okada, Y. et al. Fine mapping major histocompatibility complex associations in psoriasis and its clinical subtypes. Am. J. Hum. Genet. 95, 162–172 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Bowes, J. et al. Cross-phenotype association mapping of the MHC identifies genetic variants that differentiate psoriatic arthritis from psoriasis. Ann. Rheum. Dis. 76, 1774–1779 (2017).

    Article  CAS  PubMed  Google Scholar 

  119. Buxton, S. E., Benjamin, R. J., Clayberger, C., Parham, P. & Krensky, A. M. Anchoring pockets in human histocompatibility complex leukocyte antigen (HLA) class I molecules: analysis of the conserved B (“45”) pocket of HLA-B27. J. Exp. Med. 175, 809–820 (1992).

    Article  CAS  PubMed  Google Scholar 

  120. Taurog, J. D. et al. Spondylarthritis in HLA-B27/human β2-microglobulin-transgenic rats is not prevented by lack of CD8. Arthritis Rheum. 60, 1977–1984 (2009).

    Article  CAS  PubMed  Google Scholar 

  121. Lenart, I. et al. The MHC class I heavy chain structurally conserved cysteines 101 and 164 participate in HLA-B27 dimer formation. Antioxid. Redox Signal. 16, 33–43 (2012).

    Article  CAS  PubMed  Google Scholar 

  122. Bird, L. A. et al. Lymphoblastoid cells express HLA-B27 homodimers both intracellularly and at the cell surface following endosomal recycling. Eur. J. Immunol. 33, 748–759 (2003).

    Article  CAS  PubMed  Google Scholar 

  123. Kollnberger, S. et al. Cell-surface expression and immune receptor recognition of HLA-B27 homodimers. Arthritis Rheum. 46, 2972–2982 (2002).

    Article  CAS  PubMed  Google Scholar 

  124. MacLean, L. et al. Sulphydryl reactivity of the HLA-B27 epitope: accessibility of the free cysteine studied by flow cytometry. Ann. Rheum. Dis. 51, 456–460 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Payeli, S. K. et al. Inhibiting HLA-B27 homodimer-driven immune cell inflammation in spondylarthritis. Arthritis Rheum. 64, 3139–3149 (2012).

    Article  CAS  PubMed  Google Scholar 

  126. McHugh, K. et al. Expression of aberrant HLA-B27 molecules is dependent on B27 dosage and peptide supply. Ann. Rheum. Dis. 73, 763–770 (2014).

    Article  CAS  PubMed  Google Scholar 

  127. Raine, T. et al. Consistent patterns of expression of HLA class I free heavy chains in healthy individuals and raised expression in spondyloarthropathy patients point to physiological and pathological roles. Rheumatology (Oxford) 45, 1338–1344 (2006).

    Article  CAS  Google Scholar 

  128. Tsai, W. C. et al. Free HLA class I heavy chain-carrying monocytes—a potential role in the pathogenesis of spondyloarthropathies. J. Rheumatol. 29, 966–972 (2002).

    CAS  PubMed  Google Scholar 

  129. Goodridge, J. P. et al. HLA-F and MHC-I open conformers cooperate in a MHC-I antigen cross-presentation pathway. J. Immunol. 191, 1567–1577 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Chen, L. et al. Silencing or inhibition of endoplasmic reticulum aminopeptidase 1 (ERAP1) suppresses free heavy chain expression and Th17 responses in ankylosing spondylitis. Ann. Rheum. Dis. 75, 916–923 (2016).

    Article  CAS  PubMed  Google Scholar 

  131. Haroon, N., Tsui, F. W., Uchanska-Ziegler, B., Ziegler, A. & Inman, R. D. Endoplasmic reticulum aminopeptidase 1 (ERAP1) exhibits functionally significant interaction with HLA-B27 and relates to subtype specificity in ankylosing spondylitis. Ann. Rheum. Dis. 71, 589–595 (2012).

    Article  CAS  PubMed  Google Scholar 

  132. Tran, T. M., Hong, S., Edwan, J. H. & Colbert, R. A. ERAP1 reduces accumulation of aberrant and disulfide-linked forms of HLA-B27 on the cell surface. Mol. Immunol. 74, 10–17 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Giles, J. et al. HLA-B27 homodimers and free H chains are stronger ligands for leukocyte Ig-like receptor B2 than classical HLA class I. J. Immunol. 188, 6184–6193 (2012).

    Article  CAS  PubMed  Google Scholar 

  134. Zhang, Z. et al. The leukocyte immunoglobulin-like receptor family member LILRB5 binds to HLA-class I heavy chains. PLOS ONE 10, e0129063 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  135. Cauli, A. et al. The arthritis-associated HLA-B*27:05 allele forms more cell surface B27 dimer and free heavy chain ligands for KIR3DL2 than HLA-B*27:09. Rheumatology (Oxford) 52, 1952–1962 (2013).

    Article  CAS  Google Scholar 

  136. Gaur, P., Misra, R. & Aggarwal, A. Natural killer cell and γδT cell alterations in enthesitis related arthritis category of juvenile idiopathic arthritis. Clin. Immunol. 161, 163–169 (2015).

    Article  CAS  PubMed  Google Scholar 

  137. Chan, A. T., Kollnberger, S. D., Wedderburn, L. R. & Bowness, P. Expansion and enhanced survival of natural killer cells expressing the killer immunoglobulin-like receptor KIR3DL2 in spondylarthritis. Arthritis Rheum. 52, 3586–3595 (2005).

    Article  CAS  PubMed  Google Scholar 

  138. Goodridge, J. P., Burian, A., Lee, N. & Geraghty, D. E. HLA-F and MHC class I open conformers are ligands for NK cell Ig-like receptors. J. Immunol. 191, 3553–3562 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Santos, M. R. et al. Non-classical human leucocyte antigens in ankylosing spondylitis: possible association with HLA-E and HLA-F. RMD Open 4, e000677 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  140. Hatano, H. et al. The D0 Ig-like domain plays a central role in the stronger binding of KIR3DL2 to B27 free H chain dimers. J. Immunol. 194, 1591–1601 (2015).

    Article  CAS  PubMed  Google Scholar 

  141. Borges, L., Hsu, M. L., Fanger, N., Kubin, M. & Cosman, D. A family of human lymphoid and myeloid Ig-like receptors, some of which bind to MHC class I molecules. J. Immunol. 159, 5192–5196 (1997).

    CAS  PubMed  Google Scholar 

  142. Hogan, L. E., Jones, D. C. & Allen, R. L. Expression of the innate immune receptor LILRB5 on monocytes is associated with mycobacteria exposure. Sci. Rep. 6, 21780 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Mori, Y. et al. Inhibitory immunoglobulin-like receptors LILRB and PIR-B negatively regulate osteoclast development. J. Immunol. 181, 4742–4751 (2008).

    Article  CAS  PubMed  Google Scholar 

  144. Jones, D. C. et al. Alternative mRNA splicing creates transcripts encoding soluble proteins from most LILR genes. Eur. J. Immunol. 39, 3195–3206 (2009).

    Article  CAS  PubMed  Google Scholar 

  145. Ridley, A. et al. Activation-induced killer cell immunoglobulin-like receptor 3DL2 binding to HLA-B27 licenses pathogenic T cell differentiation in spondyloarthritis. Arthritis Rheumatol. 68, 901–914 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Rysnik, O. et al. Non-conventional forms of HLA-B27 are expressed in spondyloarthritis joints and gut tissue. J. Autoimmun. 70, 12–21 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Bowness, P. et al. Th17 cells expressing KIR3DL2+ and responsive to HLA-B27 homodimers are increased in ankylosing spondylitis. J. Immunol. 186, 2672–2680 (2011).

    Article  CAS  PubMed  Google Scholar 

  148. Wong-Baeza, I. et al. KIR3DL2 binds to HLA-B27 dimers and free H chains more strongly than other HLA class I and promotes the expansion of T cells in ankylosing spondylitis. J. Immunol. 190, 3216–3224 (2013).

    Article  CAS  PubMed  Google Scholar 

  149. Purvis, H. A. et al. Low-strength T cell activation promotes Th17 responses. Blood 116, 4829–4837 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Ruutu, M. et al. β-glucan triggers spondylarthritis and Crohn’s disease-like ileitis in SKG mice. Arthritis Rheum. 64, 2211–2222 (2012).

    Article  CAS  PubMed  Google Scholar 

  151. Navid, F. & Colbert, R. A. Causes and consequences of endoplasmic reticulum stress in rheumatic disease. Nat. Rev. Rheumatol. 13, 25–40 (2017).

    Article  CAS  PubMed  Google Scholar 

  152. Dangoria, N. S. et al. HLA-B27 misfolding is associated with aberrant intermolecular disulfide bond formation (dimerization) in the endoplasmic reticulum. J. Biol. Chem. 277, 23459–23468 (2002).

    Article  CAS  PubMed  Google Scholar 

  153. Guiliano, D. B. et al. Polymorphisms in the F pocket of HLA-B27 subtypes strongly affect assembly, chaperone interactions, and heavy-chain misfolding. Arthritis Rheumatol. 69, 610–621 (2017).

    Article  CAS  PubMed  Google Scholar 

  154. Dong, W. et al. Upregulation of 78-kDa glucose-regulated protein in macrophages in peripheral joints of active ankylosing spondylitis. Scand. J. Rheumatol. 37, 427–434 (2008).

    Article  CAS  PubMed  Google Scholar 

  155. Jeanty, C. et al. HLA-B27 subtype oligomerization and intracellular accumulation patterns correlate with predisposition to spondyloarthritis. Arthritis Rheumatol. 66, 2113–2123 (2014).

    Article  CAS  PubMed  Google Scholar 

  156. Goodall, J. C. et al. Endoplasmic reticulum stress-induced transcription factor, CHOP, is crucial for dendritic cell IL-23 expression. Proc. Natl Acad. Sci. USA 107, 17698–17703 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. DeLay, M. L. et al. HLA-B27 misfolding and the unfolded protein response augment interleukin-23 production and are associated with Th17 activation in transgenic rats. Arthritis Rheum. 60, 2633–2643 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Layh-Schmitt, G., Yang, E. Y., Kwon, G. & Colbert, R. A. HLA-B27 alters the response to tumor necrosis factor α and promotes osteoclastogenesis in bone marrow monocytes from HLA-B27-transgenic rats. Arthritis Rheum. 65, 2123–2131 (2013).

    Article  CAS  PubMed  Google Scholar 

  159. Neerinckx, B., Carter, S. & Lories, R. J. No evidence for a critical role of the unfolded protein response in synovium and blood of patients with ankylosing spondylitis. Ann. Rheum. Dis. 73, 629–630 (2014).

    Article  PubMed  Google Scholar 

  160. Gu, J. et al. Clues to pathogenesis of spondyloarthropathy derived from synovial fluid mononuclear cell gene expression profiles. J. Rheumatol. 29, 2159–2164 (2002).

    CAS  PubMed  Google Scholar 

  161. Zeng, L., Lindstrom, M. J. & Smith, J. A. Ankylosing spondylitis macrophage production of higher levels of interleukin-23 in response to lipopolysaccharide without induction of a significant unfolded protein response. Arthritis Rheum. 63, 3807–3817 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Ciccia, F. et al. Evidence that autophagy, but not the unfolded protein response, regulates the expression of IL-23 in the gut of patients with ankylosing spondylitis and subclinical gut inflammation. Ann. Rheum. Dis. 73, 1566–1574 (2014).

    Article  CAS  PubMed  Google Scholar 

  163. Neerinckx, B., Carter, S. & Lories, R. IL-23 expression and activation of autophagy in synovium and PBMCs of HLA-B27 positive patients with ankylosing spondylitis. Response to: ‘Evidence that autophagy, but not the unfolded protein response, regulates the expression of IL-23 in the gut of patients with ankylosing spondylitis and subclinical gut inflammation’ by Ciccia et al. Ann. Rheum. Dis. 73, e68 (2014).

    Article  CAS  PubMed  Google Scholar 

  164. Kenna, T. J. et al. Disease-associated polymorphisms in ERAP1 do not alter endoplasmic reticulum stress in patients with ankylosing spondylitis. Genes Immun. 16, 35–42 (2015).

    Article  CAS  PubMed  Google Scholar 

  165. Penttinen, M. A. et al. Enhanced intracellular replication of Salmonella enteritidis in HLA-B27-expressing human monocytic cells: dependency on glutamic acid at position 45 in the B pocket of HLA-B27. Arthritis Rheum. 50, 2255–2263 (2004).

    Article  CAS  PubMed  Google Scholar 

  166. Antoniou, A. N. et al. Salmonella exploits HLA-B27 and host unfolded protein responses to promote intracellular replication. Ann. Rheum. Dis. 78, 74–82 (2018).

    Article  PubMed  CAS  Google Scholar 

  167. Ansalone, C., Utriainen, L., Milling, S. & Goodyear, C. S. Role of gut inflammation in altering the monocyte compartment and its osteoclastogenic potential in HLA-B27-transgenic rats. Arthritis Rheumatol. 69, 1807–1815 (2017).

    Article  CAS  PubMed  Google Scholar 

  168. Manasson, J. et al. Gut microbiota perturbations in reactive arthritis and post-infectious spondyloarthritis. Arthritis Rheumatol. 70, 242–254 (2017).

    Article  CAS  Google Scholar 

  169. Yu, D. & Kuipers, J. G. Role of bacteria and HLA-B27 in the pathogenesis of reactive arthritis. Rheum. Dis. Clin. North Am. 29, 21–36 (2003).

    Article  PubMed  Google Scholar 

  170. Lin, P. et al. HLA-B27 and human β2-microglobulin affect the gut microbiota of transgenic rats. PLOS ONE 9, e105684 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  171. Breban, M. et al. Faecal microbiota study reveals specific dysbiosis in spondyloarthritis. Ann. Rheum. Dis. 76, 1614–1622 (2017).

    Article  CAS  PubMed  Google Scholar 

  172. Gill, T., Asquith, M., Brooks, S. R., Rosenbaum, J. T. & Colbert, R. A. Effects of HLA-B27 on gut microbiota in experimental spondyloarthritis implicate an ecological model of dysbiosis. Arthritis Rheumatol. 70, 555–565 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Ombrello, M. J. et al. HLA-DRB1*11 and variants of the MHC class II locus are strong risk factors for systemic juvenile idiopathic arthritis. Proc. Natl Acad. Sci. USA 112, 15970–15975 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Pardeo, M., Bracaglia, C. & De Benedetti, F. Systemic juvenile idiopathic arthritis: new insights into pathogenesis and cytokine directed therapies. Best Pract. Res. Clin. Rheumatol. 31, 505–516 (2017).

    Article  PubMed  Google Scholar 

  175. Mahmud, S. A. & Binstadt, B. A. Autoantibodies in the pathogenesis, diagnosis, and prognosis of juvenile idiopathic arthritis. Front. Immunol. 9, 3168 (2018).

    Article  PubMed  CAS  Google Scholar 

  176. Ruperto, N. et al. Abatacept in children with juvenile idiopathic arthritis: a randomised, double-blind, placebo-controlled withdrawal trial. Lancet 372, 383–391 (2008).

    Article  CAS  PubMed  Google Scholar 

  177. Omoyinmi, E. et al. Th1 and Th17 cell subpopulations are enriched in the peripheral blood of patients with systemic juvenile idiopathic arthritis. Rheumatology (Oxford) 51, 1881–1886 (2012).

    Article  CAS  Google Scholar 

  178. Raziuddin, S., Bahabri, S., Al-Dalaan, A., Siraj, A. K. & Al-Sedairy, S. A mixed Th1/Th2 cell cytokine response predominates in systemic onset juvenile rheumatoid arthritis: immunoregulatory IL-10 function. Clin. Immunol. Immunopathol. 86, 192–198 (1998).

    Article  CAS  PubMed  Google Scholar 

  179. Hugle, B. et al. Transcription factor motif enrichment in whole transcriptome analysis identifies STAT4 and BCL6 as the most prominent binding motif in systemic juvenile idiopathic arthritis. Arthritis Res. Ther. 20, 98 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  180. Janow, G. et al. The Systemic Juvenile Idiopathic Arthritis Cohort of the Childhood Arthritis and Rheumatology Research Alliance Registry: 2010–2013. J. Rheumatol. 43, 1755–1762 (2016).

    Article  PubMed  Google Scholar 

  181. Nigrovic, P. A. Review: is there a window of opportunity for treatment of systemic juvenile idiopathic arthritis? Arthritis Rheumatol. 66, 1405–1413 (2014).

    Article  CAS  PubMed  Google Scholar 

  182. Zielinski, C. E. et al. Pathogen-induced human TH17 cells produce IFN-γ or IL-10 and are regulated by IL-1β. Nature 484, 514–518 (2012).

    Article  CAS  PubMed  Google Scholar 

  183. Nigrovic, P. A. Autoinflammation and autoimmunity in systemic juvenile idiopathic arthritis. Proc. Natl Acad. Sci. USA 112, 15785–15786 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Kissner, T. L. et al. Activation of MyD88 signaling upon staphylococcal enterotoxin binding to MHC class II molecules. PLOS ONE 6, e15985 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Scholl, P. R. et al. Effect of isotypes and allelic polymorphism on the binding of staphylococcal exotoxins to MHC class II molecules. J. Immunol. 144, 226–230 (1990).

    CAS  PubMed  Google Scholar 

  186. Liu, X. et al. Intracellular MHC class II molecules promote TLR-triggered innate immune responses by maintaining activation of the kinase Btk. Nat. Immunol. 12, 416–424 (2011).

    Article  CAS  PubMed  Google Scholar 

  187. Poddubnyy, D. et al. Development of an ASAS-endorsed recommendation for the early referral of patients with a suspicion of axial spondyloarthritis. Ann. Rheum. Dis. 74, 1483–1487 (2015).

    Article  PubMed  Google Scholar 

  188. Winchester, R. et al. HLA associations reveal genetic heterogeneity in psoriatic arthritis and in the psoriasis phenotype. Arthritis Rheum. 64, 1134–1144 (2012).

    Article  CAS  PubMed  Google Scholar 

  189. Queiro, R., Morante, I., Cabezas, I. & Acasuso, B. HLA-B27 and psoriatic disease: a modern view of an old relationship. Rheumatology (Oxford) 55, 221–229 (2016).

    Article  CAS  Google Scholar 

  190. FitzGerald, O., Haroon, M., Giles, J. T. & Winchester, R. Concepts of pathogenesis in psoriatic arthritis: genotype determines clinical phenotype. Arthritis Res. Ther. 17, 115 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  191. Okada, Y., Eyre, S., Suzuki, A., Kochi, Y. & Yamamoto, K. Genetics of rheumatoid arthritis: 2018 status. Ann. Rheum. Dis. 78, 446–453 (2018).

    Article  PubMed  CAS  Google Scholar 

  192. Wei, W. H. et al. Major histocompatibility complex harbors widespread genotypic variability of non-additive risk of rheumatoid arthritis including epistasis. Sci. Rep. 6, 25014 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Wei, W. H., Loh, C. Y., Worthington, J. & Eyre, S. Immunochip analyses of epistasis in rheumatoid arthritis confirm multiple interactions within MHC and suggest novel non-MHC epistatic signals. J. Rheumatol. 43, 839–845 (2016).

    Article  PubMed  Google Scholar 

  194. Torkamani, A., Wineinger, N. E. & Topol, E. J. The personal and clinical utility of polygenic risk scores. Nat. Rev. Genet. 19, 581–590 (2018).

    Article  CAS  PubMed  Google Scholar 

  195. Alivernini, S. et al. Is ACPA positivity the main driver for rheumatoid arthritis treatment? Pros and cons. Autoimmun. Rev. 16, 1096–1102 (2017).

    Article  PubMed  Google Scholar 

  196. Choi, S. T. & Lee, K. H. Clinical management of seronegative and seropositive rheumatoid arthritis: a comparative study. PLOS ONE 13, e0195550 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  197. Lundstrom, E. et al. Opposing effects of HLA-DRB1*13 alleles on the risk of developing anti-citrullinated protein antibody-positive and anti-citrullinated protein antibody-negative rheumatoid arthritis. Arthritis Rheum. 60, 924–930 (2009).

    Article  PubMed  Google Scholar 

  198. Oka, S. et al. Association of human leukocyte antigen alleles with chronic lung diseases in rheumatoid arthritis. Rheumatology (Oxford) 55, 1301–1307 (2016).

    Article  CAS  Google Scholar 

  199. Hillarby, M. C. et al. HLA associations in subjects with rheumatoid arthritis and bronchiectasis but not with other pulmonary complications of rheumatoid disease. Br. J. Rheumatol. 32, 794–797 (1993).

    Article  CAS  PubMed  Google Scholar 

  200. Parkes, J. E. et al. Genetic background may contribute to the latitude-dependent prevalence of dermatomyositis and anti-TIF1-γ autoantibodies in adult patients with myositis. Arthritis Res. Ther. 20, 117 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  201. He, D. et al. Association of the HLA-DRB1 with scleroderma in Chinese population. PLOS ONE 9, e106939 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  202. Petty, R. E. et al. International League of Associations for Rheumatology classification of juvenile idiopathic arthritis: second revision, Edmonton, 2001. J. Rheumatol. 31, 390–392 (2004).

    PubMed  Google Scholar 

  203. Thomson, W. et al. Juvenile idiopathic arthritis classified by the ILAR criteria: HLA associations in UK patients. Rheumatology (Oxford) 41, 1183–1189 (2002).

    Article  CAS  Google Scholar 

  204. Hollenbach, J. A. et al. Juvenile idiopathic arthritis and HLA class I and class II interactions and age-at-onset effects. Arthritis Rheum. 62, 1781–1791 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Prahalad, S. et al. Hierarchy of risk of childhood-onset rheumatoid arthritis conferred by HLA-DRB1 alleles encoding the shared epitope. Arthritis Rheum. 64, 925–930 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Ravelli, A. et al. Patients with antinuclear antibody-positive juvenile idiopathic arthritis constitute a homogeneous subgroup irrespective of the course of joint disease. Arthritis Rheum. 52, 826–832 (2005).

    Article  PubMed  Google Scholar 

  207. Nigrovic, P. A., Raychaudhuri, S. & Thompson, S. D. Review: genetics and the classification of arthritis in adults and children. Arthritis Rheumatol. 70, 7–17 (2018).

    Article  PubMed  Google Scholar 

  208. Willis, V. C. et al. Protein arginine deiminase 4 inhibition is sufficient for the amelioration of collagen-induced arthritis. Clin. Exp. Immunol. 188, 263–274 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Benham, H. et al. Citrullinated peptide dendritic cell immunotherapy in HLA risk genotype-positive rheumatoid arthritis patients. Sci. Transl Med. 7, 290ra287 (2015).

    Article  CAS  Google Scholar 

  210. Baker, K. F. & Isaacs, J. D. Novel therapies for immune-mediated inflammatory diseases: what can we learn from their use in rheumatoid arthritis, spondyloarthritis, systemic lupus erythematosus, psoriasis, Crohn’s disease and ulcerative colitis? Ann. Rheum. Dis. 77, 175–187 (2018).

    Article  CAS  PubMed  Google Scholar 

  211. Baeten, D. et al. Secukinumab, an interleukin-17A inhibitor, in ankylosing spondylitis. N. Engl. J. Med. 373, 2534–2548 (2015).

    Article  CAS  PubMed  Google Scholar 

  212. Baeten, D. et al. Risankizumab, an IL-23 inhibitor, for ankylosing spondylitis: results of a randomised, double-blind, placebo-controlled, proof-of-concept, dose-finding phase 2 study. Ann. Rheum. Dis. 77, 1295–1302 (2018).

    Article  CAS  PubMed  Google Scholar 

  213. Marroquin Belaunzaran, O. et al. HLA-B27-homodimer-specific antibody modulates the expansion of pro-inflammatory T-cells in HLA-B27 transgenic rats. PLOS ONE 10, e0130811 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  214. Schmitt, C., Marie-Cardine, A. & Bensussan, A. Therapeutic antibodies to KIR3DL2 and other target antigens on cutaneous T-cell lymphomas. Front. Immunol. 8, 1010 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  215. Keidel, S., Chen, L., Pointon, J. & Wordsworth, P. ERAP1 and ankylosing spondylitis. Curr. Opin. Immunol. 25, 97–102 (2013).

    Article  CAS  PubMed  Google Scholar 

  216. Roberts, A. R. et al. ERAP1 association with ankylosing spondylitis is attributable to common genotypes rather than rare haplotype combinations. Proc. Natl Acad. Sci. USA 114, 558–561 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. Weiss, P. F. & Colbert, R. A. Juvenile spondyloarthritis: a distinct form of juvenile arthritis. Pediatr. Clin. North Am. 65, 675–690 (2018).

    Article  PubMed  Google Scholar 

  218. Chatterjee, N., Shi, J. & Garcia-Closas, M. Developing and evaluating polygenic risk prediction models for stratified disease prevention. Nat. Rev. Genet. 17, 392–406 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. The MHC sequencing consortium. Complete sequence and gene map of a human major histocompatibility complex. Nature 401, 921–923 (1999).

    Article  Google Scholar 

  220. Marsh, S. G. et al. Nomenclature for factors of the HLA system, 2010. Tissue Antigens 75, 291–455 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. Robinson, J. et al. The IPD and IMGT/HLA database: allele variant databases. Nucleic Acids Res. 43, D423–D431 (2015).

    Article  CAS  PubMed  Google Scholar 

  222. Fasano, R. M. et al. Genotyping applications for transplantation and transfusion management: the Emory experience. Arch. Pathol. Lab Med. 141, 329–340 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. Jeanmougin, M., Noirel, J., Coulonges, C. & Zagury, J. F. HLA-check: evaluating HLA data from SNP information. BMC Bioinformatics 18, 334 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  224. Matzaraki, V., Kumar, V., Wijmenga, C. & Zhernakova, A. The MHC locus and genetic susceptibility to autoimmune and infectious diseases. Genome Biol. 18, 76 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  225. Neefjes, J., Jongsma, M. L., Paul, P. & Bakke, O. Towards a systems understanding of MHC class I and MHC class II antigen presentation. Nat. Rev. Immunol. 11, 823–836 (2011).

    Article  CAS  PubMed  Google Scholar 

  226. Bjorkman, P. J. et al. Structure of the human class I histocompatibility antigen, HLA-A2. Nature 329, 506–512 (1987).

    Article  CAS  PubMed  Google Scholar 

  227. Bjorkman, P. J. et al. The foreign antigen binding site and T cell recognition regions of class I histocompatibility antigens. Nature 329, 512–518 (1987).

    Article  CAS  PubMed  Google Scholar 

  228. Brown, J. H. et al. Three-dimensional structure of the human class II histocompatibility antigen HLA-DR1. Nature 364, 33–39 (1993).

    Article  CAS  PubMed  Google Scholar 

  229. Long, E. O., Kim, H. S., Liu, D., Peterson, M. E. & Rajagopalan, S. Controlling natural killer cell responses: integration of signals for activation and inhibition. Annu. Rev. Immunol. 31, 227–258 (2013).

    Article  CAS  PubMed  Google Scholar 

  230. Munz, C. Autophagy proteins in antigen processing for presentation on MHC molecules. Immunol. Rev. 272, 17–27 (2016).

    Article  PubMed  CAS  Google Scholar 

  231. Engelhard, V. H. The contributions of mass spectrometry to understanding of immune recognition by T lymphocytes. Int. J. Mass Spectrom. 259, 32–39 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  232. Lukacs-Kornek, V. & Turley, S. J. Self-antigen presentation by dendritic cells and lymphoid stroma and its implications for autoimmunity. Curr. Opin. Immunol. 23, 138–145 (2011).

    Article  CAS  PubMed  Google Scholar 

  233. Andersson, G. Evolution of the human HLA-DR region. Front. Biosci. 3, d739–d745 (1998).

    Article  CAS  PubMed  Google Scholar 

  234. Blum, J. S., Wearsch, P. A. & Cresswell, P. Pathways of antigen processing. Annu. Rev. Immunol. 31, 443–473 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  235. Neerincx, A. & Boyle, L. H. Properties of the tapasin homologue TAPBPR. Curr. Opin. Immunol. 46, 97–102 (2017).

    Article  CAS  PubMed  Google Scholar 

  236. Turunen, S. et al. Rheumatoid arthritis antigens homocitrulline and citrulline are generated by local myeloperoxidase and peptidyl arginine deiminases 2, 3 and 4 in rheumatoid nodule and synovial tissue. Arthritis Res. Ther. 18, 239 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  237. Stewart-Jones, G. B. et al. Crystal structures and KIR3DL1 recognition of three immunodominant viral peptides complexed to HLA-B*2705. Eur. J. Immunol. 35, 341–351 (2005).

    Article  CAS  PubMed  Google Scholar 

  238. Huizinga, T. W. et al. Refining the complex rheumatoid arthritis phenotype based on specificity of the HLA-DRB1 shared epitope for antibodies to citrullinated proteins. Arthritis Rheum. 52, 3433–3438 (2005).

    Article  CAS  PubMed  Google Scholar 

  239. Furuya, T. et al. Differential association of HLA-DRB1 alleles in Japanese patients with early rheumatoid arthritis in relationship to autoantibodies to cyclic citrullinated peptide. Clin. Exp. Rheumatol. 25, 219–224 (2007).

    CAS  PubMed  Google Scholar 

  240. Shimane, K. et al. An association analysis of HLA-DRB1 with systemic lupus erythematosus and rheumatoid arthritis in a Japanese population: effects of *09:01 allele on disease phenotypes. Rheumatology (Oxford) 52, 1172–1182 (2013).

    Article  CAS  Google Scholar 

  241. Scally, S. W. et al. Molecular basis for increased susceptibility of Indigenous North Americans to seropositive rheumatoid arthritis. Ann. Rheum. Dis. 76, 1915–1923 (2017).

    Article  CAS  PubMed  Google Scholar 

  242. Oka, S. et al. Protective effect of the HLA-DRB1*13:02 allele in Japanese rheumatoid arthritis patients. PLOS ONE 9, e99453 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  243. El Mouraghi, I. et al. Polymorphisms of HLA-A, -B, -Cw and DRB1 antigens in Moroccan patients with ankylosing spondylitis and a comparison of clinical features with frequencies of HLA-B*27. Tissue Antigens 85, 108–116 (2015).

    Article  CAS  PubMed  Google Scholar 

  244. Reveille, J. D. et al. HLA class I and II alleles in susceptibility to ankylosing spondylitis. Ann. Rheum. Dis. 78, 66–73 (2019).

    Article  PubMed  CAS  Google Scholar 

  245. Liu, Y. et al. Predominant association of HLA-B*2704 with ankylosing spondylitis in Chinese Han patients. Tissue Antigens 75, 61–64 (2010).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

E.D.M. was funded by the US National Institutes of Health (NIH) and the Daylight Foundation. R.B. is a past recipient of a Senior Research Fellowship and a Research Progression Award (18543 and 20648, respectively) from Versus Arthritis.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding authors

Correspondence to Robert Busch or Elizabeth D. Mellins.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Epitope prediction software: www.cbs.dtu.dk/services/NetMHCII-2.3

Epitope prediction software for MHC (including HLA) class I: www.cbs.dtu.dk/services/NetMHCcons/

Epitope prediction software for MHC (including HLA) class II: www.cbs.dtu.dk/services/NetMHCIIpan-3.2

Genome-wide SNP database (humans and other species): https://www.ncbi.nlm.nih.gov/projects/SNP/

George D. Snell’s Nobel Lecture: www.nobelprize.org/prizes/medicine/1980/snell/lecture/

HLA-check tool: https://omictools.com/hla-check-tool

HLA system nomenclature: http://hla.alleles.org/nomenclature/naming.html

Immune Epitope Database and Analysis Resource: www.iedb.org

The IPD-IMGT/HLA database: www.ebi.ac.uk/ipd/imgt/hla/

Supplementary information

Glossary

Epistasis

The ability of one gene to influence the effect of another gene on a phenotype (such as the risk of developing a rheumatological condition); also known as gene–gene interactions.

Polymorphisms

Variability, within a population, of a gene or a group of genes. In the HLA region, several types of polymorphism can be distinguished, including polygeny (the existence of multiple gene loci coding for polypeptides with similar functions), the presence of alternative HLA-DRB genes in some HLA-DRB1 haplotypes, and allelic variation.

Haplotypes

A constellation of allelic variants at closely linked loci, which are preferentially or exclusively inherited together owing to linkage disequilibrium.

Linkage disequilibrium

A lack of recombination within a stretch of DNA (relative to recombination frequencies expected on the basis of the length of DNA involved) such that allelic variants contained within that stretch are systematically co-inherited as a haplotype.

Neoantigen

An antigenic peptide that arises from the post-translational modification of a self-protein, thus making it appear foreign or new; the generation of such peptides is a proposed mechanism for breaking self-tolerance.

Polygenic risk scores

Composite scores based on weighted contributions of a large number of allelic variants across the genome to provide greater stratification of risk, especially at the tail ends of the risk distribution.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Busch, R., Kollnberger, S. & Mellins, E.D. HLA associations in inflammatory arthritis: emerging mechanisms and clinical implications. Nat Rev Rheumatol 15, 364–381 (2019). https://doi.org/10.1038/s41584-019-0219-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41584-019-0219-5

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing