Review Article | Published:

Mitochondrial DNA variation and the pathogenesis of osteoarthritis phenotypes

Abstract

Mitochondria and mitochondrial DNA (mtDNA) variation are now recognized as important factors in the development of osteoarthritis (OA). Mitochondria are the energy powerhouses of the cell, and also regulate different processes involved in the pathogenesis of OA including inflammation, apoptosis, calcium metabolism and the generation of reactive oxygen species (ROS) and reactive nitrogen species (RNS). Mitochondria contain their own genetic material, mtDNA, which evolved through the sequential accumulation of mtDNA variants to enable humans to adapt to different climates. The ROS and reactive metabolic intermediates that are by-products of mitochondrial metabolism are regulated in part by mtDNA and are among the signals that transmit information between mitochondria and the nucleus. These signals can alter nuclear gene expression and, when disrupted, affect a number of cellular processes and metabolic pathways, leading to disease. mtDNA variation influences OA-associated phenotypes, including those related to metabolism, inflammation and even ageing, as well as nuclear epigenetic regulation. This influence also enables the use of specific mtDNA haplogroups as complementary diagnostic and prognostic biomarkers of OA.

Key points

  • Both mitochondrial dysfunction and variation in mitochondrial DNA (mtDNA) contribute to cartilage degeneration and are implicated in the pathogenesis of osteoarthritis (OA).

  • mtDNA influences the interactions between the nucleus and mitochondria through intracellular signalling pathways, such as production of reactive oxygen species (ROS) and reactive metabolic intermediates from mitochondrial metabolism.

  • Mitochondria have regulatory roles in OA pathogenesis including bioenergetics metabolism, inflammatory responses, apoptosis, ageing-related responses, ROS production and calcium metabolism.

  • mtDNA variation, through individual groups of mtDNA characterized by particular mtDNA polymorphisms (mtDNA haplogroups) modulates critical cell functions including ATP production, oxygen consumption, generation of ROS and mitochondrial and nuclear gene expression.

  • mtDNA haplogroups are associated with the prevalence, incidence and progression of knee OA in various populations, and with comorbidities closely related to various OA phenotypes.

  • mtDNA variation affects the development of OA phenotypes and contributes to the low-grade chronic inflammation and other molecular processes underlying these phenotypes.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    Blanco, F. J., Rego, I. & Ruiz-Romero, C. The role of mitochondria in osteoarthritis. Nat. Rev. Rheumatol. 7, 161–169 (2011).

  2. 2.

    Kraus, V. B., Blanco, F. J., Englund, M., Karsdal, M. A. & Lohmander, L. S. Call for standardized definitions of osteoarthritis and risk stratification for clinical trials and clinical use. Osteoarthritis Cartilage 23, 1233–1241 (2015).

  3. 3.

    Sellam, J. & Berenbaum, F. Is osteoarthritis a metabolic disease? Joint Bone Spine 80, 568–573 (2013).

  4. 4.

    Blanco, F. J. & Rego-Pérez, I. Editorial: is it time for epigenetics in osteoarthritis? Arthritis Rheumatol. 66, 2324–2327 (2014).

  5. 5.

    Berenbaum, F. Osteoarthritis as an inflammatory disease (osteoarthritis is not osteoarthrosis!). Osteoarthritis Cartilage 21, 16–21 (2013).

  6. 6.

    Mobasheri, A. & Batt, M. An update on the pathophysiology of osteoarthritis. Ann. Phys. Rehabil. Med. 59, 333–339 (2016).

  7. 7.

    Minafra, L. et al. Genetic, clinical and radiographic signs in knee osteoarthritis susceptibility. Arthritis Res. Ther. 16, R91 (2014).

  8. 8.

    Wang, Y., Zhao, X., Lotz, M., Terkeltaub, R. & Liu-Bryan, R. Mitochondrial biogenesis is impaired in osteoarthritis chondrocytes but reversible via peroxisome proliferator-activated receptor γ coactivator 1α. Arthritis Rheumatol. 67, 2141–2153 (2015).

  9. 9.

    Henze, K. & Martin, W. Evolutionary biology: essence of mitochondria. Nature 426, 127–128 (2003).

  10. 10.

    Picard, M., Wallace, D. C. & Burelle, Y. The rise of mitochondria in medicine. Mitochondrion 30, 105–116 (2016).

  11. 11.

    Shadel, G. S. & Horvath, T. L. Mitochondrial ROS signaling in organismal homeostasis. Cell 163, 560–569 (2015).

  12. 12.

    Wallace, D. C. & Fan, W. Energetics, epigenetics, mitochondrial genetics. Mitochondrion 10, 12–31 (2010).

  13. 13.

    Wallace, D. C. Maternal genes: mitochondrial diseases. Birth Defects Orig. Artic. Ser. 23, 137–190 (1987).

  14. 14.

    Torroni, A. et al. Classification of European mtDNAs from an analysis of three European populations. Genetics 144, 1835–1850 (1996).

  15. 15.

    Ruiz-Pesini, E., Mishmar, D., Brandon, M., Procaccio, V. & Wallace, D. C. Effects of purifying and adaptive selection on regional variation in human mtDNA. Science 303, 223–226 (2004).

  16. 16.

    Kwak, S. H. & Park, K. S. Role of mitochondrial DNA variation in the pathogenesis of diabetes mellitus. Front. Biosci. 21, 1151–1167 (2016).

  17. 17.

    Hudson, G. et al. Two-stage association study and meta-analysis of mitochondrial DNA variants in Parkinson disease. Neurology 80, 2042–2048 (2013).

  18. 18.

    De Benedictis, G. et al. Mitochondrial DNA inherited variants are associated with successful aging and longevity in humans. FASEB J. 13, 1532–1536 (1999).

  19. 19.

    Niemi, A. K. et al. Mitochondrial DNA polymorphisms associated with longevity in a Finnish population. Hum. Genet. 112, 29–33 (2003).

  20. 20.

    Courtenay, M. D. et al. Mitochondrial haplogroup X is associated with successful aging in the Amish. Hum. Genet. 131, 201–208 (2012).

  21. 21.

    Wallace, D. C. Mitochondrial DNA variation in human radiation and disease. Cell 163, 33–38 (2015).

  22. 22.

    Fang, H. et al. Role of mtDNA haplogroups in the prevalence of knee osteoarthritis in a southern Chinese population. Int. J. Mol. Sci. 15, 2646–2659 (2014).

  23. 23.

    Shen, J. M., Feng, L. & Feng, C. Role of mtDNA haplogroups in the prevalence of osteoarthritis in different geographic populations: a meta-analysis. PLoS ONE 9, e108896 (2014).

  24. 24.

    Soto-Hermida, A. et al. mtDNA haplogroups and osteoarthritis in different geographic populations. Mitochondrion 15, 18–23 (2014).

  25. 25.

    Fernández-Moreno, M. et al. A replication study and meta-analysis of mitochondrial DNA variants in the radiographic progression of knee osteoarthritis. Rheumatology 56, 263–270 (2017).

  26. 26.

    Fernández-Moreno, M. et al. Mitochondrial DNA haplogroups influence the risk of incident knee osteoarthritis in OAI and CHECK cohorts. A meta-analysis and functional study. Ann. Rheum. Dis. 76, 1114–1122 (2017).

  27. 27.

    Picard, M. et al. Mitochondrial functions modulate neuroendocrine, metabolic, inflammatory, and transcriptional responses to acute psychological stress. Proc. Natl Acad. Sci. USA 112, E6614–E6623 (2015).

  28. 28.

    Wallace, D. C. Genetics: Mitochondrial DNA in evolution and disease. Nature 535, 498–500 (2016).

  29. 29.

    Terkeltaub, R., Johnson, K., Murphy, A. & Ghosh, S. Invited review: the mitochondrion in osteoarthritis. Mitochondrion 1, 301–319 (2002).

  30. 30.

    Lee, R. B. & Urban, J. P. Evidence for a negative Pasteur effect in articular cartilage. Biochem. J. 321, 95–102 (1997).

  31. 31.

    Maneiro, E. et al. Mitochondrial respiratory activity is altered in osteoarthritic human articular chondrocytes. Arthritis Rheum. 48, 700–708 (2003).

  32. 32.

    Kim, H. A. & Blanco, F. J. Cell death and apoptosis in osteoarthritic cartilage. Curr. Drug Targets 8, 333–345 (2007).

  33. 33.

    Hwang, H. S. & Kim, H. A. Chondrocyte apoptosis in the pathogenesis of osteoarthritis. Int. J. Mol. Sci. 16, 26035–26054 (2015).

  34. 34.

    Vaamonde-García, C. et al. Mitochondrial dysfunction increases inflammatory responsiveness to cytokines in normal human chondrocytes. Arthritis Rheum. 64, 2927–2936 (2012).

  35. 35.

    Cillero-Pastor, B. et al. Mitochondrial dysfunction activates cyclooxygenase 2 expression in cultured normal human chondrocytes. Arthritis Rheum. 58, 2409–2419 (2008).

  36. 36.

    Cillero-Pastor, B., Rego-Perez, I., Oreiro, N., Fernandez-Lopez, C. & Blanco, F. J. Mitochondrial respiratory chain dysfunction modulates metalloproteases -1,-3 and -13 in human normal chondrocytes in culture. BMC Musculoskelet. Disord. 14, 235 (2013).

  37. 37.

    Collins, J. A. et al. Oxidative stress promotes peroxiredoxin hyperoxidation and attenuates pro-survival signaling in aging chondrocytes. J. Biol. Chem. 291, 6641–6654 (2016).

  38. 38.

    Blanco, F. J., Lopez-Armada, M. J. & Maneiro, E. Mitochondrial dysfunction in osteoarthritis. Mitochondrion 4, 715–728 (2004).

  39. 39.

    Henrotin, Y. & Kurz, B. Antioxidant to treat osteoarthritis: dream or reality? Curr. Drug Targets 8, 347–357 (2007).

  40. 40.

    Grishko, V. I., Ho, R., Wilson, G. L. & Pearsall, A. W. Diminished mitochondrial DNA integrity and repair capacity in OA chondrocytes. Osteoarthritis Cartilage 17, 107–113 (2009).

  41. 41.

    Farnaghi, S. et al. Protective effects of mitochondria-targeted antioxidants and statins on cholesterol-induced osteoarthritis. FASEB J. 31, 356–367 (2017).

  42. 42.

    Lotz, M. & Loeser, R. F. Effects of aging on articular cartilage homeostasis. Bone 51, 241–248 (2012).

  43. 43.

    Gavriilidis, C., Miwa, S., von Zglinicki, T., Taylor, R. W. & Young, D. A. Mitochondrial dysfunction in osteoarthritis is associated with down-regulation of superoxide dismutase 2. Arthritis Rheum. 65, 378–387 (2013).

  44. 44.

    Ruiz-Romero, C. et al. Mitochondrial dysregulation of osteoarthritic human articular chondrocytes analyzed by proteomics: a decrease in mitochondrial superoxide dismutase points to a redox imbalance. Mol. Cell. Proteom. 8, 172–189 (2009).

  45. 45.

    Scott, J. L. et al. Superoxide dismutase downregulation in osteoarthritis progression and end-stage disease. Ann. Rheum. Dis. 69, 1502–1510 (2010).

  46. 46.

    Choi, A. M., Ryter, S. W. & Levine, B. Autophagy in human health and disease. N. Engl. J. Med. 368, 1845–1846 (2013).

  47. 47.

    López de Figueroa, P., Lotz, M. K., Blanco, F. J. & Caramés, B. Autophagy activation and protection from mitochondrial dysfunction in human chondrocytes. Arthritis Rheumatol. 67, 966–976 (2015).

  48. 48.

    Alvarez-Garcia, O. et al. Regulated in development and DNA damage response 1 deficiency impairs autophagy and mitochondrial biogenesis in articular cartilage and increases the severity of experimental osteoarthritis. Arthritis Rheumatol. 69, 1418–1428 (2017).

  49. 49.

    Mishmar, D. et al. Natural selection shaped regional mtDNA variation in humans. Proc. Natl Acad. Sci. USA 100, 171–176 (2003).

  50. 50.

    Wallace, D. C. A mitochondrial paradigm of metabolic and degenerative diseases, aging, and cancer: a dawn for evolutionary medicine. Annu. Rev. Genet. 39, 359–407 (2005).

  51. 51.

    Martínez-Redondo, D. et al. Human mitochondrial haplogroup H: the highest VO2max consumer — is it a paradox? Mitochondrion 10, 102–107 (2010).

  52. 52.

    Pierron, D. et al. Mutation rate switch inside Eurasian mitochondrial haplogroups: impact of selection and consequences for dating settlement in Europe. PLoS ONE 6, e21543 (2011).

  53. 53.

    Wallace, D. C., Brown, M. D. & Lott, M. T. Mitochondrial DNA variation in human evolution and disease. Gene 238, 211–230 (1999).

  54. 54.

    Chen, A., Raule, N., Chomyn, A. & Attardi, G. Decreased reactive oxygen species production in cells with mitochondrial haplogroups associated with longevity. PLoS ONE 7, e46473 (2012).

  55. 55.

    Kenney, M. C. et al. Mitochondrial DNA variants mediate energy production and expression levels for CFH, C3 and EFEMP1 genes: implications for age-related macular degeneration. PLoS ONE 8, e54339 (2013).

  56. 56.

    Kenney, M. C. et al. Inherited mitochondrial DNA variants can affect complement, inflammation and apoptosis pathways: insights into mitochondrial-nuclear interactions. Hum. Mol. Genet. 23, 3537–3551 (2014).

  57. 57.

    Chang, M. C. et al. Accumulation of mitochondrial DNA with 4977-bp deletion in knee cartilage — an association with idiopathic osteoarthritis. Osteoarthritis Cartilage 13, 1004–1011 (2005).

  58. 58.

    Chomyn, A. Platelet-mediated transformation of human mitochondrial DNA-less cells. Methods Enzymol. 264, 334–339 (1996).

  59. 59.

    van Gisbergen, M. W. et al. How do changes in the mtDNA and mitochondrial dysfunction influence cancer and cancer therapy? Challenges, opportunities and models. Mutat. Res. Rev. Mutat. Res. 764, 16–30 (2015).

  60. 60.

    Weng, S. W. et al. Study of insulin resistance in cybrid cells harboring diabetes-susceptible and diabetes-protective mitochondrial haplogroups. Mitochondrion 13, 888–897 (2013).

  61. 61.

    Fang, H. et al. Mitochondrial DNA haplogroups modify the risk of osteoarthritis by altering mitochondrial function and intracellular mitochondrial signals. Biochim Biophys. Acta 1862, 829–836 (2016).

  62. 62.

    Roubertoux, P. L. et al. Mitochondrial DNA modifies cognition in interaction with the nuclear genome and age in mice. Nat. Genet. 35, 65–69 (2003).

  63. 63.

    Yu, X. et al. Dissecting the effects of mtDNA variations on complex traits using mouse conplastic strains. Genome Res. 19, 159–165 (2009).

  64. 64.

    Latorre-Pellicer, A. et al. Mitochondrial and nuclear DNA matching shapes metabolism and healthy ageing. Nature 535, 561–565 (2016).

  65. 65.

    Achilli, A. et al. Mitochondrial DNA backgrounds might modulate diabetes complications rather than T2DM as a whole. PLoS ONE 6, e21029 (2011).

  66. 66.

    Rego-Perez, I., Fernandez-Moreno, M., Fernandez-Lopez, C., Arenas, J. & Blanco, F. J. Mitochondrial DNA haplogroups: role in the prevalence and severity of knee osteoarthritis. Arthritis Rheum. 58, 2387–2396 (2008).

  67. 67.

    Rego, I. et al. Role of European mitochondrial DNA haplogroups in the prevalence of hip osteoarthritis in Galicia, Northern Spain. Ann. Rheum. Dis. 69, 210–213 (2010).

  68. 68.

    Hudson, G. et al. No evidence of an association between mitochondrial DNA variants and osteoarthritis in 7393 cases and 5122 controls. Ann. Rheum. Dis. 72, 136–139 (2013).

  69. 69.

    Hannan, M. T., Felson, D. T. & Pincus, T. Analysis of the discordance between radiographic changes and knee pain in osteoarthritis of the knee. J. Rheumatol. 27, 1513–1517 (2000).

  70. 70.

    Soto-Hermida, A. et al. Mitochondrial DNA haplogroups modulate the radiographic progression of Spanish patients with osteoarthritis. Rheumatol. Int. 35, 337–344 (2015).

  71. 71.

    Soto-Hermida, A. et al. Mitochondrial DNA (mtDNA) haplogroups influence the progression of knee osteoarthritis. Data from the Osteoarthritis Initiative (OAI). PLoS ONE 9, e112735 (2014).

  72. 72.

    Wesseling, J. et al. CHECK (Cohort Hip and Cohort Knee): similarities and differences with the Osteoarthritis Initiative. Ann. Rheum. Dis. 68, 1413–1419 (2009).

  73. 73.

    Fernandez-Moreno, M. et al. Mitochondrial haplogroups define two phenotypes of osteoarthritis. Front. Physiol. 3, 129 (2012).

  74. 74.

    Rego-Perez, I. et al. Mitochondrial DNA haplogroups modulate the serum levels of biomarkers in patients with osteoarthritis. Ann. Rheum. Dis. 69, 910–917 (2010).

  75. 75.

    Rego-Perez, I. et al. Mitochondrial DNA haplogroups and serum levels of proteolytic enzymes in patients with osteoarthritis. Ann. Rheum. Dis. 70, 646–652 (2011).

  76. 76.

    Valdes, A. M. & Goldring, M. B. Mitochondrial DNA haplogroups and ageing mechanisms in osteoarthritis. Ann. Rheum. Dis. 76, 939–941 (2017).

  77. 77.

    Glyn-Jones, S. et al. Osteoarthritis. Lancet 386, 376–387 (2015).

  78. 78.

    Visser, A. W. et al. The relative contribution of mechanical stress and systemic processes in different types of osteoarthritis: the NEO study. Ann. Rheum. Dis. 74, 1842–1847 (2015).

  79. 79.

    Yusuf, E. et al. Association between weight or body mass index and hand osteoarthritis: a systematic review. Ann. Rheum. Dis. 69, 761–765 (2010).

  80. 80.

    Choi, C. H. J. & Cohen, P. Adipose crosstalk with other cell types in health and disease. Exp. Cell Res. 360, 6–11 (2017).

  81. 81.

    Azamar-Llamas, D., Hernández-Molina, G., Ramos-Ávalos, B. & Furuzawa-Carballeda, J. Adipokine contribution to the pathogenesis of osteoarthritis. Mediators Inflamm. 2017, 5468023 (2017).

  82. 82.

    Scotece, M. et al. Adipokines as drug targets in joint and bone disease. Drug Discov. Today 19, 241–258 (2014).

  83. 83.

    Nardelli, C. et al. Haplogroup T is an obesity risk factor: mitochondrial DNA haplotyping in a morbid obese population from southern Italy. Biomed. Res. Int. 2013, 631082 (2013).

  84. 84.

    Ebner, S. et al. Mitochondrial haplogroup T is associated with obesity in Austrian juveniles and adults. PLoS ONE 10, e0135622 (2015).

  85. 85.

    Yang, T. L. et al. Genetic association study of common mitochondrial variants on body fat mass. PLoS ONE 6, e21595 (2011).

  86. 86.

    Knoll, N. et al. Mitochondrial DNA variants in obesity. PLoS ONE 9, e94882 (2014).

  87. 87.

    Alé, A., Zhang, Y., Han, C. & Cai, D. Obesity-associated extracellular mtDNA activates central TGFβ pathway to cause blood pressure increase. Am. J. Physiol. Endocrinol. Metab. 312, E161–E174 (2017).

  88. 88.

    Heinonen, S. et al. Mitochondria-related transcriptional signature is downregulated in adipocytes in obesity: a study of young healthy MZ twins. Diabetologia 60, 169–181 (2017).

  89. 89.

    Cheng, Y. J. et al. Prevalence of diagnosed arthritis and arthritis-attributable activity limitation among adults with and without diagnosed diabetes: United States, 2008–2010. Diabetes Care 35, 1686–1691 (2012).

  90. 90.

    Williams, M. F., London, D. A., Husni, E. M., Navaneethan, S. & Kashyap, S. R. Type 2 diabetes and osteoarthritis: a systematic review and meta-analysis. J. Diabetes Complications 30, 944–950 (2016).

  91. 91.

    Rosa, S. C. et al. Expression and function of the insulin receptor in normal and osteoarthritic human chondrocytes: modulation of anabolic gene expression, glucose transport and GLUT-1 content by insulin. Osteoarthritis Cartilage 19, 719–727 (2011).

  92. 92.

    Gugliucci, A. Formation of fructose-mediated advanced glycation end products and their roles in metabolic and inflammatory diseases. Adv. Nutr. 8, 54–62 (2017).

  93. 93.

    Larkin, D. J. et al. Inflammatory markers associated with osteoarthritis after destabilization surgery in young mice with and without receptor for advanced glycation end-products (RAGE). Front. Physiol. 4, 121 (2013).

  94. 94.

    Abella, V. et al. Adipokines, metabolic syndrome and rheumatic diseases. J. Immunol. Res. 2014, 343746 (2014).

  95. 95.

    Feder, J. et al. Parental diabetes status reveals association of mitochondrial DNA haplogroup J1 with type 2 diabetes. BMC Med. Genet. 10, 60 (2009).

  96. 96.

    Marom, S., Friger, M. & Mishmar, D. MtDNA meta-analysis reveals both phenotype specificity and allele heterogeneity: a model for differential association. Sci. Rep. 7, 43449 (2017).

  97. 97.

    Kuo, H. M. et al. Altered mitochondrial dynamics and response to insulin in cybrid cells harboring a diabetes-susceptible mitochondrial DNA haplogroup. Free Rad. Biol. Med. 96, 116–129 (2016).

  98. 98.

    Chinnery, P. F. et al. Mitochondrial DNA haplogroups and type 2 diabetes: a study of 897 cases and 1010 controls. J. Med. Genet. 44, e80 (2007).

  99. 99.

    Estopinal, C. B. et al. Mitochondrial haplogroups are associated with severity of diabetic retinopathy. Invest. Ophthalmol. Vis. Sci. 55, 5589–5595 (2014).

  100. 100.

    Bregman, J. A. et al. Mitochondrial haplogroups affect severity but not prevalence of diabetic retinopathy. Invest. Ophthalmol. Vis. Sci. 58, 1346–1351 (2017).

  101. 101.

    Sellam, J. & Berenbaum, F. The role of synovitis in pathophysiology and clinical symptoms of osteoarthritis. Nat. Rev. Rheumatol. 6, 625–635 (2010).

  102. 102.

    Goldring, M. B. & Otero, M. Inflammation in osteoarthritis. Curr. Opin. Rheumatol. 23, 471–478 (2011).

  103. 103.

    Goldring, M. B. et al. Roles of inflammatory and anabolic cytokines in cartilage metabolism: signals and multiple effectors converge upon MMP-13 regulation in osteoarthritis. Eur. Cell. Mater. 21, 202–220 (2011).

  104. 104.

    Zhang, Q. et al. Circulating mitochondrial DAMPs cause inflammatory responses to injury. Nature 464, 104–107 (2010).

  105. 105.

    Escames, G. et al. Mitochondrial DNA and inflammatory diseases. Hum. Genet. 131, 161–173 (2012).

  106. 106.

    Tang, S. et al. Increased IL-33 in synovial fluid and paired serum is associated with disease activity and autoantibodies in rheumatoid arthritis. Clin. Dev. Immunol. 2013, 985301 (2013).

  107. 107.

    Loeser, R. F. et al. Microarray analysis reveals age-related differences in gene expression during the development of osteoarthritis in mice. Arthritis Rheum. 64, 705–717 (2012).

  108. 108.

    Atilano, S. R. et al. Mitochondrial DNA variants can mediate methylation status of inflammation, angiogenesis and signaling genes. Hum. Mol. Genet. 24, 4491–4503 (2015).

  109. 109.

    Bougault, C. et al. Stress-induced cartilage degradation does not depend on the NLRP3 inflammasome in human osteoarthritis and mouse models. Arthritis Rheum. 64, 3972–3981 (2012).

  110. 110.

    Nakahira, K. et al. Autophagy proteins regulate innate immune responses by inhibiting the release of mitochondrial DNA mediated by the NALP3 inflammasome. Nat. Immunol. 12, 222–230 (2011).

  111. 111.

    Zhou, R., Yazdi, A. S., Menu, P. & Tschopp, J. A role for mitochondria in NLRP3 inflammasome activation. Nature 469, 221–225 (2011).

  112. 112.

    Lepetsos, P. & Papavassiliou, A. G. ROS/oxidative stress signaling in osteoarthritis. Biochim Biophys. Acta 1862, 576–591 (2016).

  113. 113.

    Jones, D. P. Radical-free biology of oxidative stress. Am. J. Physiol. Cell Physiol. 295, C849–C868 (2008).

  114. 114.

    Henrotin, Y. E., Bruckner, P. & Pujol, J. P. The role of reactive oxygen species in homeostasis and degradation of cartilage. Osteoarthritis Cartilage 11, 747–755 (2003).

  115. 115.

    Henrotin, Y., Kurz, B. & Aigner, T. Oxygen and reactive oxygen species in cartilage degradation: friends or foes? Osteoarthritis Cartilage 13, 643–654 (2005).

  116. 116.

    Marcuello, A. et al. Human mitochondrial variants influence on oxygen consumption. Mitochondrion 9, 27–30 (2009).

  117. 117.

    Zhang, J. et al. Strikingly higher frequency in centenarians and twins of mtDNA mutation causing remodeling of replication origin in leukocytes. Proc. Natl Acad. Sci. USA 100, 1116–1121 (2003).

  118. 118.

    Vidal-Bralo, L. et al. Specific premature epigenetic aging of cartilage in osteoarthritis. Aging 8, 2222–2231 (2016).

  119. 119.

    Goldring, M. B. Chondrogenesis, chondrocyte differentiation, and articular cartilage metabolism in health and osteoarthritis. Ther. Adv. Musculoskelet. Dis. 4, 269–285 (2012).

  120. 120.

    Valdes, A. M., Glass, D. & Spector, T. D. Omics technologies and the study of human ageing. Nat. Rev. Genet. 14, 601–607 (2013).

  121. 121.

    Sun, N., Youle, R. J. & Finkel, T. The mitochondrial basis of aging. Mol. Cell 61, 654–666 (2016).

  122. 122.

    Greene, M. A. & Loeser, R. F. Aging-related inflammation in osteoarthritis. Osteoarthritis Cartilage 23, 1966–1971 (2015).

  123. 123.

    Loeser, R. F., Collins, J. A. & Diekman, B. O. Ageing and the pathogenesis of osteoarthritis. Nat. Rev. Rheumatol. 12, 412–420 (2016).

  124. 124.

    Cesari, M. et al. Sarcopenia, obesity, and inflammation — results from the Trial of Angiotensin Converting Enzyme Inhibition and Novel Cardiovascular Risk Factors study. Am. J. Clin. Nutr. 82, 428–434 (2005).

  125. 125.

    Fu, Y. et al. Aging promotes sirtuin 3-dependent cartilage superoxide dismutase 2 acetylation and osteoarthritis. Arthritis Rheumatol. 68, 1887–1898 (2016).

  126. 126.

    Hirschey, M. D., Shimazu, T., Huang, J. Y. & Verdin, E. Acetylation of mitochondrial proteins. Methods Enzymol. 457, 137–147 (2009).

  127. 127.

    D’Aquila, P., Rose, G., Panno, M. L., Passarino, G. & Bellizzi, D. SIRT3 gene expression: a link between inherited mitochondrial DNA variants and oxidative stress. Gene 497, 323–329 (2012).

  128. 128.

    Payne, B. A. & Chinnery, P. F. Mitochondrial dysfunction in aging: much progress but many unresolved questions. Biochim. Biophys. Acta 1847, 1347–1353 (2015).

  129. 129.

    Kim, J. et al. Mitochondrial DNA damage is involved in apoptosis caused by pro-inflammatory cytokines in human OA chondrocytes. Osteoarthritis Cartilage 18, 424–432 (2010).

  130. 130.

    Reed, K. N., Wilson, G., Pearsall, A. & Grishko, V. I. The role of mitochondrial reactive oxygen species in cartilage matrix destruction. Mol. Cell. Biochem. 397, 195–201 (2014).

  131. 131.

    Ferrington, D. A. et al. Increased retinal mtDNA damage in the CFH variant associated with age-related macular degeneration. Exp. Eye Res. 145, 269–277 (2016).

  132. 132.

    Krzywanski, D. M. et al. Endothelial cell bioenergetics and mitochondrial DNA damage differ in humans having African or West Eurasian maternal ancestry. Circ. Cardiovasc. Genet. 9, 26–36 (2016).

  133. 133.

    Ross, O. A. et al. Mitochondrial DNA polymorphism: its role in longevity of the Irish population. Exp. Gerontol. 36, 1161–1178 (2001).

  134. 134.

    Raule, N. et al. The co-occurrence of mtDNA mutations on different oxidative phosphorylation subunits, not detected by haplogroup analysis, affects human longevity and is population specific. Aging Cell 13, 401–407 (2014).

  135. 135.

    Domínguez-Garrido, E. et al. Association of mitochondrial haplogroup J and mtDNA oxidative damage in two different North Spain elderly populations. Biogerontology 10, 435–442 (2009).

  136. 136.

    Rea, I. M. et al. Mitochondrial J haplogroup is associated with lower blood pressure and anti-oxidant status: findings in octo/nonagenarians from the BELFAST Study. Age 35, 1445–1456 (2013).

  137. 137.

    Fernandez-Moreno, M. et al. mtDNA haplogroup J modulates telomere length and nitric oxide production. BMC Musculoskelet. Disord. 12, 283 (2011).

  138. 138.

    Maruszak, A., Canter, J. A., Styczynska, M., Zekanowski, C. & Barcikowska, M. Mitochondrial haplogroup H and Alzheimer’s disease — is there a connection? Neurobiol. Aging 30, 1749–1755 (2009).

  139. 139.

    Gaweda-Walerych, K. & Zekanowski, C. The impact of mitochondrial DNA and nuclear genes related to mitochondrial functioning on the risk of Parkinson’s disease. Curr. Genom. 14, 543–559 (2013).

  140. 140.

    Blein, S. et al. An original phylogenetic approach identified mitochondrial haplogroup T1a1 as inversely associated with breast cancer risk in BRCA2 mutation carriers. Breast Cancer Res. 17, 61 (2015).

  141. 141.

    Tranah, G. J. Mitochondrial-nuclear epistasis: implications for human aging and longevity. Ageing Res. Rev. 10, 238–252 (2011).

  142. 142.

    Warner, S. C. & Valdes, A. M. Genetic association studies in osteoarthritis: is it fairytale? Curr. Opin. Rheumatol. 29, 103–109 (2017).

  143. 143.

    Roach, H. I. et al. Association between the abnormal expression of matrix-degrading enzymes by human osteoarthritic chondrocytes and demethylation of specific CpG sites in the promoter regions. Arthritis Rheum. 52, 3110–3124 (2005).

  144. 144.

    Reynard, L. N. & Loughlin, J. Genetics and epigenetics of osteoarthritis. Maturitas 71, 200–204 (2012).

  145. 145.

    Hashimoto, K. et al. Regulated transcription of human matrix metalloproteinase 13 (MMP13) and interleukin-1β (IL1B) genes in chondrocytes depends on methylation of specific proximal promoter CpG sites. J. Biol. Chem. 288, 10061–10072 (2013).

  146. 146.

    Fernández-Tajes, J. et al. Genome-wide DNA methylation analysis of articular chondrocytes reveals a cluster of osteoarthritic patients. Ann. Rheum. Dis. 73, 668–677 (2014).

  147. 147.

    Rushton, M. et al. Characterization of the cartilage DNA methylome in knee and hip osteoarthritis. Arthritis Rheumatol. 66, 2450–2460 (2014).

  148. 148.

    Horan, M. P. & Cooper, D. N. The emergence of the mitochondrial genome as a partial regulator of nuclear function is providing new insights into the genetic mechanisms underlying age-related complex disease. Hum. Genet. 133, 435–458 (2014).

  149. 149.

    Bellizzi, D., D’Aquila, P., Giordano, M., Montesanto, A. & Passarino, G. Global DNA methylation levels are modulated by mitochondrial DNA variants. Epigenomics 4, 17–27 (2012).

  150. 150.

    Schroeder, E. A., Raimundo, N. & Shadel, G. S. Epigenetic silencing mediates mitochondria stress-induced longevity. Cell Metab. 17, 954–964 (2013).

Download references

Acknowledgements

The authors’ work is supported by Fondo de Investigación Sanitaria (grants CIBERCB06/01/0040-Spain, RETIC-RIER-RD16/0012/0002, PRB2-ISCIII-PT13/0001, PI12/0329 and PI16/02124 to F.J.B. and grant PI14/01254 to I.R.P.) integrated in the National Plan for Scientific Program, Development and Technological Innovation 2013–2016 and funded by the ISCIII-General Subdirection of Assessment and Promotion of Research-European Regional Development Fund (FEDER) “A way of making Europe”. I.R.P. is supported by Contrato Miguel Servet-Fondo de Investigación Sanitaria (CP12/03192). F.J.B. is supported in part by Programa Intensificacion ISCIII (INT16/00222).

Author information

All authors researched data for the article, made substantial contributions to discussions of the content, wrote the article and contributed to reviewing and editing of the manuscript before submission.

Correspondence to Francisco J. Blanco or Ignacio Rego-Pérez.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Further reading

Fig. 1: The connection between mitochondrial genetics and the pathogenesis of OA.
Fig. 2: Models to study the effects of mtDNA variation.
Fig. 3: Mitochondrial function influences OA phenotypes.