Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The neurobiology of SARS-CoV-2 infection

Abstract

Worldwide, over 694 million people have been infected with SARS-CoV-2, with an estimated 55–60% of those infected developing COVID-19. Since the beginning of the pandemic in December 2019, different variants of concern have appeared and continue to occur. With the emergence of different variants, an increasing rate of vaccination and previous infections, the acute neurological symptomatology of COVID-19 changed. Moreover, 10–45% of individuals with a history of SARS-CoV-2 infection experience symptoms even 3 months after disease onset, a condition that has been defined as ‘post-COVID-19’ by the World Health Organization and that occurs independently of the virus variant. The pathomechanisms of COVID-19-related neurological complaints have become clearer during the past 3 years. To date, there is no overt — that is, truly convincing — evidence for SARS-CoV-2 particles in the brain. In this Review, we put special emphasis on discussing the  methodological difficulties of viral detection in CNS tissue and discuss immune-based (systemic and central) effects contributing to COVID-19-related CNS affection. We sequentially review the reported changes to CNS cells in COVID-19, starting with the blood–brain barrier and blood–cerebrospinal fluid barrier — as systemic factors from the periphery appear to primarily influence barriers and conduits — before we describe changes in brain parenchymal cells, including microglia, astrocytes, neurons and oligodendrocytes as well as cerebral lymphocytes. These findings are critical to understanding CNS affection in acute COVID-19 and post-COVID-19 in order to translate these findings into treatment options, which are still very limited.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Hypothesized mechanisms contributing to COVID-19 neuropathology.
Fig. 2: Effects of systemic SARS-CoV-2 infection on CNS barriers.
Fig. 3: Effects of systemic SARS-CoV-2 infection on CNS cells.

Similar content being viewed by others

References

  1. COVID-19 coronavirus pandemic. Worldometer (accessed 1 September 2023); https://www.worldometers.info/coronavirus/

  2. Oran, D. P. & Topol, E. J. Prevalence of asymptomatic SARS-CoV-2 infection: a narrative review. Ann. Intern. Med. 173, 362–367 (2020).

    Article  PubMed  Google Scholar 

  3. Niazkar, H. R., Zibaee, B., Nasimi, A. & Bahri, N. The neurological manifestations of COVID-19: a review article. Neurol. Sci. 41, 1667–1671 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Jiang, F. et al. Review of the clinical characteristics of coronavirus disease 2019 (COVID-19). J. Gen. Intern. Med. 35, 1545–1549 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Guerrero, J. I. et al. Central and peripheral nervous system involvement by COVID-19: a systematic review of the pathophysiology, clinical manifestations, neuropathology, neuroimaging, electrophysiology, and cerebrospinal fluid findings. BMC Infect. Dis. 21, 515 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Twohig, K. A. et al. Hospital admission and emergency care attendance risk for SARS-CoV-2 delta (B.1.617.2) compared with alpha (B.1.1.7) variants of concern: a cohort study. Lancet Infect. Dis. 22, 35–42 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Taquet, M. et al. Neurological and psychiatric risk trajectories after SARS-CoV-2 infection: an analysis of 2-year retrospective cohort studies including 1 284 437 patients. Lancet Psychiatry 9, 815–827 (2022). This paper provides a comparison of neurological and psychiatric outcomes the Delta and Omicron variants, thus helping to understand the risks for neurological and psychiatric disorders upon SARS-CoV-2 infection at an individual and population level.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Nyberg, T. et al. Comparative analysis of the risks of hospitalisation and death associated with SARS-CoV-2 omicron (B.1.1.529) and delta (B.1.617.2) variants in England: a cohort study. Lancet 399, 1303–1312 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Menni, C. et al. Symptom prevalence, duration, and risk of hospital admission in individuals infected with SARS-CoV-2 during periods of omicron and delta variant dominance: a prospective observational study from the ZOE COVID Study. Lancet 399, 1618–1624 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Christensen, P. A. et al. Signals of significantly increased vaccine breakthrough, decreased hospitalization rates, and less severe disease in patients with coronavirus disease 2019 caused by the omicron variant of severe acute respiratory syndrome coronavirus 2 in Houston, Texas. Am. J. Pathol. 192, 642–652 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Mayr, F. B. et al. COVID-19 disease severity in US veterans infected during Omicron and Delta variant predominant periods. Nat. Commun. 13, 3647 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. von Bartheld, C. S. & Wang, L. Prevalence of olfactory dysfunction with the omicron variant of SARS-CoV-2: a systematic review and meta-analysis. Cells 12, 430 (2023).

    Article  Google Scholar 

  13. Boscolo-Rizzo, P. et al. Coronavirus disease 2019 (COVID-19)-related smell and taste impairment with widespread diffusion of severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) Omicron variant. Int. Forum Allergy Rhinol. 12, 1273–1281 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Peña Rodríguez, M. et al. Prevalence of symptoms, comorbidities, and reinfections in individuals infected with wild-type SARS-CoV-2, Delta, or Omicron variants: a comparative study in western Mexico. Front. Public Health 11, 1149795 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Soriano, J. B. et al. A clinical case definition of post-COVID-19 condition by a Delphi consensus. Lancet Infect. Dis. 22, e102–e107 (2022).

    Article  CAS  PubMed  Google Scholar 

  16. Canas, L. S. et al. Profiling post-COVID-19 condition across different variants of SARS-CoV-2: a prospective longitudinal study in unvaccinated wild-type, unvaccinated alpha-variant, and vaccinated delta-variant populations. Lancet Digit. Health 5, e421–e434 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Magnusson, K. et al. Post-covid medical complaints following infection with SARS-CoV-2 omicron vs delta variants. Nat. Commun. 13, 7363 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Antonelli, M., Pujol, J. C., Spector, T. D., Ourselin, S. & Steves, C. J. Risk of long COVID associated with delta versus omicron variants of SARS-CoV-2. Lancet 399, 2263–2264 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Brannock, M. D. et al. Long COVID risk and pre-COVID vaccination in an EHR-based cohort study from the RECOVER program. Nat. Commun. 14, 2914 (2023). This paper presents a population-based study comparing the risk of post-COVID-19 in vaccinated and unvaccinated individuals.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Yang, A. C. et al. Dysregulation of brain and choroid plexus cell types in severe COVID-19. Nature 595, 565–571 (2021). This paper presents a molecular analysis of the cerebral cortex and  of human COVID-19 autopsy cases and shows brain barrier inflammation and altered cellular communication via chemokines as well as synaptic alterations, although no viral particles could be detected in the brain tissue.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Wenzel, J. et al. The SARS-CoV-2 main protease Mpro causes microvascular brain pathology by cleaving NEMO in brain endothelial cells. Nat. Neurosci. 24, 1522–1533 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Farhadian, S. et al. Acute encephalopathy with elevated CSF inflammatory markers as the initial presentation of COVID-19. BMC Neurol. 20, 248 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Williams, A. et al. A comprehensive review of COVID-19 biology, diagnostics, therapeutics, and disease impacting the central nervous system. J. Neurovirol. 25, 667–690 (2021).

    Article  Google Scholar 

  24. De Melo, G. D. et al. Neuroinvasion and anosmia are independent phenomena upon infection with SARS-CoV-2 and its variants. Nat. Commun. 14, 4485 (2023). This paper presents a comparison of the neuroinvasive potential as well as the occurrence of anosmia with different VOCs of SARS-CoV-2 in a hamster model.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Yang, J.-H. et al. Delta (B1.617.2) variant of SARS-CoV-2 induces severe neurotropic patterns in K18-hACE2 mice. Sci. Rep. 13, 3303 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Seehusen, F. et al. Neuroinvasion and neurotropism by SARS-CoV-2 variants in the K18-hACE2 mouse. Viruses 14, 1020 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Bauer, L. et al. In vitro and in vivo differences in neurovirulence between D614G, Delta And Omicron BA.1 SARS-CoV-2 variants. Acta Neuropathol. Commun. 10, 124 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Erickson, M. A. et al. Blood-brain barrier penetration of non-replicating SARS-CoV-2 and S1 variants of concern induce neuroinflammation which is accentuated in a mouse model of Alzheimer’s disease. Brain Behav. Immun. 109, 251–268 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Moldofsky, H. & Patcai, J. Chronic widespread musculoskeletal pain, fatigue, depression and disordered sleep in chronic post-SARS syndrome; a case-controlled study. BMC Neurol. 11, 37 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Ahmed, H. et al. Long-term clinical outcomes in survivors of severe acute respiratory syndrome and Middle East respiratory syndrome coronavirus outbreaks after hospitalisation or ICU admission: a systematic review and meta-analysis. J. Rehabil. Med. 52, jrm00063 (2020).

    PubMed  Google Scholar 

  31. Choutka, J., Jansari, V., Hornig, M. & Iwasaki, A. Unexplained post-acute infection syndromes. Nat. Med. 28, 911–923 (2022).

    Article  CAS  PubMed  Google Scholar 

  32. Lee, M.-H. et al. Microvascular injury in the brains of patients with covid-19. N. Engl. J. Med. 384, 481–483 (2020).

    Article  PubMed  Google Scholar 

  33. Maximova, O. A. et al. Virus infection of the CNS disrupts the immune-neural-synaptic axis via induction of pleiotropic gene regulation of host responses. eLife 10, e62273 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Abdullah, A. et al. STING-mediated type-I interferons contribute to the neuroinflammatory process and detrimental effects following traumatic brain injury. J. Neuroinflammation 15, 323 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Wefel, J. S., Kesler, S. R., Noll, K. R. & Schagen, S. B. Clinical characteristics, pathophysiology, and management of noncentral nervous system cancer-related cognitive impairment in adults: cancer-related cognitive impairment. CA Cancer J. Clin. 65, 123–138 (2015).

    Article  PubMed  Google Scholar 

  36. Henn, R. E. et al. Obesity-induced neuroinflammation and cognitive impairment in young adult versus middle-aged mice. Immun. Ageing A 19, 67 (2022).

    Article  CAS  Google Scholar 

  37. Casadevall, A. & Pirofski, L. Host-pathogen interactions: redefining the basic concepts of virulence and pathogenicity. Infect. Immun. 67, 3703–3713 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. McGavern, D. B. & Kang, S. S. Illuminating viral infections in the nervous system. Nat. Rev. Immunol. 11, 318–329 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Detje, C. N. et al. Local type I IFN receptor signaling protects against virus spread within the central nervous system. J. Immunol. 182, 2297–2304 (2009).

    Article  CAS  PubMed  Google Scholar 

  40. de Melo, G. D. et al. COVID-19-related anosmia is associated with viral persistence and inflammation in human olfactory epithelium and brain infection in hamsters. Sci. Transl. Med. 13, eabf8396 (2021).

    Article  PubMed  Google Scholar 

  41. Ludlow, M. et al. Neurotropic virus infections as the cause of immediate and delayed neuropathology. Acta Neuropathol. 131, 159–184 (2016).

    Article  CAS  PubMed  Google Scholar 

  42. Abdullahi, A. M., Sarmast, S. T. & Singh, R. Molecular biology and epidemiology of neurotropic viruses. Cureus 12, e9674 (2020).

    PubMed  PubMed Central  Google Scholar 

  43. Bajinka, O., Simbilyabo, L., Tan, Y., Jabang, J. & Saleem, S. A. Lung-brain axis. Crit. Rev. Microbiol. 48, 257–269 (2021).

    Article  PubMed  Google Scholar 

  44. Cryan, J. F. et al. The microbiota-gut-brain axis. Physiol. Rev. 99, 1877–2013 (2019).

    Article  CAS  PubMed  Google Scholar 

  45. Jubelt, B. & Lipton, H. L. in Handbook of Clinical Neurology vol. 123, 379–416 (Elsevier, 2014).

  46. Jacobs, B. C. et al. The spectrum of antecedent infections in Guillain-Barré syndrome: a case-control study. Neurology 51, 1110–1115 (1998).

    Article  CAS  PubMed  Google Scholar 

  47. Tenembaum, S., Chitnis, T., Ness, J. & Hahn, J. S., for the International Pediatric MS Study Group. Acute disseminated encephalomyelitis. Neurology 68, S23–S36 (2007).

    Article  PubMed  Google Scholar 

  48. Meinhardt, J. et al. Olfactory transmucosal SARS-CoV-2 invasion as a port of central nervous system entry in individuals with COVID-19. Nat. Neurosci. 24, 168–175 (2021).

    Article  CAS  PubMed  Google Scholar 

  49. Matschke, J. et al. Neuropathology of patients with COVID-19 in Germany: a post-mortem case series. Lancet Neurol. 19, 919–929 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Schurink, B. et al. Viral presence and immunopathology in patients with lethal COVID-19: a prospective autopsy cohort study. Lancet Microbe 1, e290–e299 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Deigendesch, N. et al. Correlates of critical illness-related encephalopathy predominate postmortem COVID-19 neuropathology. Acta Neuropathol. 140, 583–586 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Thakur, K. T. et al. COVID-19 neuropathology at Columbia University Irving Medical Center/New York Presbyterian Hospital. Brain J. Neurol. 144, 2696–2708 (2021).

    Article  Google Scholar 

  53. Stein, S. R. et al. SARS-CoV-2 infection and persistence in the human body and brain at autopsy. Nature 612, 758–763 (2022). This study looked at detection of replicative virus in CNS autopsy tissue in the absence of a methodologically sound demonstration of viral protein expression, and the findings revealed the challenges of autopsy research, including the limitations of interpreting data generated in this way.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Song, E. et al. Neuroinvasion of SARS-CoV-2 in human and mouse brain. J. Exp. Med. 218, e20202135 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Puelles, V. G. et al. Multiorgan and renal tropism of SARS-CoV-2. N. Engl. J. Med. 383, 590–592 (2020).

    Article  PubMed  Google Scholar 

  56. von Stillfried, S. & Boor, P. Methods of SARS-CoV-2 detection in tissue [German]. Pathologe 42, 208–215 (2021).

    Google Scholar 

  57. Krasemann, S. et al. Assessing and improving the validity of COVID-19 autopsy studies — a multicenter approach to establish essential standards for immunohistochemical and ultrastructural analyses.EBioMedicine 83, 104193 (2022). This paper presents guidelines for validated viral detection approaches in human autopsy tissue.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Goldsmith, C. S., Miller, S. E., Martines, R. B., Bullock, H. A. & Zaki, S. R. Electron microscopy of SARS-CoV-2: a challenging task. Lancet 395, e99 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Bullock, H. A., Goldsmith, C. S., Zaki, S. R., Martines, R. B. & Miller, S. E. Difficulties in differentiating coronaviruses from subcellular structures in human tissues by electron microscopy. Emerg. Infect. Dis. 27, 1023–1031 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Paniz-Mondolfi, A. et al. Central nervous system involvement by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). J. Med. Virol. 92, 699–702 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Duarte-Neto, A. N. et al. An autopsy study of the spectrum of severe COVID-19 in children: from SARS to different phenotypes of MIS-C. EClinicalMedicine 35, 100850 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Bulfamante, G. et al. First ultrastructural autoptic findings of SARS -Cov-2 in olfactory pathways and brainstem. Minerva Anestesiol. 86, 678–679 (2020).

    Article  PubMed  Google Scholar 

  63. Morbini, P. et al. Ultrastructural evidence of direct viral damage to the olfactory complex in patients testing positive for SARS-CoV-2. JAMA Otolaryngol. Head Neck Surg. 146, 972–973 (2020).

    Article  PubMed  Google Scholar 

  64. Otmani Idrissi, M. et al. Presence of SARS-CoV-2 in a cornea transplant. Pathogens 10, 934 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Lauermann, P. et al. There is no intraocular affection on a SARS-CoV-2 - infected ocular surface. Am. J. Ophthalmol. Case Rep. 20, 100884 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Araujo-Silva, C. A. et al. Presumed SARS-CoV-2 viral particles in the human retina of patients with COVID-19. JAMA Ophthalmol. 139, 1015–1021 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Dittmayer, C. et al. Why misinterpretation of electron micrographs in SARS-CoV-2-infected tissue goes viral. Lancet 396, e64–e65 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Heinrich, F., Mertz, K. D., Glatzel, M., Beer, M. & Krasemann, S. Using autopsies to dissect COVID-19 pathogenesis.Nat. Microbiol. 8, 1986–1994 (2023). This review discusses the limitations and advantages of autopsy-driven research in infectious diseases.

    Article  CAS  PubMed  Google Scholar 

  69. Fullard, J. F. et al. Single-nucleus transcriptome analysis of human brain immune response in patients with severe COVID-19. Genome Med. 13, 118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Mavrikaki, M., Lee, J. D., Solomon, I. H. & Slack, F. J. Severe COVID-19 is associated with molecular signatures of aging in the human brain. Nat. Aging 2, 1130–1137 (2022).

    Article  PubMed  Google Scholar 

  71. Liu, X. et al. Cell-type-specific interleukin 1 receptor 1 signaling in the brain regulates distinct neuroimmune activities. Immunity 50, 317–333.e6 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Krasemann, S. et al. The blood-brain barrier is dysregulated in COVID-19 and serves as a CNS entry route for SARS-CoV-2. Stem Cell Rep. 17, 307–320 (2022).

    Article  CAS  Google Scholar 

  73. Radke, J. et al. The central nervous system’s proteogenomic and spatial imprint upon systemic viral infections with SARS-CoV-2. Preprint at medRxiv https://doi.org/10.1101/2023.01.16.22283804 (2023). This paper presents a proteogenomic comparison of autopsy tissue from patients with severe COVID-19 and patients with other severe diseases, showing a resolution of the interferon signalling after 2 weeks of systemic infection in those with COVID-19.

  74. Cantuti-Castelvetri, L. et al. Neuropilin-1 facilitates SARS-CoV-2 cell entry and infectivity. Science 370, 856–860 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Zhou, Y. et al. Network medicine links SARS-CoV-2/COVID-19 infection to brain microvascular injury and neuroinflammation in dementia-like cognitive impairment. Alzheimers Res. Ther. 13, 110 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Kaneko, N. et al. Flow-mediated susceptibility and molecular response of cerebral endothelia to SARS-CoV-2 infection. Stroke 52, 260–270 (2021).

    Article  CAS  PubMed  Google Scholar 

  77. Varga, Z. et al. Endothelial cell infection and endotheliitis in COVID-19. Lancet 395, 1417–1418 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Buzhdygan, T. P. et al. The SARS-CoV-2 spike protein alters barrier function in 2D static and 3D microfluidic in-vitro models of the human blood–brain barrier. Neurobiol. Dis. 146, 105131 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Sixt, M. et al. Endothelial cell laminin isoforms, laminins 8 and 10, play decisive roles in T cell recruitment across the blood-brain barrier in experimental autoimmune encephalomyelitis. J. Cell Biol. 153, 933–946 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Agrawal, S. et al. Dystroglycan is selectively cleaved at the parenchymal basement membrane at sites of leukocyte extravasation in experimental autoimmune encephalomyelitis. J. Exp. Med. 203, 1007–1019 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Gerwien, H. et al. Imaging matrix metalloproteinase activity in multiple sclerosis as a specific marker of leukocyte penetration of the blood-brain barrier. Sci. Transl. Med. 8, 364ra152 (2016).

    Article  PubMed  Google Scholar 

  82. Raghavan, S., Kenchappa, D. B. & Leo, M. D. SARS-CoV-2 spike protein induces degradation of junctional proteins that maintain endothelial barrier integrity. Front. Cardiovasc. Med. 8, 687783 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Choi, J.-Y., Park, J. H., Jo, C., Kim, K.-C. & Koh, Y. H. SARS-CoV-2 spike S1 subunit protein-mediated increase of beta-secretase 1 (BACE1) impairs human brain vessel cells. Biochem. Biophys. Res. Commun. 626, 66–71 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Rhea, E. M. et al. The S1 protein of SARS-CoV-2 crosses the blood–brain barrier in mice. Nat. Neurosci. 24, 368–378 (2021).

    Article  CAS  PubMed  Google Scholar 

  85. Nuovo, G. J. et al. Endothelial cell damage is the central part of COVID-19 and a mouse model induced by injection of the S1 subunit of the spike protein. Ann. Diagn. Pathol. 51, 151682 (2021).

    Article  PubMed  Google Scholar 

  86. Frank, M. G. et al. SARS-CoV-2 spike S1 subunit induces neuroinflammatory, microglial and behavioral sickness responses: evidence of PAMP-like properties. Brain Behav. Immun. 100, 267–277 (2022).

    Article  CAS  PubMed  Google Scholar 

  87. Schwabenland, M. et al. Deep spatial profiling of human COVID-19 brains reveals neuroinflammation with distinct microanatomical microglia-T-cell interactions. Immunity 54, 1594–1610.e11 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Lee, M. H. et al. Neurovascular injury with complement activation and inflammation in COVID-19. Brain 145, 2555–2568 (2022).

    Article  PubMed  Google Scholar 

  89. Soung, A.L. et al. COVID-19 induces CNS cytokine expression and loss of hippocampal neurogenesis. Brain 145, 4193–4201 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  90. Bonetto, V. et al. Markers of blood-brain barrier disruption increase early and persistently in COVID-19 patients with neurological manifestations. Front. Immunol. 13, 1070379 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Yang, J. et al. Prevalence of comorbidities and its effects in patients infected with SARS-CoV-2: a systematic review and meta-analysis. Int. J. Infect. Dis. 94, 91–95 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Guzik, T. J. et al. COVID-19 and the cardiovascular system: implications for risk assessment, diagnosis, and treatment options. Cardiovasc. Res. 116, 1666–1687 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Gómez-Mesa, J. E., Galindo-Coral, S., Montes, M. C. & Muñoz Martin, A. J. Thrombosis and coagulopathy in COVID-19. Curr. Probl. Cardiol. 46, 100742 (2021).

    Article  PubMed  Google Scholar 

  94. Wichmann, D. et al. Autopsy findings and venous thromboembolism in patients with COVID-19: a prospective cohort study. Ann. Intern. Med. 173, 268–277 (2020).

    Article  PubMed  Google Scholar 

  95. Nie, X. et al. Multi-organ proteomic landscape of COVID-19 autopsies. Cell 184, 775–791.e14 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Belani, P. et al. COVID-19 is an independent risk factor for acute ischemic stroke. AJNR Am. J. Neuroradiol. 41, 1361–1364 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Merkler, A. E. et al. Risk of ischemic stroke in patients with coronavirus disease 2019 (COVID-19) vs patients with influenza. JAMA Neurol. 77, 1–7 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  98. Nannoni, S., de Groot, R., Bell, S. & Markus, H. S. Stroke in COVID-19: a systematic review and meta-analysis. Int. J. Stroke 16, 137–149 (2021).

    Article  PubMed  Google Scholar 

  99. Maiese, A. et al. SARS‐CoV‐2 and the brain: a review of the current knowledge on neuropathology in COVID‐19. Brain Pathol. 31, e13013 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Normandin, E. et al. Neuropathological features of SARS-CoV-2 delta and omicron variants. J. Neuropathol. Exp. Neurol. 82, 283–295 (2023).

    Article  CAS  PubMed  Google Scholar 

  101. Gelpi, E. et al. Multifactorial white matter damage in the acute phase and pre-existing conditions may drive cognitive dysfunction after SARS-CoV-2 infection: neuropathology-based evidence. Viruses 15, 908 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  102. Ramlall, V. et al. Immune complement and coagulation dysfunction in adverse outcomes of SARS-CoV-2 infection. Nat. Med. 26, 1609–1615 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Rahmawati, P. L., Tini, K., Susilawathi, N. M., Wijayanti, I. S. & Samatra, D. P. Pathomechanism and management of stroke in COVID-19: review of immunopathogenesis, coagulopathy, endothelial dysfunction, and downregulation of ACE2. J. Clin. Neurol. 17, 155–163 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  104. Perico, L. et al. Immunity, endothelial injury and complement-induced coagulopathy in COVID-19. Nat. Rev. Nephrol. 17, 46–64 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  105. Bonaventura, A. et al. Endothelial dysfunction and immunothrombosis as key pathogenic mechanisms in COVID-19. Nat. Rev. Immunol. 21, 319–329 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Engelmann, B. & Massberg, S. Thrombosis as an intravascular effector of innate immunity. Nat. Rev. Immunol. 13, 34–45 (2013).

    Article  CAS  PubMed  Google Scholar 

  107. Thålin, C., Hisada, Y., Lundström, S., Mackman, N. & Wallén, H. Neutrophil extracellular traps: villains and targets in arterial, venous, and cancer-associated thrombosis. Arterioscler. Thromb. Vasc. Biol. 39, 1724–1738 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  108. Radermecker, C. et al. Neutrophil extracellular traps infiltrate the lung airway, interstitial, and vascular compartments in severe COVID-19. J. Exp. Med. 217, e20201012 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Skendros, P. et al. Complement and tissue factor-enriched neutrophil extracellular traps are key drivers in COVID-19 immunothrombosis. J. Clin. Invest. 130, 6151–6157 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Veras, F. P. et al. SARS-CoV-2–triggered neutrophil extracellular traps mediate COVID-19 pathology. J. Exp. Med. 217, e20201129 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Middleton, E. A. et al. Neutrophil extracellular traps contribute to immunothrombosis in COVID-19 acute respiratory distress syndrome. Blood 136, 1169–1179 (2020).

    Article  CAS  PubMed  Google Scholar 

  112. Baruch, K. et al. Aging. Aging-induced type I interferon response at the choroid plexus negatively affects brain function. Science 346, 89–93 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Jarius, S. et al. Cerebrospinal fluid findings in COVID-19: a multicenter study of 150 lumbar punctures in 127 patients. J. Neuroinflammation 19, 19 (2022). This paper is a systematic retrospective study analysing CSF samples of patients with PCR-proven SARS-CoV-2 infection and neurological symptoms from different European university centres showing signs of B-CSF barrier dysfunction and no evidence of viral RNA in the CSF.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Reinhold, D. et al. The brain reacting to COVID-19: analysis of the cerebrospinal fluid proteome, RNA and inflammation. J. Neuroinflammation 20, 30 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Keren-Shaul, H. et al. A unique microglia type associated with restricting development of Alzheimer’s disease. Cell 169, 1276–1290.e17 (2017).

    Article  CAS  PubMed  Google Scholar 

  116. Paolicelli, R. C. et al. Microglia states and nomenclature: a field at its crossroads. Neuron 110, 3458–3483 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Chen, Y. & Colonna, M. Microglia in Alzheimer’s disease at single-cell level. Are there common patterns in humans and mice? J. Exp. Med. 218, e20202717 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Fernández-Castañeda, A. et al. Mild respiratory COVID can cause multi-lineage neural cell and myelin dysregulation. Cell 185, 2452–2468.e16 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  119. Francistiová, L. et al. Cellular and molecular effects of SARS-CoV-2 linking lung infection to the brain. Front. Immunol. 12, 730088 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  120. Poloni, T. E. et al. COVID‐19‐related neuropathology and microglial activation in elderly with and without dementia. Brain Pathol. 31, e12997 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Tröscher, A. R. et al. Microglial nodules provide the environment for pathogenic T cells in human encephalitis. Acta Neuropathol. 137, 619–635 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  122. Witkowski, M. et al. Untimely TGFβ responses in COVID-19 limit antiviral functions of NK cells. Nature 600, 295–301 (2021).

    Article  CAS  PubMed  Google Scholar 

  123. Schulte-Schrepping, J. et al. Severe COVID-19 is marked by a dysregulated myeloid cell compartment. Cell 182, 1419–1440.e23 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Woo, M. S. et al. Vagus nerve inflammation contributes to dysautonomia in COVID-19. Acta Neuropathol. 146, 387–394 (2023). This paper presents a molecular analysis of vagal nerve and brainstem autopsy samples of patients with COVID-19, suggesting retrograde induction of inflammatory changes in the CNS through cranial nerves.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Carmona-Torre, F. et al. Dysautonomia in COVID-19 patients: a narrative review on clinical course, diagnostic and therapeutic strategies. Front. Neurol. 13, 886609 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  126. Lee, H.-G., Wheeler, M. A. & Quintana, F. J. Function and therapeutic value of astrocytes in neurological diseases. Nat. Rev. Drug Discov. 21, 339–358 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Yalçın, B. & Monje, M. Microenvironmental interactions of oligodendroglial cells. Dev. Cell 56, 1821–1832 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  128. Israelow, B. et al. Mouse model of SARS-CoV-2 reveals inflammatory role of type I interferon signaling. J. Exp. Med. 217, e20201241 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  129. Starost, L. et al. Extrinsic immune cell-derived, but not intrinsic oligodendroglial factors contribute to oligodendroglial differentiation block in multiple sclerosis. Acta Neuropathol. 140, 715–736 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Bremer, J., Friemann, J., von Stillfried, S., Boor, P. & Weis, J. Reduced T-cell densities in cranial nerves of patients who died with SARS-CoV-2 infection. Acta Neuropathol. Commun. 11, 10 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  131. Petersen, C. C. H. & Crochet, S. Synaptic computation and sensory processing in neocortical layer 2/3. Neuron 78, 28–48 (2013).

    Article  CAS  PubMed  Google Scholar 

  132. Caravaca, A. S. et al. Vagus nerve stimulation promotes resolution of inflammation by a mechanism that involves Alox15 and requires the α7nAChR subunit. Proc. Natl Acad. Sci. USA 119, e2023285119 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Marino Gammazza, A. et al. Molecular mimicry in the post-COVID-19 signs and symptoms of neurovegetative disorders? Lancet Microbe 2, e94 (2021).

    Article  PubMed  Google Scholar 

  134. Wong, A. C. et al. Serotonin reduction in post-acute sequelae of viral infection. Cell 186, 4851–4867.e20 (2023). This study shows that post-acute sequelae of COVID-19 are associated with reduced peripheral serotonin levels due to the diminished presence of the serotonin precursor tryptophan and platelet hyperactivation (mediating serotonin turnover), leading to vagus nerve alterations and thereby affecting hippocampal responses and memory.

    Article  CAS  PubMed  Google Scholar 

  135. Parsons, T. et al. COVID-19-associated acute disseminated encephalomyelitis (ADEM). J. Neurol. 267, 2799–2802 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Solomon, I. H. et al. Neuropathological features of covid-19. N. Engl. J. Med. 383, 989–992 (2020).

    Article  PubMed  Google Scholar 

  137. Song, E. et al. Divergent and self-reactive immune responses in the CNS of COVID-19 patients with neurological symptoms. Cell Rep. Med. 2, 100288 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  138. Franke, C. et al. Association of cerebrospinal fluid brain-binding autoantibodies with cognitive impairment in post-COVID-19 syndrome. Brain Behav. Immun. 109, 139–143 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Ballering, A. V., van Zon, S. K. R., Olde Hartman, T. C. & Rosmalen, J. G. M., Lifelines Corona Research Initiative. Persistence of somatic symptoms after COVID-19 in the Netherlands: an observational cohort study. Lancet 400, 452–461 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. O’Mahoney, L. L. et al. The prevalence and long-term health effects of long Covid among hospitalised and non-hospitalised populations: a systematic review and meta-analysis. EClinicalMedicine 55, 101762 (2023).

    Article  PubMed  Google Scholar 

  141. Del Brutto, O. H., Rumbea, D. A., Recalde, B. Y. & Mera, R. M. Cognitive sequelae of long COVID may not be permanent: a prospective study. Eur. J. Neurol. 29, 1218–1221 (2022).

    Article  PubMed  Google Scholar 

  142. Thompson, E. J. et al. Long COVID burden and risk factors in 10 UK longitudinal studies and electronic health records. Nat. Commun. 13, 3528 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Liang, C. et al. Trends in COVID-19 patient characteristics in a large electronic health record database in the United States: a cohort study. PLoS One 17, e0271501 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Bai, F. et al. Female gender is associated with long COVID syndrome: a prospective cohort study. Clin. Microbiol. Infect. 28, 611.e9–611.e16 (2022).

    Article  CAS  PubMed  Google Scholar 

  145. Theoharides, T. C. Brain “fog,” inflammation and obesity: key aspects of neuropsychiatric disorders improved by luteolin. Front. Neurosci. 9, 225 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  146. Riazi, K. et al. Microglial activation and TNFα production mediate altered CNS excitability following peripheral inflammation. Proc. Natl Acad. Sci. USA 105, 17151–17156 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Murdoch, J. R. & Lloyd, C. M. Chronic inflammation and asthma. Mutat. Res. Mol. Mech. Mutagen. 690, 24–39 (2010).

    Article  CAS  Google Scholar 

  148. Dunn, N., Mullee, M., Perry, V. H. & Holmes, C. Association between dementia and infectious disease: evidence from a case-control study. Alzheimer Dis. Assoc. Disord. 19, 91–94 (2005).

    Article  PubMed  Google Scholar 

  149. Schultheiß, C. et al. The IL-1β, IL-6, and TNF cytokine triad is associated with post-acute sequelae of COVID-19. Cell Rep. Med. 3, 100663 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  150. Iacobelli, R. et al. Predictors of brain infarction in adult patients on extracorporeal membrane oxygenation: an observational cohort study. Sci. Rep. 11, 3809 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Graber, L. C., Quillinan, N., Marrotte, E. J., McDonagh, D. L. & Bartels, K. Neurocognitive outcomes after extracorporeal membrane oxygenation. Best Pract. Res. Clin. Anaesthesiol. 29, 125–135 (2015).

    Article  PubMed  Google Scholar 

  152. Manabe, T. & Heneka, M. T. Cerebral dysfunctions caused by sepsis during ageing. Nat. Rev. Immunol. 22, 444–458 (2022). This paper is a comprehensive review summarizing and discussing neurological alterations due to systemic inflammation.

    Article  CAS  PubMed  Google Scholar 

  153. Ahles, T. A. & Saykin, A. J. Candidate mechanisms for chemotherapy-induced cognitive changes. Nat. Rev. Cancer 7, 192–201 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Bliddal, S. et al. Acute and persistent symptoms in non-hospitalized PCR-confirmed COVID-19 patients. Sci. Rep. 11, 13153 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Prüss, H. Postviral autoimmune encephalitis: manifestations in children and adults. Curr. Opin. Neurol. 30, 327–333 (2017).

    Article  PubMed  Google Scholar 

  156. Vasilevska, V. et al. Potential cross-links of inflammation with schizophreniform and affective symptoms: a review and outlook on autoimmune encephalitis and COVID-19. Front. Psychiatry 12, 729868 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  157. Proal, A. D. & VanElzakker, M. B. Long COVID or post-acute sequelae of COVID-19 (PASC): an overview of biological factors that may contribute to persistent symptoms. Front. Microbiol. 12, 698169 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  158. Davis, H. E., McCorkell, L., Vogel, J. M. & Topol, E. J. Long COVID: major findings, mechanisms and recommendations. Nat. Rev. Microbiol. 21, 133–146 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Wang, E. Y. et al. Diverse functional autoantibodies in patients with COVID-19. Nature 595, 283–288 (2021).

    Article  CAS  PubMed  Google Scholar 

  160. Mahoney, C. E., Cogswell, A., Koralnik, I. J. & Scammell, T. E. The neurobiological basis of narcolepsy. Nat. Rev. Neurosci. 20, 83–93 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Dyall, S. C. Long-chain omega-3 fatty acids and the brain: a review of the independent and shared effects of EPA, DPA and DHA. Front. Aging Neurosci. 7, 52 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  162. Orchard, T. S., Gaudier-Diaz, M. M., Weinhold, K. R. & Courtney DeVries, A. Clearing the fog: a review of the effects of dietary omega-3 fatty acids and added sugars on chemotherapy-induced cognitive deficits. Breast Cancer Res. Treat. 161, 391–398 (2017).

    Article  CAS  PubMed  Google Scholar 

  163. Bräunlich, J. & Dinse-Lambracht, A. Decreased level of vitamin D in Post-COVID-19 patients compared to a control group. Anzeige 77, S32–S33 (2023).

    Google Scholar 

  164. Theoharides, T. C., Cholevas, C., Polyzoidis, K. & Politis, A. Long-COVID syndrome-associated brain fog and chemofog: luteolin to the rescue. BioFactors 47, 232–241 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Jang, S., Kelley, K. W. & Johnson, R. W. Luteolin reduces IL-6 production in microglia by inhibiting JNK phosphorylation and activation of AP-1. Proc. Natl Acad. Sci. USA 105, 7534–7539 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Ohnoshi, T. Recent trends of chemotherapy in small cell lung cancer: a slow but steady progress [Japanese]. Gan Kagaku Ryoho 16, 2522–2530 (1989).

    CAS  Google Scholar 

  167. Patel, A. B. & Theoharides, T. C. Methoxyluteolin inhibits neuropeptide-stimulated proinflammatory mediator release via mTOR activation from human mast cells. J. Pharmacol. Exp. Ther. 361, 462–471 (2017).

    Article  CAS  PubMed  Google Scholar 

  168. Reinicke, M. et al. Plant sterol-poor diet is associated with pro-inflammatory lipid mediators in the murine brain. Int. J. Mol. Sci. 22, 13207 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Heppner, F. L., Roth, K., Nitsch, R. & Hailer, N. P. Vitamin E induces ramification and downregulation of adhesion molecules in cultured microglial cells. Glia 22, 180–188 (1998).

    Article  CAS  PubMed  Google Scholar 

  170. Romero, A. et al. Coronavirus disease 2019 (COVID-19) and its neuroinvasive capacity: is it time for melatonin? Cell. Mol. Neurobiol. 42, 489–500 (2022).

    Article  CAS  PubMed  Google Scholar 

  171. Lan, S.-H. et al. Efficacy of melatonin in the treatment of patients with COVID-19: a systematic review and meta-analysis of randomized controlled trials. J. Med. Virol. 94, 2102–2107 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Faridzadeh, A., Tabashiri, A., Miri, H. H. & Mahmoudi, M. The role of melatonin as an adjuvant in the treatment of COVID-19: a systematic review. Heliyon 8, e10906 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Goldsmith, C. S. & Miller, S. E. Modern uses of electron microscopy for detection of viruses. Clin. Microbiol. Rev. 22, 552–563 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  174. Susman, S. et al. The role of the pathology department in the preanalytical phase of molecular analyses. Cancer Manag. Res. 10, 745–753 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Dittmayer, C., Goebel, H.-H., Heppner, F. L., Stenzel, W. & Bachmann, S. Preparation of samples for large-scale automated electron microscopy of tissue and cell ultrastructure. Microsc. Microanal. 27, 815–827 (2021).

    Article  CAS  PubMed  Google Scholar 

  176. Xiao, K. et al. Isolation of SARS-CoV-2-related coronavirus from Malayan pangolins. Nature 583, 286–289 (2020).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the research consortium NATON (Nationales Obduktionsnetzwerk; National Autopsy Network) for funding F.L.H. and H.R. (grant no. 01KX2121). F.L.H. also received funding from the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s Excellence Strategy — EXC-2049 — 390688087, and through HE 3130/6-1, as well as from the German Center for Neurodegenerative Diseases (DZNE) Berlin.

Author information

Authors and Affiliations

Authors

Contributions

F.H., J.M., S.S., C.D., R.v.M. and H.R. researched data for the article, made substantial contributions to the discussion of content and wrote the article. F.H., J.M. and H.R. also reviewed and edited the manuscript before submission.

Corresponding authors

Correspondence to Helena Radbruch or Frank L. Heppner.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Peer review

Peer review information

Nature Reviews Neuroscience thanks William Banks and the other anonymous reviewers for their contribution to the peer review of this paper.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meinhardt, J., Streit, S., Dittmayer, C. et al. The neurobiology of SARS-CoV-2 infection. Nat. Rev. Neurosci. 25, 30–42 (2024). https://doi.org/10.1038/s41583-023-00769-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41583-023-00769-8

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing