Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Excitation–transcription coupling, neuronal gene expression and synaptic plasticity

Abstract

Excitation–transcription coupling (E–TC) links synaptic and cellular activity to nuclear gene transcription. It is generally accepted that E–TC makes a crucial contribution to learning and memory through its role in underpinning long-lasting synaptic enhancement in late-phase long-term potentiation and has more recently been linked to late-phase long-term depression: both processes require de novo gene transcription, mRNA translation and protein synthesis. E–TC begins with the activation of glutamate-gated N-methyl-d-aspartate-type receptors and voltage-gated L-type Ca2+ channels at the membrane and culminates in the activation of transcription factors in the nucleus. These receptors and ion channels mediate E–TC through mechanisms that include long-range signalling from the synapse to the nucleus and local interactions within dendritic spines, among other possibilities. Growing experimental evidence links these E–TC mechanisms to late-phase long-term potentiation and learning and memory. These advances in our understanding of the molecular mechanisms of E–TC mean that future efforts can focus on understanding its mesoscale functions and how it regulates neuronal network activity and behaviour in physiological and pathological conditions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Excitation–transcription coupling underlies long-term potentiation and memory.
Fig. 2: Channel–protein interactions underlying the transcriptional signalling advantages of L-type calcium channels.
Fig. 3: Protein messengers involved in synapse-to-nucleus transcriptional signalling.
Fig. 4: Similarities and differences in mechanisms of excitation–transcription coupling in different neuron types.
Fig. 5: Synaptonuclear communication supports synaptic plasticity and spatial memory.

Similar content being viewed by others

References

  1. Lisman, J., Cooper, K., Sehgal, M. & Silva, A. J. Memory formation depends on both synapse-specific modifications of synaptic strength and cell-specific increases in excitability. Nat. Neurosci. 21, 309–314 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Frey, U. & Morris, R. G. Synaptic tagging and long-term potentiation. Nature 385, 533–536 (1997).

    Article  CAS  PubMed  Google Scholar 

  3. Alberini, C. M. & Kandel, E. R. The regulation of transcription in memory consolidation. Cold Spring Harbor Pespect. Biol. 7, a021741 (2015).

    Article  Google Scholar 

  4. Davis, H. P. & Squire, L. R. Protein synthesis and memory: A review. Psychol. Bull. 96, 518–559 (1984).

    Article  CAS  PubMed  Google Scholar 

  5. Kandel, E. R., Dudai, Y. & Mayford, M. R. The molecular and systems biology of memory. Cell 157, 163–186 (2014).

    Article  CAS  PubMed  Google Scholar 

  6. Asok, A., Leroy, F., Rayman, J. B. & Kandel, E. R. Molecular mechanisms of the memory trace. Trends Neurosci. 42, 14–22 (2019).

    Article  CAS  PubMed  Google Scholar 

  7. Josselyn, S. A. & Susumu, T. Memory engrams: Recalling the past and imagining the future. Science, 367, eaaw4325 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Bi, G. Q. & Poo, M. M. Synaptic modifications in cultured hippocampal neurons: dependence on spike timing synaptic strength and postsynaptic cell type. J. Neurosci., 18, 10464–10472 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Bliss, T. V. & Lømo, T. Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path. J. Physiol., 232, 331–356 (1973).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Abraham, W. C., Logan, B. & Greenwod, J. M. Induction and experience-dependent consolidation of stable long-term potentiation lasting months in the hippocampus. J. Neurosci., 22, 9626–9634 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Magee, J. C. & Grienberger, C. Synaptic plasticity forms and functions. Annu. Rev. Neurosci. 43, 95–117 (2020).

    Article  CAS  PubMed  Google Scholar 

  12. Alberini, C. M. Transcription factors in long-term memory and synaptic plasticity. Physiol. Rev. 89, 121–145 (2009).

    Article  CAS  PubMed  Google Scholar 

  13. Barco, A., Alarcon, J. M. & Kandel, E. R. Expression of constitutively active CREB protein facilitates the late phase of long-term potentiation by enhancing synaptic capture. Cell 108, 689–703 (2002). This study provides pivotal evidence that activity-dependent CREB activation is key to L-LTP, presumably by driving synthesis of macromolecular resources to be captured at tagged synapses.

    Article  CAS  PubMed  Google Scholar 

  14. Redondo, R. L. et al. Synaptic tagging and capture: differential role of distinct calcium/calmodulin kinases in protein synthesis-dependent long-term potentiation. J. Neurosci. 30, 4981–4989 (2010). This study distinguishes between nuclear CaM kinases (for example, CaMKIV) for the generation of macromolecular resources and synaptic CaM kinases at tagged synapses, critical for resource capture.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Morgan, J. I. & Curran, T. Role of ion flux in the control of c-fos expression. Nature 322, 552–555 (1986).

    Article  CAS  PubMed  Google Scholar 

  16. Bading, H., Ginty, D. D. & Greenberg, M. E. Regulation of gene expression in hippocampal neurons by distinct calcium signaling pathways. Science 260, 181–186 (1993).

    Article  CAS  PubMed  Google Scholar 

  17. Sheng, M., Dougan, S. T., McFadden, G. & Greenberg, M. E. Calcium and growth factor pathways of c-fos transcriptional activation require distinct upstream regulatory sequences. Mol. Cell. Biol. 8, 2787–2796 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Greenberg, M. E., Ziff, E. B. & Greene, L. A. Stimulation of neuronal acetylcholine receptors induces rapid gene transcription. Science 234, 80–83 (1986). A pioneering study showing that neuronal gene expression can be coupled to neuronal stimulation and LTCC activity.

    Article  CAS  PubMed  Google Scholar 

  19. Lerea, L. S. & McNamara, J. O. Ionotropic glutamate receptor subtypes activate c-fos transcription by distinct calcium-requiring intracellular signaling pathways. Neuron 10, 31–41 (1993).

    Article  CAS  PubMed  Google Scholar 

  20. Silva, A. J., Kogan, J. H., Frankland, P. W. & Kida, S. CREB and memory. Annu. Rev. Neurosci. 21, 127–148 (1998).

    Article  CAS  PubMed  Google Scholar 

  21. Chrivia, J. C. et al. Phosphorylated CREB binds specifically to the nuclear protein CBP. Nature 365, 855–859 (1993).

    Article  CAS  PubMed  Google Scholar 

  22. Kwok, R. P. et al. Nuclear protein CBP is a coactivator for the transcription factor CREB. Nature 370, 223–226 (1994).

    Article  CAS  PubMed  Google Scholar 

  23. Sheng, M. & Greenberg, M. E. The regulation and function of c-fos and other immediate early genes in the nervous system. Neuron 4, 477–485 (1990).

    Article  CAS  PubMed  Google Scholar 

  24. Sheng, M., McFadden, G. & Greenberg, M. E. Membrane depolarization and calcium induce c-fos transcription via phosphorylation of transcription factor CREB. Neuron 4, 571–582 (1990).

    Article  CAS  PubMed  Google Scholar 

  25. Hardingham, G. E. & Bading, H. Synaptic versus extrasynaptic NMDA receptor signalling: implications for neurodegenerative disorders. Nat. Rev. Neurosci. 11, 682–696 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Hardingham, G. E., Pruunsild, P., Greenberg, M. E. & Bading, H. Lineage divergence of activity-driven transcription and evolution of cognitive ability. Nat. Rev. Neurosci. 19, 9–15 (2018).

    Article  CAS  PubMed  Google Scholar 

  27. Hell, J. W. CaMKII: claiming center stage in postsynaptic function and organization. Neuron 81, 249–265 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Bliss, T. V. & Collingridge, G. L. A synaptic model of memory: long-term potentiation in the hippocampus. Nature 361, 31–39 (1993).

    Article  CAS  PubMed  Google Scholar 

  29. Tsien, J. Z., Huerta, P. T. & Tonegawa, S. The essential role of hippocampal CA1 NMDA receptor-dependent synaptic plasticity in spatial memory. Cell 87, 1327–1338 (1996).

    Article  CAS  PubMed  Google Scholar 

  30. Nicoll, R. A. A brief history of long-term potentiation. Neuron 93, 281–290 (2017).

    Article  CAS  PubMed  Google Scholar 

  31. Mayer, M. L., Westbrook, G. L. & Guthrie, P. B. Voltage-dependent block by Mg2+ of NMDA responses in spinal cord neurones. Nature 309, 261–263 (1984).

    Article  CAS  PubMed  Google Scholar 

  32. Nowak, L., Bregestovski, P., Ascher, P., Herbet, A. & Prochiantz, A. Magnesium gates glutamate-activated channels in mouse central neurones. Nature 307, 462–465 (1984).

    Article  CAS  PubMed  Google Scholar 

  33. Worley, P. F. et al. Thresholds for synaptic activation of transcription factors in hippocampus — correlation with long-term enhancement. J. Neurosci. 13, 4776–4786 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Cole, A. J., Saffen, D. W., Baraban, J. M. & Worley, P. F. Rapid increase of an immediate early gene messenger RNA in hippocampal neurons by synaptic NMDA receptor activation. Nature 340, 474–476 (1989).

    Article  CAS  PubMed  Google Scholar 

  35. Sanz-Clemente, A., Gray, J. A., Ogilvie, K. A., Nicoll, R. A. & Roche, K. W. Activated CaMKII couples GluN2B and casein kinase 2 to control synaptic NMDA receptors. Cell Rep. 3, 607–614 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Yan, J., Bengtson, C. P., Buchthal, B., Hagenston, A. M. & Bading, H. Coupling of NMDA receptors and TRPM4 guides discovery of unconventional neuroprotectants. Science 370, eaay3302 (2020).

    Article  CAS  PubMed  Google Scholar 

  37. Bowie, D. Redefining the classification of AMPA-selective ionotropic glutamate receptors. J. Physiol. 590, 49–61 (2012).

    Article  CAS  PubMed  Google Scholar 

  38. Perkinton, M. S., Sihra, T. S. & Williams, R. J. Ca(2+)-permeable AMPA receptors induce phosphorylation of cAMP response element-binding protein through a phosphatidylinositol 3-kinase-dependent stimulation of the mitogen-activated protein kinase signaling cascade in neurons. J. Neurosci. 19, 5861–5874 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Tian, X. & Feig, L. A. Age-dependent participation of Ras-GRF proteins in coupling calcium-permeable AMPA glutamate receptors to Ras/Erk signaling in cortical neurons. J. Biol. Chem. 281, 7578–7582 (2006).

    Article  CAS  PubMed  Google Scholar 

  40. Rajadhyaksha, A. et al. L-type Ca(2+) channels are essential for glutamate-mediated CREB phosphorylation and c-fos gene expression in striatal neurons. J. Neurosci. 19, 6348–6359 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Tsien, R. W., Ellinor, P. T. & Horne, W. A. Molecular diversity of voltage-dependent Ca2+ channels. Trends Pharmacol. Sci. 12, 349–354 (1991).

    Article  CAS  PubMed  Google Scholar 

  42. Snutch, T. P., Sutton, K. G. & Zamponi, G. W. Voltage-dependent calcium channels-beyond dihydropyridine antagonists. Curr. Opin. Pharmacol. 1, 11–16 (2001).

    Article  CAS  PubMed  Google Scholar 

  43. Catterall, W. A., Lenaeus, M. J. & Gamal El-Din, T. M. Structure and pharmacology of voltage-gated sodium and calcium channels. Annu. Rev. Pharmacol. Toxicol. 60, 133–154 (2020).

    Article  CAS  PubMed  Google Scholar 

  44. Wheeler, D. G. et al. Ca(V)1 and Ca(V)2 channels engage distinct modes of Ca(2+) signaling to control CREB-dependent gene expression. Cell 149, 1112–1124 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Murphy, T. H., Worley, P. F. & Baraban, J. M. L-type voltage-sensitive calcium channels mediate synaptic activation of immediate early genes. Neuron 7, 625–635 (1991).

    Article  CAS  PubMed  Google Scholar 

  46. Rampon, C. et al. Enrichment induces structural changes and recovery from nonspatial memory deficits in CA1 NMDAR1-knockout mice. Nat. Neurosci. 3, 238–244 (2000).

    Article  CAS  PubMed  Google Scholar 

  47. Deisseroth, K., Heist, E. K. & Tsien, R. W. Translocation of calmodulin to the nucleus supports CREB phosphorylation in hippocampal neurons. Nature 392, 198–202 (1998). This study demonstrates that neuronal activity initiates Ca2+/calmodulin translocation to the nucleus and that prevention of the nuclear Ca2+/calmodulin rise inhibits phosphorylation of CREB.

    Article  CAS  PubMed  Google Scholar 

  48. Dolmetsch, R. E., Pajvani, U., Fife, K., Spotts, J. M. & Greenberg, M. E. Signaling to the nucleus by an L-type calcium channel–calmodulin complex through the MAP kinase pathway. Science 294, 333–339 (2001).

    Article  CAS  PubMed  Google Scholar 

  49. Ginty, D. D. et al. Regulation of CREB phosphorylation in the suprachiasmatic nucleus by light and a circadian clock. Science 260, 238–241 (1993).

    Article  CAS  PubMed  Google Scholar 

  50. Ch’ng, T. H. et al. Activity-dependent transport of the transcriptional coactivator CRTC1 from synapse to nucleus. Cell 150, 207–221 (2012). This study demonstrates that the CREB partner protein CRTC1 can undergo synaptonuclear translocation to mediate E–TC, suggesting that nuclear translocation and signalling are a widespread mechanism for E–TC.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Graef, I. A. et al. L-type calcium channels and GSK-3 regulate the activity of NF-ATc4 in hippocampal neurons. Nature 401, 703–708 (1999).

    Article  CAS  PubMed  Google Scholar 

  52. Murphy, J. G. et al. AKAP-anchored PKA maintains neuronal L-type calcium channel activity and NFAT transcriptional signaling. Cell Rep. 7, 1577–1588 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Leclerc, G. M. & Boockfor, F. R. Calcium influx and DREAM protein are required for GnRH gene expression pulse activity. Mol. Cell Endocrinol. 267, 70–79 (2007).

    Article  CAS  PubMed  Google Scholar 

  54. Carrion, A. M., Link, W. A., Ledo, F., Mellstrom, B. & Naranjo, J. R. DREAM is a Ca2+-regulated transcriptional repressor. Nature 398, 80–84 (1999).

    Article  CAS  PubMed  Google Scholar 

  55. Xu, W. F. & Lipscombe, D. Neuronal Ca(v)1.3 alpha(1) L-type channels activate at relatively hyperpolarized membrane potentials and are incompletely inhibited by dihydropyridines. J. Neurosci. 21, 5944–5951 (2001). This study and the companion report from Helton et al. show that Cav1.3 L-type channels undergo steep voltage-dependent gating over the voltage range of subthreshold spine depolarizations.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Ortner, N. J. et al. Lower affinity of isradipine for L-type Ca(2+) channels during substantia nigra dopamine neuron-like activity: implications for neuroprotection in Parkinson’s disease. J. Neurosci. 37, 6761–6777 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Avery, R. B. & Johnston, D. Multiple channel types contribute to the low-voltage-activated calcium current in hippocampal CA3 pyramidal neurons. J. Neurosci. 16, 5567–5582 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Kasai, H. Voltage- and time-dependent inhibition of neuronal calcium channels by a GTP-binding protein in a mammalian cell line. J. Physiol. 448, 189–209 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Obermair, G. J., Szabo, Z., Bourinet, E. & Flucher, B. E. Differential targeting of the L-type Ca2+ channel alpha 1C (CaV1.2) to synaptic and extrasynaptic compartments in hippocampal neurons. Eur. J. Neurosci. 19, 2109–2122 (2004).

    Article  PubMed  Google Scholar 

  60. Stanika, R. et al. Splice variants of the CaV1.3 L-type calcium channel regulate dendritic spine morphology. Sci. Rep. 6, 34528 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Adams, J. P., Robinson, R. A., Hudgins, E. D., Wissink, E. M. & Dudek, S. M. NMDA receptor-independent control of transcription factors and gene expression. NeuroReport 20, 1429–1433 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Nakazawa, H. & Murphy, T. H. Activation of nuclear calcium dynamics by synaptic stimulation in cultured cortical neurons. J. Neurochem. 73, 1075–1083 (1999).

    Article  CAS  PubMed  Google Scholar 

  63. Dittmer, P. J., Wild, A. R., Dell’Acqua, M. L. & Sather, W. A. STIM1 Ca2+ sensor control of L-type Ca2+-channel-dependent dendritic spine structural plasticity and nuclear signaling. Cell Rep. 19, 321–334 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Nabavi, S. et al. Metabotropic NMDA receptor function is required for NMDA receptor-dependent long-term depression. Proc. Natl Acad. Sci. USA 110, 4027–4032 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Li, B., Tadross, M. R. & Tsien, R. W. Sequential ionic and conformational signaling by calcium channels drives neuronal gene expression. Science 351, 863–867 (2016). This study uncovers distinct functions of L-type channels in driving E–TC, including conformational (non-ionotropic) signalling that can be dissociated from Ca2+ influx.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Stein, I. S., Gray, J. A. & Zito, K. Non-ionotropic NMDA receptor signaling drives activity-induced dendritic spine shrinkage. J. Neurosci. 35, 12303–12308 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Stein, I. S., Park, D. K., Flores, J. C., Jahncke, J. N. & Zito, K. Molecular mechanisms of non-ionotropic NMDA receptor signaling in dendritic spine shrinkage. J. Neurosci. 40, 3741–3750 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Stein, I. S., Park, D. K., Claiborne, N. & Zito, K. Non-ionotropic NMDA receptor signaling gates bidirectional structural plasticity of dendritic spines. Cell Rep. 34, 108664 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Zhao, Y. et al. Molecular basis for ligand modulation of a mammalian voltage-gated Ca(2+) channel. Cell 177, 1495–1506.e12 (2019).

    Article  CAS  PubMed  Google Scholar 

  70. Wheeler, D. G., Barrett, C. F., Groth, R. D., Safa, P. & Tsien, R. W. CaMKII locally encodes L-type channel activity to signal to nuclear CREB in excitation–transcription coupling. J. Cell Biol. 183, 849–863 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Frank, R. A. & Grant, S. G. Supramolecular organization of NMDA receptors and the postsynaptic density. Curr. Opin. Neurobiol. 45, 139–147 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Hiester, B. G. et al. L-type voltage-gated Ca(2+) channels regulate synaptic-activity-triggered recycling endosome fusion in neuronal dendrites. Cell Rep. 21, 2134–2146 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Bengtson, C. P. & Bading, H. Nuclear calcium signaling. Adv. Exp. Med. Biol. 970, 377–405 (2012).

    Article  CAS  PubMed  Google Scholar 

  74. Brigidi, G. S. et al. Genomic decoding of neuronal depolarization by stimulus-specific NPAS4 heterodimers. Cell 179, 373–391.e27 (2019). This study demonstrates that the combinatorial translocation of signalling proteins is one solution to the problem of encoding specific stimuli.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Huang, Y. Y., Pittenger, C. & Kandel, E. R. A form of long-lasting, learning-related synaptic plasticity in the hippocampus induced by heterosynaptic low-frequency pairing. Proc. Natl Acad. Sci. USA 101, 859–864 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Fonseca, R. Asymmetrical synaptic cooperation between cortical and thalamic inputs to the amygdale. Neuropsychopharmacology 38, 2675–2687 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  77. Roberson, E. D., English, J. D. & Sweatt, J. D. A biochemist’s view of long-term potentiation. Learn. Mem. 3, 1–24 (1996).

    Article  CAS  PubMed  Google Scholar 

  78. Westenbroek, R. E., Ahlijanian, M. K. & Catterall, W. A. Clustering of L-type Ca2+ channels at the base of major dendrites in hippocampal pyramidal neurons. Nature 347, 281–284 (1990).

    Article  CAS  PubMed  Google Scholar 

  79. Davare, M. A. et al. A beta2 adrenergic receptor signaling complex assembled with the Ca2+ channel Cav1.2. Science 293, 98–101 (2001).

    Article  CAS  PubMed  Google Scholar 

  80. Di Biase, V. et al. Stable membrane expression of postsynaptic CaV1.2 calcium channel clusters is independent of interactions with AKAP79/150 and PDZ proteins. J. Neurosci. 28, 13845–13855 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  81. Zhang, H. et al. Association of CaV1.3 L-type calcium channels with Shank. J. Neurosci. 25, 1037–1049 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Yasuda, R., Sabatini, B. L. & Svoboda, K. Plasticity of calcium channels in dendritic spines. Nat. Neurosci. 6, 948–955 (2003).

    Article  CAS  PubMed  Google Scholar 

  83. Weick, J. P., Groth, R. D., Isaksen, A. L. & Mermelstein, P. G. Interactions with PDZ proteins are required for L-type calcium channels to activate cAMP response element-binding protein-dependent gene expression. J. Neurosci. 23, 3446–3456 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Baucum, A. J. II, Shonesy, B. C., Rose, K. L. & Colbran, R. J. Quantitative proteomics analysis of CaMKII phosphorylation and the CaMKII interactome in the mouse forebrain. ACS Chem. Neurosci. 6, 615–631 (2015).

    Article  CAS  PubMed  Google Scholar 

  85. Gardoni, F. & Di Luca, M. Protein–protein interactions at the NMDA receptor complex: from synaptic retention to synaptonuclear protein messengers. Neuropharmacology 190, 108551 (2021).

    Article  CAS  PubMed  Google Scholar 

  86. Chung, H. J., Huang, Y. H., Lau, L. F. & Huganir, R. L. Regulation of the NMDA receptor complex and trafficking by activity-dependent phosphorylation of the NR2B subunit PDZ ligand. J. Neurosci. 24, 10248–10259 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Baucum, A. J. II, Brown, A. M. & Colbran, R. J. Differential association of postsynaptic signaling protein complexes in striatum and hippocampus. J. Neurochem. 124, 490–501 (2013).

    Article  CAS  PubMed  Google Scholar 

  88. Chiu, A. M. et al. NMDAR-activated PP1 dephosphorylates GluN2B to modulate NMDAR synaptic content. Cell Rep. 28, 332–341.e5 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Husi, H., Ward, M. A., Choudhary, J. S., Blackstock, W. P. & Grant, S. G. Proteomic analysis of NMDA receptor-adhesion protein signaling complexes. Nat. Neurosci. 3, 661–669 (2000).

    Article  CAS  PubMed  Google Scholar 

  90. Li, B. et al. Neuronal inactivity co-opts LTP machinery to drive potassium channel splicing and homeostatic spike widening. Cell 181, 1547–1565.e15 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Yao, X., Gao, S. & Yan, N. Structural basis for pore blockade of human voltage-gated calcium channel Ca(v)1.3 by motion sickness drug cinnarizine. Cell Res. 32, 946–948 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Wollmuth, L. P., Kuner, T. & Sakmann, B. Intracellular Mg2+ interacts with structural determinants of the narrow constriction contributed by the NR1-subunit in the NMDA receptor channel. J. Physiol. 506, 33–52 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Jahr, C. E. & Stevens, C. F. Voltage dependence of NMDA-activated macroscopic conductances predicted by single-channel kinetics. J. Neurosci. 10, 3178–3182 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Helton, T. D., Xu, W. & Lipscombe, D. Neuronal L-type calcium channels open quickly and are inhibited slowly. J. Neurosci. 25, 10247–10251 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Yasuda, R., Hayashi, Y. & Hell, J. W. CaMKII: a central molecular organizer of synaptic plasticity, learning and memory. Nat. Rev. Neurosci. 23, 666–682 (2022). This Review nicely summarizes the structural features of CaMKII and its various functions in neurons, ranging from synaptic regulation to gene expression.

    Article  CAS  PubMed  Google Scholar 

  96. Bayer, K. U. & Schulman, H. CaM kinase: still inspiring at 40. Neuron 103, 380–394 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Lisman, J., Schulman, H. & Cline, H. The molecular basis of CaMKII function in synaptic and behavioural memory. Nat. Rev. Neurosci. 3, 175–190 (2002).

    Article  CAS  PubMed  Google Scholar 

  98. Hudmon, A. & Schulman, H. Neuronal CA2+/calmodulin-dependent protein kinase II: the role of structure and autoregulation in cellular function. Annu. Rev. Biochem. 71, 473–510 (2002).

    Article  CAS  PubMed  Google Scholar 

  99. Nicoll, R. A. & Schulman, H. Synaptic memory and CaMKII: a review. Physiol. Rev. https://doi.org/10.1152/physrev.00034.2022 (2023). An up-to-date review of the evidence for CaMKII as a key molecule supporting long-term synaptic plasticity underlying memory.

    Article  PubMed  Google Scholar 

  100. Bading, H. & Greenberg, M. E. Stimulation of protein tyrosine phosphorylation by NMDA receptor activation. Science 253, 912–914 (1991).

    Article  CAS  PubMed  Google Scholar 

  101. Xia, Z., Dudek, H., Miranti, C. K. & Greenberg, M. E. Calcium influx via the NMDA receptor induces immediate early gene transcription by a MAP kinase/ERK-dependent mechanism. J. Neurosci. 16, 5425–5436 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Hardingham, G. E. & Bading, H. Calcium as a versatile second messenger in the control of gene expression. Microsc. Res. Tech. 46, 348–355 (1999).

    Article  CAS  PubMed  Google Scholar 

  103. El Gaamouch, F. et al. Interaction between alphaCaMKII and GluN2B controls ERK-dependent plasticity. J. Neurosci. 32, 10767–10779 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Melgarejo da Rosa, M., Yuanxiang, P., Brambilla, R., Kreutz, M. R. & Karpova, A. Synaptic GluN2B/CaMKII-alpha signaling induces synapto-nuclear transport of ERK and Jacob. Front. Mol. Neurosci. 9, 66 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  105. Hudmon, A. et al. CaMKII tethers to L-type Ca2+ channels, establishing a local and dedicated integrator of Ca2+ signals for facilitation. J. Cell Biol. 171, 537–547 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Bers, D. M. & Morotti, S. Ca(2+) current facilitation is CaMKII-dependent and has arrhythmogenic consequences. Front. Pharmacol. 5, 144 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  107. Grueter, C. E., Abiria, S. A., Wu, Y., Anderson, M. E. & Colbran, R. J. Differential regulated interactions of calcium/calmodulin-dependent protein kinase II with isoforms of voltage-gated calcium channel beta subunits. Biochemistry 47, 1760–1767 (2008).

    Article  CAS  PubMed  Google Scholar 

  108. Abiria, S. A. & Colbran, R. J. CaMKII associates with CaV1.2 L-type calcium channels via selected beta subunits to enhance regulatory phosphorylation. J. Neurochem. 112, 150–161 (2010).

    Article  CAS  PubMed  Google Scholar 

  109. Strack, S., McNeill, R. B. & Colbran, R. J. Mechanism and regulation of calcium/calmodulin-dependent protein kinase II targeting to the NR2B subunit of the N-methyl-d-aspartate receptor. J. Biol. Chem. 275, 23798–23806 (2000).

    Article  CAS  PubMed  Google Scholar 

  110. Bayer, K. U., De Koninck, P., Leonard, A. S., Hell, J. W. & Schulman, H. Interaction with the NMDA receptor locks CaMKII in an active conformation. Nature 411, 801–805 (2001).

    Article  CAS  PubMed  Google Scholar 

  111. Wang, X. H. et al. A novel mechanism for Ca2+/calmodulin-dependent protein kinase II targeting to L-type Ca2+ channels that initiates long-range signaling to the nucleus. J. Biol. Chem. 292, 17324–17336 (2017). This delineates previously overlooked molecular determinants of CaMKII-L-type calcium channel interactions and shows that this interaction is crucial for local signalling that drives nuclear CREB phosphorylation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Sanhueza, M. & Lisman, J. The CaMKII/NMDAR complex as a molecular memory. Mol. Brain 6, 10 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Strack, S. & Colbran, R. J. Autophosphorylation-dependent targeting of calcium/ calmodulin-dependent protein kinase II by the NR2B subunit of the N-methyl-d-aspartate receptor. J. Biol. Chem. 273, 20689–20692 (1998).

    Article  CAS  PubMed  Google Scholar 

  114. Gardoni, F., Schrama, L. H., van Dalen, J. J., Gispen, W. H., Cattabeni, F. & Di Luca, M. M. AlphaCaMKII binding to the C-terminal tail of NMDA receptor subunit NR2A and its modulation by autophosphorylation. FEBS Lett. 456, 394–398 (1999).

    Article  CAS  PubMed  Google Scholar 

  115. Gardoni, F., Caputi, A., Cimino, M., Pastorino, L., Cattabeni, F. & Di Luca, M. Calcium/calmodulin-dependent protein kinase II is associated with NR2A/B subunits of NMDA receptor in postsynaptic densities. J. Neurochem. 71, 1733–1741 (1998).

    Article  CAS  PubMed  Google Scholar 

  116. Leonard, A. S., Lim, I. A., Hemsworth, D. E., Horne, M. C. & Hell, J. W. Calcium/calmodulin-dependent protein kinase II is associated with the N-methyl-d-aspartate receptor. Proc. Natl Acad. Sci. USA 96, 3239–3244 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Incontro, S. et al. The CaMKII/NMDA receptor complex controls hippocampal synaptic transmission by kinase-dependent and independent mechanisms. Nat. Commun. 9, 2069 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  118. Barria, A. & Malinow, R. NMDA receptor subunit composition controls synaptic plasticity by regulating binding to CaMKII. Neuron 48, 289–301 (2005). Targeted molecular manipulations pinpoint the NMDAR–CaMKII interface as critical for LTP.

    Article  CAS  PubMed  Google Scholar 

  119. Halt, A. R. et al. CaMKII binding to GluN2B is critical during memory consolidation. EMBO J. 31, 1203–1216 (2012). This study charts the behavioural effect of interfering with CaMKII binding to the NMDAR subunit GluN2B.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Aow, J., Dore, K. & Malinow, R. Conformational signaling required for synaptic plasticity by the NMDA receptor complex. Proc. Natl Acad. Sci. USA 112, 14711–14716 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Jiao, Y. et al. Characterization of a central Ca2+/calmodulin-dependent protein kinase IIalpha/beta binding domain in densin that selectively modulates glutamate receptor subunit phosphorylation. J. Biol. Chem. 286, 24806–24818 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Tolias, K. F. et al. The Rac1-GEF Tiam1 couples the NMDA receptor to the activity-dependent development of dendritic arbors and spines. Neuron 45, 525–538 (2005).

    Article  CAS  PubMed  Google Scholar 

  123. Li, L. et al. Tiam1 coordinates synaptic structural and functional plasticity underpinning the pathophysiology of neuropathic pain. Neuron 111, 2038–2050.e6 (2023).

    Article  CAS  PubMed  Google Scholar 

  124. Krapivinsky, G. et al. The NMDA receptor is coupled to the ERK pathway by a direct interaction between NR2B and RasGRF1. Neuron 40, 775–784 (2003).

    Article  CAS  PubMed  Google Scholar 

  125. Dinamarca, M. C. et al. Ring finger protein 10 is a novel synaptonuclear messenger encoding activation of NMDA receptors in hippocampus. eLife 5, e12430 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  126. Carrano, N. et al. The synaptonuclear messenger RNF10 acts as an architect of neuronal morphology. Mol. Neurobiol. 56, 7583–7593 (2019).

    Article  CAS  PubMed  Google Scholar 

  127. Robison, A. J. et al. Multivalent interactions of calcium/calmodulin-dependent protein kinase II with the postsynaptic density proteins NR2B, densin-180, and alpha-actinin-2. J. Biol. Chem. 280, 35329–35336 (2005).

    Article  CAS  PubMed  Google Scholar 

  128. Perfitt, T. L. et al. Neuronal L-type calcium channel signaling to the nucleus requires a novel CaMKIIα–Shank3 interaction. J. Neurosci. 40, 2000–2014 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Ishida, H., Skorobogatov, A., Yamniuk, A. P. & Vogel, H. J. Solution structures of the SH3 domains from Shank scaffold proteins and their interactions with Cav1.3 calcium channels. FEBS Lett. 592, 2786–2797 (2018).

    Article  CAS  PubMed  Google Scholar 

  130. Naisbitt, S. et al. Shank, a novel family of postsynaptic density proteins that binds to the NMDA receptor/PSD-95/GKAP complex and cortactin. Neuron 23, 569–582 (1999).

    Article  CAS  PubMed  Google Scholar 

  131. Jenkins, M. A. et al. Ca2+-dependent facilitation of Cav1.3 Ca2+ channels by densin and Ca2+/calmodulin-dependent protein kinase II. J. Neurosci. 30, 5125–5135 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Wang, S. et al. Densin-180 controls the trafficking and signaling of L-type voltage-gated Ca(v)1.2 Ca(2+) channels at excitatory synapses. J. Neurosci. 37, 4679–4691 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Strack, S., Robison, A. J., Bass, M. A. & Colbran, R. J. Association of calcium/calmodulin-dependent kinase II with developmentally regulated splice variants of the postsynaptic density protein densin-180. J. Biol. Chem. 275, 25061–25064 (2000).

    Article  CAS  PubMed  Google Scholar 

  134. Walikonis, R. S. et al. Densin-180 forms a ternary complex with the (alpha)-subunit of Ca2+/calmodulin-dependent protein kinase II and (alpha)-actinin. J. Neurosci. 21, 423–433 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Derkach, V., Barria, A. & Soderling, T. R. Ca2+/calmodulin-kinase II enhances channel conductance of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate type glutamate receptors. Proc. Natl Acad. Sci. USA 96, 3269–3274 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Kristensen, A. S. et al. Mechanism of Ca2+/calmodulin-dependent kinase II regulation of AMPA receptor gating. Nat. Neurosci. 14, 727–735 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. O’Leary, H., Liu, W. H., Rorabaugh, J. M., Coultrap, S. J. & Bayer, K. U. Nucleotides and phosphorylation bi-directionally modulate Ca2+/calmodulin-dependent protein kinase II (CaMKII) binding to the N-methyl-d-aspartate (NMDA) receptor subunit GluN2B. J. Biol. Chem. 286, 31272–31281 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  138. Borovac, J., Bosch, M. & Okamoto, K. Regulation of actin dynamics during structural plasticity of dendritic spines: signaling messengers and actin-binding proteins. Mol. Cell Neurosci. 91, 122–130 (2018).

    Article  CAS  PubMed  Google Scholar 

  139. Wyszynski, M. et al. Competitive binding of alpha-actinin and calmodulin to the NMDA receptor. Nature 385, 439–442 (1997).

    Article  CAS  PubMed  Google Scholar 

  140. Turner, M. et al. alpha-Actinin-1 promotes activity of the L-type Ca(2+) channel Ca(v)1.2. EMBO J. 39, e106171 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Ribeiro Ede, A. Jr et al. The structure and regulation of human muscle alpha-actinin. Cell 159, 1447–1460 (2014).

    Article  PubMed  Google Scholar 

  142. Jalan-Sakrikar, N., Bartlett, R. K., Baucum, A. J. II & Colbran, R. J. Substrate-selective and calcium-independent activation of CaMKII by alpha-actinin. J. Biol. Chem. 287, 15275–15283 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Crick, F. Memory and molecular turnover. Nature 312, 101 (1984).

    Article  CAS  PubMed  Google Scholar 

  144. Lisman, J. E. A mechanism for memory storage insensitive to molecular turnover: a bistable autophosphorylating kinase. Proc. Natl Acad. Sci. USA 82, 3055–3057 (1985).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Stratton, M. et al. Activation-triggered subunit exchange between CaMKII holoenzymes facilitates the spread of kinase activity. eLife 3, e01610 (2014).

    Google Scholar 

  146. Lee, J., Chen, X. & Nicoll, R. A. Synaptic memory survives molecular turnover. Proc. Natl Acad. Sci. USA 119, e2211572119 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Vierra, N. C., Kirmiz, M., van der List, D., Santana, L. F. & Trimmer, J. S. Kv2.1 mediates spatial and functional coupling of L-type calcium channels and ryanodine receptors in mammalian neurons. eLife 8, e49953 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  148. Vierra, N. C., O’Dwyer, S. C., Matsumoto, C., Santana, L. F. & Trimmer, J. S. Regulation of neuronal excitation–transcription coupling by Kv2.1-induced clustering of somatic L-type Ca(2+) channels at ER–PM junctions. Proc. Natl Acad. Sci. USA 118, e2110094118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Dixon, R. E., Yuan, C., Cheng, E. P., Navedo, M. F. & Santana, L. F. Ca2+ signaling amplification by oligomerization of L-type Cav1.2 channels. Proc. Natl Acad. Sci. USA 109, 1749–1754 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Zuhlke, R. D., Pitt, G. S., Deisseroth, K., Tsien, R. W. & Reuter, H. Calmodulin supports both inactivation and facilitation of L-type calcium channels. Nature 399, 159–162 (1999).

    Article  CAS  PubMed  Google Scholar 

  151. Zuhlke, R. D., Pitt, G. S., Tsien, R. W. & Reuter, H. Ca2+-sensitive inactivation and facilitation of L-type Ca2+ channels both depend on specific amino acid residues in a consensus calmodulin-binding motif in the(alpha)1C subunit. J. Biol. Chem. 275, 21121–21129 (2000).

    Article  CAS  PubMed  Google Scholar 

  152. Adams, J. P. & Dudek, S. M. Late-phase long-term potentiation: getting to the nucleus. Nat. Rev. Neurosci. 6, 737–743 (2005).

    Article  CAS  PubMed  Google Scholar 

  153. Ross, W. N. Understanding calcium waves and sparks in central neurons. Nat. Rev. Neurosci. 13, 157–168 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Lobos, P. et al. RyR-mediated Ca(2+) release elicited by neuronal activity induces nuclear Ca(2+) signals, CREB phosphorylation, and Npas4/RyR2 expression. Proc. Natl Acad. Sci. USA 118, e2102265118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Nakamura, T., Barbara, J. G., Nakamura, K. & Ross, W. N. Synergistic release of Ca2+ from IP3-sensitive stores evoked by synaptic activation of mGluRs paired with backpropagating action potentials. Neuron 24, 727–737 (1999).

    Article  CAS  PubMed  Google Scholar 

  156. Larkum, M. E., Watanabe, S., Nakamura, T., Lasser-Ross, N. & Ross, W. N. Synaptically activated Ca2+ waves in layer 2/3 and layer 5 rat neocortical pyramidal neurons. J. Physiol. 549, 471–488 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Saha, R. N. & Dudek, S. M. Action potentials: to the nucleus and beyond. Exp. Biol. Med. 233, 385–393 (2008).

    Article  CAS  Google Scholar 

  158. Wild, A. R. et al. Synapse-to-nucleus communication through NFAT is mediated by L-type Ca(2+) channel Ca(2+) spike propagation to the soma. Cell Rep. 26, 3537–3550.e4 (2019). This study provides compelling evidence that L-type calcium channels can support propagation of calcium spikes as link between synaptic activation and NFAT.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Bading, H. Nuclear calcium signalling in the regulation of brain function. Nat. Rev. Neurosci. 14, 593–608 (2013). Reviews evidence that elevated nuclear Ca2+ suffices to activate transcription, sometimes without needing involvement of messenger protein translocation.

    Article  CAS  PubMed  Google Scholar 

  160. Hardingham, G. E., Arnold, F. J. & Bading, H. Nuclear calcium signaling controls CREB-mediated gene expression triggered by synaptic activity. Nat. Neurosci. 4, 261–267 (2001).

    Article  CAS  PubMed  Google Scholar 

  161. Iida, N. et al. Requirement of Ras for the activation of mitogen-activated protein kinase by calcium influx, cAMP, and neurotrophin in hippocampal neurons. J. Neurosci. 21, 6459–6466 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Yu, Y., Oberlaender, K., Bengtson, C. P. & Bading, H. One nuclear calcium transient induced by a single burst of action potentials represents the minimum signal strength in activity-dependent transcription in hippocampal neurons. Cell Calcium 65, 14–21 (2017).

    Article  CAS  PubMed  Google Scholar 

  163. Gambino, F. et al. Sensory-evoked LTP driven by dendritic plateau potentials in vivo. Nature 515, 116–119 (2014).

    Article  CAS  PubMed  Google Scholar 

  164. Bito, H., Deisseroth, K. & Tsien, R. W. CREB phosphorylation and dephosphorylation: a Ca(2+)- and stimulus duration-dependent switch for hippocampal gene expression. Cell 87, 1203–1214 (1996). This study shows that nuclear CaMKIV is key to CREB phosphorylation and susceptible to regulation by phosphatases responsive to stimulus duration.

    Article  CAS  PubMed  Google Scholar 

  165. Wu, G. Y., Deisseroth, K. & Tsien, R. W. Activity-dependent CREB phosphorylation: convergence of a fast, sensitive calmodulin kinase pathway and a slow, less sensitive mitogen-activated protein kinase pathway. Proc. Natl Acad. Sci. USA 98, 2808–2813 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Hardingham, G. E., Arnold, F. J. & Bading, H. A calcium microdomain near NMDA receptors: on switch for ERK-dependent synapse-to-nucleus communication. Nat. Neurosci. 4, 565–566 (2001).

    Article  CAS  PubMed  Google Scholar 

  167. Impey, S. et al. Cross talk between ERK and PKA is required for Ca2+ stimulation of CREB-dependent transcription and ERK nuclear translocation. Neuron 21, 869–883 (1998).

    Article  CAS  PubMed  Google Scholar 

  168. Wang, H., Xu, J., Lazarovici, P., Quirion, R. & Zheng, W. CAMP response element-binding protein (CREB): a possible signaling molecule link in the pathophysiology of schizophrenia. Front. Mol. Neurosci. 11, 255 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  169. Wayman, G. A., Lee, Y. S., Tokumitsu, H., Silva, A. J. & Soderling, T. R. Calmodulin-kinases: modulators of neuronal development and plasticity. Neuron 59, 914–931 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Arthur, J. S. & Cohen, P. MSK1 is required for CREB phosphorylation in response to mitogens in mouse embryonic stem cells. FEBS Lett. 482, 44–48 (2000).

    Article  CAS  PubMed  Google Scholar 

  171. Deak, M., Clifton, A. D., Lucocq, L. M. & Alessi, D. R. Mitogen- and stress-activated protein kinase-1 (MSK1) is directly activated by MAPK and SAPK2/p38, and may mediate activation of CREB. EMBO J. 17, 4426–4441 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Herbst, W. A. & Martin, K. C. Regulated transport of signaling proteins from synapse to nucleus. Curr. Opin. Neurobiol. 45, 78–84 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Pan, Y. et al. Neuronal activity recruits the CRTC1/CREB axis to drive transcription-dependent autophagy for maintaining late-phase LTD. Cell Rep. 36, 109398 (2021). Resolves the paradox of how both LTP-inducing and LTD-inducing stimuli can cause CREB phosphorylation yet support diametrically opposite effects on synaptic plasticity.

    Article  CAS  PubMed  Google Scholar 

  174. Wang, Y. et al. Chronic neuronal inactivity utilizes the mTOR–TFEB pathway to drive transcription-dependent autophagy for homeostatic up-scaling. J. Neurosci. 43, 2631–2652 (2023).

    Article  CAS  PubMed  Google Scholar 

  175. Nonaka, M. et al. Region-specific activation of CRTC1-CREB signaling mediates long-term fear memory. Neuron 84, 92–106 (2014).

    Article  CAS  PubMed  Google Scholar 

  176. Sekeres, M. J. et al. Increasing CRTC1 function in the dentate gyrus during memory formation or reactivation increases memory strength without compromising memory quality. J. Neurosci. 32, 17857–17868 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Zhou, Y. et al. Requirement of TORC1 for late-phase long-term potentiation in the hippocampus. PLoS ONE 1, e16 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  178. Zaidi, N. F., Thomson, E. E., Choi, E. K., Buxbaum, J. D. & Wasco, W. Intracellular calcium modulates the nuclear translocation of calsenilin. J. Neurochem. 89, 593–601 (2004).

    Article  CAS  PubMed  Google Scholar 

  179. Palczewska, M. et al. Sumoylation regulates nuclear localization of repressor DREAM. Biochim. Biophys. Acta 1813, 1050–1058 (2011).

    Article  CAS  PubMed  Google Scholar 

  180. Park, S. Y., Kim, Y. S., Yang, D. J. & Yoo, M. A. Transcriptional regulation of the Drosophila catalase gene by the DRE/DREF system. Nucleic Acids Res. 32, 1318–1324 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. An, W. F. et al. Modulation of A-type potassium channels by a family of calcium sensors. Nature 403, 553–556 (2000).

    Article  CAS  PubMed  Google Scholar 

  182. Zhang, Y. et al. The DREAM protein negatively regulates the NMDA receptor through interaction with the NR1 subunit. J. Neurosci. 30, 7575–7586 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Lilliehook, C. et al. Altered Abeta formation and long-term potentiation in a calsenilin knock-out. J. Neurosci. 23, 9097–9106 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Alexander, J. C. et al. The role of calsenilin/DREAM/KChIP3 in contextual fear conditioning. Learn. Mem. 16, 167–177 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Wu, L. J. et al. DREAM (downstream regulatory element antagonist modulator) contributes to synaptic depression and contextual fear memory. Mol. Brain 3, 3 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  186. Fontan-Lozano, A. et al. Lack of DREAM protein enhances learning and memory and slows brain aging. Curr. Biol. 19, 54–60 (2009).

    Article  CAS  PubMed  Google Scholar 

  187. Grochowska, K. M., Bar, J., Gomes, G. M., Kreutz, M. R. & Karpova, A. Jacob, a synapto-nuclear protein messenger linking N-methyl-d-aspartate receptor activation to nuclear gene expression. Front. Synaptic Neurosci. 13, 787494 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Karpova, A. et al. Encoding and transducing the synaptic or extrasynaptic origin of NMDA receptor signals to the nucleus. Cell 152, 1119–1133 (2013).

    Article  CAS  PubMed  Google Scholar 

  189. Kindler, S. et al. Dendritic mRNA targeting of Jacob and N-methyl-d-aspartate-induced nuclear translocation after calpain-mediated proteolysis. J. Biol. Chem. 284, 25431–25440 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Behnisch, T. et al. Nuclear translocation of Jacob in hippocampal neurons after stimuli inducing long-term potentiation but not long-term depression. PLoS ONE 6, e17276 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Dieterich, D. C. et al. Caldendrin-Jacob: a protein liaison that couples NMDA receptor signalling to the nucleus. PLoS Biol. 6, e34 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  192. Hardingham, G. E., Fukunaga, Y. & Bading, H. Extrasynaptic NMDARs oppose synaptic NMDARs by triggering CREB shut-off and cell death pathways. Nat. Neurosci. 5, 405–414 (2002).

    Article  CAS  PubMed  Google Scholar 

  193. Grochowska, K. M. et al. Jacob-induced transcriptional inactivation of CREB promotes Abeta-induced synapse loss in Alzheimer’s disease. EMBO J. 42, e112453 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Spilker, C. et al. A Jacob/Nsmf gene knockout results in hippocampal dysplasia and impaired BDNF signaling in dendritogenesis. PLoS Genet. 12, e1005907 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  195. Kaltschmidt, C., Kaltschmidt, B. & Baeuerle, P. A. Brain synapses contain inducible forms of the transcription factor NF-kappa B. Mech. Dev. 43, 135–147 (1993).

    Article  CAS  PubMed  Google Scholar 

  196. Marcora, E. & Kennedy, M. B. The Huntington’s disease mutation impairs Huntingtin’s role in the transport of NF-kappaB from the synapse to the nucleus. Hum. Mol. Genet. 19, 4373–4384 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Baeuerle, P. A. & Baltimore, D. I kappa B: a specific inhibitor of the NF-kappa B transcription factor. Science 242, 540–546 (1988).

    Article  CAS  PubMed  Google Scholar 

  198. Meffert, M. K., Chang, J. M., Wiltgen, B. J., Fanselow, M. S. & Baltimore, D. NF-kappa B functions in synaptic signaling and behavior. Nat. Neurosci. 6, 1072–1078 (2003).

    Article  CAS  PubMed  Google Scholar 

  199. Mikenberg, I., Widera, D., Kaus, A., Kaltschmidt, B. & Kaltschmidt, C. Transcription factor NF-kappaB is transported to the nucleus via cytoplasmic dynein/dynactin motor complex in hippocampal neurons. PLoS ONE 2, e589 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  200. Wellmann, H., Kaltschmidt, B. & Kaltschmidt, C. Retrograde transport of transcription factor NF-kappa B in living neurons. J. Biol. Chem. 276, 11821–11829 (2001).

    Article  CAS  PubMed  Google Scholar 

  201. Israel, A. The IKK complex, a central regulator of NF-kappaB activation. Cold Spring Harb. Perspect. Biol. 2, a000158 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  202. Beg, A. A., Sha, W. C., Bronson, R. T., Ghosh, S. & Baltimore, D. Embryonic lethality and liver degeneration in mice lacking the RelA component of NF-kappa B. Nature 376, 167–170 (1995).

    Article  CAS  PubMed  Google Scholar 

  203. Kaltschmidt, B. & Kaltschmidt, C. NF-kappaB in long-term memory and structural plasticity in the adult mammalian brain. Front. Mol. Neurosci. 8, 69 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  204. Kaltschmidt, B. et al. NF-kappaB regulates spatial memory formation and synaptic plasticity through protein kinase A/CREB signaling. Mol. Cell Biol. 26, 2936–2946 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Denis-Donini, S. et al. Impaired adult neurogenesis associated with short-term memory defects in NF-kappaB p50-deficient mice. J. Neurosci. 28, 3911–3919 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Kassed, C. A. & Herkenham, M. NF-kappaB p50-deficient mice show reduced anxiety-like behaviors in tests of exploratory drive and anxiety. Behav. Brain Res. 154, 577–584 (2004).

    Article  CAS  PubMed  Google Scholar 

  207. Kassed, C. A., Willing, A. E., Garbuzova-Davis, S., Sanberg, P. R. & Pennypacker, K. R. Lack of NF-kappaB p50 exacerbates degeneration of hippocampal neurons after chemical exposure and impairs learning. Exp. Neurol. 176, 277–288 (2002).

    Article  CAS  PubMed  Google Scholar 

  208. O’Mahony, A. et al. NF-kappaB/Rel regulates inhibitory and excitatory neuronal function and synaptic plasticity. Mol. Cell Biol. 26, 7283–7298 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  209. Oikawa, K. et al. NF-kappaB p50 subunit knockout impairs late LTP and alters long term memory in the mouse hippocampus. BMC Neurosci. 13, 45 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Crabtree, G. R. & Olson, E. N. NFAT signaling: choreographing the social lives of cells. Cell 109, S67–S79 (2002).

    Article  CAS  PubMed  Google Scholar 

  211. Okamura, H. et al. Concerted dephosphorylation of the transcription factor NFAT1 induces a conformational switch that regulates transcriptional activity. Mol. Cell 6, 539–550 (2000).

    Article  CAS  PubMed  Google Scholar 

  212. Ulrich, J. D. et al. Distinct activation properties of the nuclear factor of activated T-cells (NFAT) isoforms NFATc3 and NFATc4 in neurons. J. Biol. Chem. 287, 37594–37609 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Murphy, J. G., Crosby, K. C., Dittmer, P. J., Sather, W. A. & Dell’Acqua, M. L. AKAP79/150 recruits the transcription factor NFAT to regulate signaling to the nucleus by neuronal L-type Ca(2+) channels. Mol. Biol. Cell 30, 1743–1756 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Church, T. W. et al. AKAP79 enables calcineurin to directly suppress protein kinase A activity. eLife 10, e68164 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Dittmer, P. J., Dell’Acqua, M. L. & Sather, W. A. Ca2+/calcineurin-dependent inactivation of neuronal L-type Ca2+ channels requires priming by AKAP-anchored protein kinase A. Cell Rep. 7, 1410–1416 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Navedo, M. F. & Hell, J. W. AKAP5 keeps L-type channels and NFAT on their toes. Cell Rep. 7, 1341–1342 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. Sun, X. & Lin, Y. Npas4: linking neuronal activity to memory. Trends Neurosci. 39, 264–275 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  218. Ramamoorthi, K. et al. Npas4 regulates a transcriptional program in CA3 required for contextual memory formation. Science 334, 1669–1675 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Lin, Y. et al. Activity-dependent regulation of inhibitory synapse development by Npas4. Nature 455, 1198–1204 (2008). This article sets forth Npas4 as archetypical immediate early gene product with important consequences for brain circuits.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. Spiegel, I. et al. Npas4 regulates excitatory–inhibitory balance within neural circuits through cell-type-specific gene programs. Cell 157, 1216–1229 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. Yang, J. et al. Functionally distinct NPAS4-expressing somatostatin interneuron ensembles critical for motor skill learning. Neuron 110, 3339–3355.e8 (2022).

    Article  CAS  PubMed  Google Scholar 

  222. Deisseroth, K., Mermelstein, P. G., Xia, H. & Tsien, R. W. Signaling from synapse to nucleus: the logic behind the mechanisms. Curr. Opin. Neurobiol. 13, 354–365 (2003).

    Article  CAS  PubMed  Google Scholar 

  223. Mermelstein, P. G., Deisseroth, K., Dasgupta, N., Isaksen, A. L. & Tsien, R. W. Calmodulin priming: nuclear translocation of a calmodulin complex and the memory of prior neuronal activity. Proc. Natl Acad. Sci. USA 98, 15342–15347 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Ma, H. et al. GammaCaMKII shuttles Ca(2+)/CaM to the nucleus to trigger CREB phosphorylation and gene expression. Cell 159, 281–294 (2014). This study reveals shuttle mechanism for the transport of Ca2+/CaM to the nucleus following local signalling events at the cell perimeter (soma or dendrite).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  225. Wei, F. et al. Calcium calmodulin-dependent protein kinase IV is required for fear memory. Nat. Neurosci. 5, 573–579 (2002).

    Article  CAS  PubMed  Google Scholar 

  226. Cohen, S. M. et al. Excitation–transcription coupling in parvalbumin-positive interneurons employs a novel CaM kinase-dependent pathway distinct from excitatory. Neurons Neuron 90, 292–307 (2016).

    Article  CAS  PubMed  Google Scholar 

  227. Deisseroth, K., Bito, H. & Tsien, R. W. Signaling from synapse to nucleus: postsynaptic CREB phosphorylation during multiple forms of hippocampal synaptic plasticity. Neuron 16, 89–101 (1996).

    Article  CAS  PubMed  Google Scholar 

  228. Limback-Stokin, K., Korzus, E., Nagaoka-Yasuda, R. & Mayford, M. Nuclear calcium/calmodulin regulates memory consolidation. J. Neurosci. 24, 10858–10867 (2004). Behavioural experiments reveal the importance of Ca2+/CaM shuttling to the nucleus both for gene expression and for spatial memory.

    Article  PubMed  PubMed Central  Google Scholar 

  229. Cohen, S. M., Li, B., Tsien, R. W. & Ma, H. Evolutionary and functional perspectives on signaling from neuronal surface to nucleus. Biochem. Biophys. Res. Commun. 460, 88–99 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  230. Persechini, A. & Stemmer, P. M. Calmodulin is a limiting factor in the cell. Trends Cardiovasc. Med. 12, 32–37 (2002).

    Article  CAS  PubMed  Google Scholar 

  231. Teruel, M. N., Chen, W., Persechini, A. & Meyer, T. Differential codes for free Ca(2+)-calmodulin signals in nucleus and cytosol. Curr. Biol. 10, 86–94 (2000).

    Article  CAS  PubMed  Google Scholar 

  232. Zhai, S., Ark, E. D., Parra-Bueno, P. & Yasuda, R. Long-distance integration of nuclear ERK signaling triggered by activation of a few dendritic spines. Science 342, 1107–1111 (2013). Localized stimulation of a handful of dendritic spines suffices to trigger elevation of nuclear ERK, showing the potency of E–TC.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  233. Tyssowski, K. M. & Gray, J. M. The neuronal stimulation–transcription coupling map. Curr. Opin. Neurobiol. 59, 87–94 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  234. Heinz, D. A. & Bloodgood, B. L. Mechanisms that communicate features of neuronal activity to the genome. Curr. Opin. Neurobiol. 63, 131–136 (2020).

    Article  CAS  PubMed  Google Scholar 

  235. Tyssowski, K. M. et al. Different neuronal activity patterns induce different gene expression programs. Neuron 98, 530–546.e11 (2018). Transcriptomics reveals distinct patterns of gene expression following brief or long-lasting stimulation, supporting a form of stimulus encoding.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  236. Chen, H. J., Rojas-Soto, M., Oguni, A. & Kennedy, M. B. A synaptic Ras-GTPase activating protein (p135 SynGAP) inhibited by CaM kinase II. Neuron 20, 895–904 (1998). Along with Kim et al., this study establishes a biochemical link between CaMKII activation and mobilization of the MAP kinase pathway.

    Article  CAS  PubMed  Google Scholar 

  237. Kim, J. H., Liao, D., Lau, L. F. & Huganir, R. L. SynGAP: a synaptic RasGAP that associates with the PSD-95/SAP90 protein family. Neuron 20, 683–691 (1998).

    Article  CAS  PubMed  Google Scholar 

  238. Farnsworth, C. L. et al. Calcium activation of Ras mediated by neuronal exchange factor Ras-GRF. Nature 376, 524–527 (1995).

    Article  CAS  PubMed  Google Scholar 

  239. Rumbaugh, G., Adams, J. P., Kim, J. H. & Huganir, R. L. SynGAP regulates synaptic strength and mitogen-activated protein kinases in cultured neurons. Proc. Natl Acad. Sci. USA 103, 4344–4351 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  240. Araki, Y., Zeng, M., Zhang, M. & Huganir, R. L. Rapid dispersion of SynGAP from synaptic spines triggers AMPA receptor insertion and spine enlargement during LTP. Neuron 85, 173–189 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  241. Bourtchuladze, R. et al. Deficient long-term memory in mice with a targeted mutation of the cAMP-responsive element-binding protein. Cell 79, 59–68 (1994).

    Article  CAS  PubMed  Google Scholar 

  242. More, L. et al. CREB serine 133 is necessary for spatial cognitive flexibility and long-term potentiation. Neuropharmacology 219, 109237 (2022). This study provides long-sought evidence that phosphorylation of CREB Ser133 is critical for L-LTP and spatial learning (but see also Briand et al.).

    Article  CAS  PubMed  Google Scholar 

  243. Briand, L. A., Lee, B. G., Lelay, J., Kaestner, K. H. & Blendy, J. A. Serine 133 phosphorylation is not required for hippocampal CREB-mediated transcription and behavior. Learn. Mem. 22, 109–115 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  244. Cohen, S. M. et al. Calmodulin shuttling mediates cytonuclear signaling to trigger experience-dependent transcription and memory. Nat. Commun. 9, 2451 (2018). Experience-dependent learning drives activity-dependent gene expression, L-LTP and behavioural memory downstream of Ca2+/CaM shuttling.

    Article  PubMed  PubMed Central  Google Scholar 

  245. Harward, S. C. et al. Autocrine BDNF-TrkB signalling within a single dendritic spine. Nature 538, 99–103 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  246. Kang, H. & Schuman, E. M. Long-lasting neurotrophin-induced enhancement of synaptic transmission in the adult hippocampus. Science 267, 1658–1662 (1995).

    Article  CAS  PubMed  Google Scholar 

  247. Wang, C. S., Kavalali, E. T. & Monteggia, L. M. BDNF signaling in context: from synaptic regulation to psychiatric disorders. Cell 185, 62–76 (2022).

    Article  CAS  PubMed  Google Scholar 

  248. Jakawich, S. et al. Local presynaptic activity gates homeostatic changes in presynaptic function driven by dendritic BDNF synthesis. Neuron 68, 1143–1158 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  249. Lindskog, M. et al. Postsynaptic GluA1 enables acute retrograde enhancement of presynaptic function to coordinate adaptation to synaptic inactivity. Proc. Natl Acad. Sci. USA 107, 21806–21811 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  250. Lyford, G. L. et al. Arc, a growth factor and activity-regulated gene, encodes a novel cytoskeleton-associated protein that is enriched in neuronal dendrites. Neuron 14, 433–445 (1995). Discovery and characterization of Arc (also known as Arg3.1): a key immediate early gene, later shown to be induced by spatial learning, that supports both LTP and LTD.

    Article  CAS  PubMed  Google Scholar 

  251. Guzowski, J. F. et al. Inhibition of activity-dependent arc protein expression in the rat hippocampus impairs the maintenance of long-term potentiation and the consolidation of long-term memory. J. Neurosci. 20, 3993–4001 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  252. Shepherd, J. D. & Bear, M. F. New views of Arc, a master regulator of synaptic plasticity. Nat. Neurosci. 14, 279–284 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  253. Okuno, H., Minatohara, K. & Bito, H. Inverse synaptic tagging: an inactive synapse-specific mechanism to capture activity-induced Arc/arg3.1 and to locally regulate spatial distribution of synaptic weights. Semin. Cell Dev. Biol. 77, 43–50 (2018).

    Article  CAS  PubMed  Google Scholar 

  254. Poo, M. M. et al. What is memory? The present state of the engram. BMC Biol. 14, 40 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  255. Okuno, H. et al. Inverse synaptic tagging of inactive synapses via dynamic interaction of Arc/Arg3.1 with CaMKIIbeta. Cell 149, 886–898 (2012). This article shows that the interaction of Arc/Arg3.1 with deactivated CaMKIIβ supports AMPAR endocytosis that weakens synapses proximally (inverse synaptic tagging), but possibly supports reallocation of AMPARs for synaptic strengthening nearby.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  256. Rial Verde, E. M., Lee-Osbourne, J., Worley, P. F., Malinow, R. & Cline, H. T. Increased expression of the immediate-early gene arc/arg3.1 reduces AMPA receptor-mediated synaptic transmission. Neuron 52, 461–474 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  257. Haas, K., Li, J. & Cline, H. T. AMPA receptors regulate experience-dependent dendritic arbor growth in vivo. Proc. Natl Acad. Sci. USA 103, 12127–12131 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  258. Chowdhury, S. et al. Arc/Arg3.1 interacts with the endocytic machinery to regulate AMPA receptor trafficking. Neuron 52, 445–459 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  259. Shepherd, J. D. et al. Arc/Arg3.1 mediates homeostatic synaptic scaling of AMPA receptors. Neuron 52, 475–484 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  260. Das, S., Lituma, P. J., Castillo, P. E. & Singer, R. H. Maintenance of a short-lived protein required for long-term memory involves cycles of transcription and local translation. Neuron 111, 2051–2064.e6 (2023).

    Article  CAS  PubMed  Google Scholar 

  261. Redondo, R. L. & Morris, R. G. Making memories last: the synaptic tagging and capture hypothesis. Nat. Rev. Neurosci. 12, 17–30 (2011).

    Article  CAS  PubMed  Google Scholar 

  262. Lee, Y. J. et al. Local regulation and function of importin-β1 in hippocampal neurons during transcription-dependent plasticity. Preprint at bioRxiv https://doi.org/10.1101/2020.12.02.409078 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  263. Cherix, A. et al. Deletion of Crtc1 leads to hippocampal neuroenergetic impairments associated with depressive-like behavior. Mol. Psychiatry 27, 4485–4501 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  264. Tonegawa, S., Pignatelli, M., Roy, D. S. & Ryan, T. J. Memory engram storage and retrieval. Curr. Opin. Neurobiol. 35, 101–109 (2015).

    Article  CAS  PubMed  Google Scholar 

  265. Choi, D. I. et al. Synaptic correlates of associative fear memory in the lateral amygdala. Neuron 109, 2717–2726.e3 (2021).

    Article  CAS  PubMed  Google Scholar 

  266. Martin, K. C. et al. Synapse-specific, long-term facilitation of aplysia sensory to motor synapses: a function for local protein synthesis in memory storage. Cell 91, 927–938 (1997).

    Article  CAS  PubMed  Google Scholar 

  267. Lee, S. J., Escobedo-Lozoya, Y., Szatmari, E. M. & Yasuda, R. Activation of CaMKII in single dendritic spines during long-term potentiation. Nature 458, 299–304 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  268. Martin, K. C. & Kosik, K. S. Synaptic tagging — who’s it? Nat. Rev. Neurosci. 3, 813–820 (2002).

    Article  CAS  PubMed  Google Scholar 

  269. Yoon, Y. J. et al. Glutamate-induced RNA localization and translation in neurons. Proc. Natl Acad. Sci. USA 113, E6877–E6886 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  270. Lisman, J. & Raghavachari, S. Biochemical principles underlying the stable maintenance of LTP by the CaMKII/NMDAR complex. Brain Res. 1621, 51–61 (2015). This article makes the strong claim that activated CaMKII, bound to the NMDAR, is a ‘synaptic tag.

    Article  CAS  PubMed  Google Scholar 

  271. Murakoshi, H. et al. Kinetics of endogenous CaMKII required for synaptic plasticity revealed by optogenetic kinase inhibitor. Neuron 94, 37–47 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  272. Tao, W. et al. Synaptic memory requires CaMKII. eLife 10, e60360 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  273. Bittner, K. C., Milstein, A. D., Grienberger, C., Romani, S. & Magee, J. C. Behavioral time scale synaptic plasticity underlies CA1 place fields. Science 357, 1033–1036 (2017). Instant formation of a place field, an elemental piece of spatial memory, is triggered by direct dendritic depolarization as an animal traverses the ultimate location of the place field and prevented by in vivo L-type channel blockade.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  274. Gerstner, W., Lehmann, M., Liakoni, V., Corneil, D. & Brea, J. Eligibility traces and plasticity on behavioral time scales: experimental support of neoHebbian three-factor learning rules. Front. Neural Circuits 12, 53 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  275. Schultz, W. Reward prediction error. Curr. Biol. 27, R369–R371 (2017).

    Article  CAS  PubMed  Google Scholar 

  276. Jeong, H. et al. Mesolimbic dopamine release conveys causal associations. Science 378, eabq6740 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  277. Yagishita, S. et al. A critical time window for dopamine actions on the structural plasticity of dendritic spines. Science 345, 1616–1620 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  278. Yap, E. L. et al. Bidirectional perisomatic inhibitory plasticity of a Fos neuronal network. Nature 590, 115–121 (2021). Induction of Fos gene expression not only identifies neurons undergoing plastic changes but also drives modification of inhibitory synaptic strength.

    Article  CAS  PubMed  Google Scholar 

  279. Fujii, H. et al. Nonlinear decoding and asymmetric representation of neuronal input information by CaMKIIalpha and calcineurin. Cell Rep. 3, 978–987 (2013).

    Article  CAS  PubMed  Google Scholar 

  280. Laviv, T. et al. In vivo imaging of the coupling between neuronal and CREB activity in the mouse brain. Neuron 105, 799–812.e5 (2020). Optical imaging of CREB phosphorylation uses an engineered probe, which may enable real-time monitoring of E–TC.

    Article  CAS  PubMed  Google Scholar 

  281. Panagiotakos, G. & Pasca, S. P. A matter of space and time: emerging roles of disease-associated proteins in neural development. Neuron 110, 195–208 (2022).

    Article  CAS  PubMed  Google Scholar 

  282. Hebb, D.O. The Organization of Behavior: A Neuropsychological Theory (Wiley,1949).

  283. Hudmon, A. et al. A mechanism for Ca2+/calmodulin-dependent protein kinase II clustering at synaptic and nonsynaptic sites based on self-association. J. Neurosci. 25, 6971–6983 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  284. Schuman, E. M. mRNA trafficking and local protein synthesis at the synapse. Neuron 23, 645–648 (1999).

    Article  CAS  PubMed  Google Scholar 

  285. Jeyabalan, N. & Clement, J. P. SYNGAP1: mind the gap. Front. Cell Neurosci. 10, 32 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  286. Korb, E. & Finkbeiner, S. Arc in synaptic plasticity: from gene to behavior. Trends Neurosci. 34, 591–598 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  287. Matsuzaki, M., Honkura, N., Ellis-Davies, G. C. & Kasai, H. Structural basis of long-term potentiation in single dendritic spines. Nature 429, 761–766 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  288. Hrvatin, S. et al. Single-cell analysis of experience-dependent transcriptomic states in the mouse visual cortex. Nat. Neurosci. 21, 120–129 (2018).

    Article  CAS  PubMed  Google Scholar 

  289. Koch, C. & Zador, A. The function of dendritic spines: devices subserving biochemical rather than electrical compartmentalization. J. Neurosci. 13, 413–422 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  290. Bloodgood, B. L., Giessel, A. J. & Sabatini, B. L. Biphasic synaptic Ca influx arising from compartmentalized electrical signals in dendritic spines. PLoS Biol. 7, e1000190 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  291. Higley, M. J. & Sabatini, B. L. Calcium signaling in dendrites and spines: practical and functional considerations. Neuron 59, 902–913 (2008).

    Article  CAS  PubMed  Google Scholar 

  292. Harnett, M. T., Makara, J. K., Spruston, N., Kath, W. L. & Magee, J. C. Synaptic amplification by dendritic spines enhances input cooperativity. Nature 491, 599–602 (2012). This study demonstrates that the spine neck resistance has a pivotal role in enlarging spine depolarizations, potentially recruiting voltage-sensitive machinery within the spine head for downstream plasticity.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  293. Palmer, L. M. & Stuart, G. J. Membrane potential changes in dendritic spines during action potentials and synaptic input. J. Neurosci. 29, 6897–6903 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  294. Bloodgood, B. L. & Sabatini, B. L. Neuronal activity regulates diffusion across the neck of dendritic spines. Science 310, 866–869 (2005).

    Article  CAS  PubMed  Google Scholar 

  295. Popovic, M. A., Carnevale, N., Rozsa, B. & Zecevic, D. Electrical behaviour of dendritic spines as revealed by voltage imaging. Nat. Commun. 6, 8436 (2015).

    Article  CAS  PubMed  Google Scholar 

  296. Cornejo, V. H., Ofer, N. & Yuste, R. Voltage compartmentalization in dendritic spines in vivo. Science 375, 82–86 (2022).

    Article  CAS  PubMed  Google Scholar 

  297. De Marco Garcia, N. V., Karayannis, T. & Fishell, G. Neuronal activity is required for the development of specific cortical interneuron subtypes. Nature 472, 351–355 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  298. Jiao, Y. et al. A key mechanism underlying sensory experience-dependent maturation of neocortical GABAergic circuits in vivo. Proc. Natl Acad. Sci. USA 108, 12131–12136 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  299. D’Amour J, A. & Froemke, R. C. Inhibitory and excitatory spike-timing-dependent plasticity in the auditory cortex. Neuron 86, 514–528 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  300. Schild, L. C. et al. The balance between cytoplasmic and nuclear CaM kinase-1 signaling controls the operating range of noxious heat avoidance. Neuron 84, 983–996 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  301. Yu, Y. V. et al. CaMKI-dependent regulation of sensory gene expression mediates experience-dependent plasticity in the operating range of a thermosensory. Neuron 84, 919–926 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  302. He, X. et al. A critical role for gammaCaMKII in decoding NMDA signaling to regulate AMPA receptors in putative inhibitory interneurons. Neurosci. Bull. 38, 916–926 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  303. He, X. et al. Gating of hippocampal rhythms and memory by synaptic plasticity in inhibitory interneurons. Neuron 109, 1013–1028.e9 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  304. Mikhaylova, M. et al. Cellular distribution of the NMDA-receptor activated synapto-nuclear messenger Jacob in the rat brain. Brain Struct. Funct. 219, 843–860 (2014).

    Article  CAS  PubMed  Google Scholar 

  305. Prestigio, C. et al. REST/NRSF drives homeostatic plasticity of inhibitory synapses in a target-dependent fashion. eLife 10, e69058 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  306. Hartzell, A. L. et al. NPAS4 recruits CCK basket cell synapses and enhances cannabinoid-sensitive inhibition in the mouse hippocampus. eLife 7, e35927 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  307. Mardinly, A. R. et al. Sensory experience regulates cortical inhibition by inducing IGF1 in VIP neurons. Nature 531, 371–375 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

H.M. was supported by the National Natural Science Foundation of China (81930030, 82230036 and 31722023), the Science and Technology Innovation 2030-Major Project (2021ZD0203501), the National Key R&D Program of China (2019YFA0508603), the Project for Hangzhou Medical Disciplines of Excellence and the Key Project for Hangzhou Medical Disciplines. H.G.K. was supported by NIMH (T32MH019524). X.W. was supported by NIGMS (RM1 HG009491 to J.D. Boeke). X.H. was supported by the National Natural Science Foundation of China (32200788). R.W.T. and his associates were supported by NINDS (R01NS125271 and R01NS24067), NIMH (R01MH071739), the Simons Foundation, the Burnett Family Foundation, the Marlene & Paolo Fresco Foundation and the Vulnerable Brain Project. The authors thank B. Li and R.J. Colbran for comments on the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

All authors researched data for the article, contributed substantially to discussion of the content and wrote the article. R.W.T., H.M., H.G.K. and X.W. reviewed and/or edited the manuscript before submission.

Corresponding authors

Correspondence to Huan Ma or Richard W. Tsien.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Neuroscience thanks Michael Kreutz and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Autophosphorylation

A process in which a protein kinase catalyses the addition of a phosphate group to specific sites in its own sequence.

Behavioural timescale plasticity

(BTSP). A type of synaptic plasticity that integrates neuronal signals over a seconds-long timescale.

Enhancer

A region of DNA that regulates the transcription of genes.

Immediate early genes

A group of genes that are rapidly and transiently activated on neuronal activity.

Local translation

The process of protein synthesis occurring directly within dendrites or axons.

Long-term potentiation

(LTP). A persistent increase in synaptic strength that occurs after stimulation of a specific set of synapses.

Memory engrams

A set of changes in a neuronal network serving as the biological basis for storing memories.

Morris water maze

(MWM). A widely used behavioural test to assess spatial learning and memory, which requires navigation to a submerged platform using spatial cues.

Plasticity-related proteins

Proteins synthesized in association with, and possibly necessary for, synaptic plasticity.

Postsynaptic density

A huge protein complex associated with postsynaptic membranes of excitatory synapses, first identified as an electron-dense region under electron microscopy.

Transcription factors

Proteins that bind to specific DNA sequences and regulate the transcription of genes.

Voltage-dependent conformational signal

Changes in protein structure in response to changes in membrane potential that are read out for downstream signalling.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, H., Khaled, H.G., Wang, X. et al. Excitation–transcription coupling, neuronal gene expression and synaptic plasticity. Nat. Rev. Neurosci. 24, 672–692 (2023). https://doi.org/10.1038/s41583-023-00742-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41583-023-00742-5

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing