Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Reconstructing computational system dynamics from neural data with recurrent neural networks

Abstract

Computational models in neuroscience usually take the form of systems of differential equations. The behaviour of such systems is the subject of dynamical systems theory. Dynamical systems theory provides a powerful mathematical toolbox for analysing neurobiological processes and has been a mainstay of computational neuroscience for decades. Recently, recurrent neural networks (RNNs) have become a popular machine learning tool for studying the non-linear dynamics of neural and behavioural processes by emulating an underlying system of differential equations. RNNs have been routinely trained on similar behavioural tasks to those used for animal subjects to generate hypotheses about the underlying computational mechanisms. By contrast, RNNs can also be trained on the measured physiological and behavioural data, thereby directly inheriting their temporal and geometrical properties. In this way they become a formal surrogate for the experimentally probed system that can be further analysed, perturbed and simulated. This powerful approach is called dynamical system reconstruction. In this Perspective, we focus on recent trends in artificial intelligence and machine learning in this exciting and rapidly expanding field, which may be less well known in neuroscience. We discuss formal prerequisites, different model architectures and training approaches for RNN-based dynamical system reconstructions, ways to evaluate and validate model performance, how to interpret trained models in a neuroscience context, and current challenges.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: State spaces, vector fields and trajectories.
Fig. 2: Dynamical system reconstruction via recurrent neural networks.
Fig. 3: Dynamical system reconstruction of simulated and real physiological data by recurrent neural networks.
Fig. 4: Architectures used for dynamical system reconstruction.
Fig. 5: Interpreting the relationship of a data-inferred recurrent neural network to the biological substrate.

Similar content being viewed by others

Data availability

All data used to create the RNN reconstructions in Fig. 3 are publicly available. See Supplementary Methods for details.

Code availability

All codes used to create the RNN reconstructions in Figs. 2 and 3 are publicly available. The code for the models used in Fig. 1b,d is publicly available. See Supplementary Methods for details.

References

  1. Amit, D. J. & Brunel, N. Model of global spontaneous activity and local structured activity during delay periods in the cerebral cortex. Cereb. Cortex 7, 237–252 (1997).

    Article  CAS  PubMed  Google Scholar 

  2. Brunel, N. Dynamics of sparsely connected networks of excitatory and inhibitory spiking neurons. J. Comput. Neurosci. 8, 183–208 (2000).

    Article  CAS  PubMed  Google Scholar 

  3. Carnevale, F., de Lafuente, V., Romo, R., Barak, O. & Parga, N. Dynamic control of response criterion in premotor cortex during perceptual detection under temporal uncertainty. Neuron 86, 1067–1077 (2015).

    Article  CAS  PubMed  Google Scholar 

  4. Deco, G. & Rolls, E. T. in Creating Brain-Like Intelligence (eds Sendhoff, B. et al.) 31–50 (Springer, 2009).

  5. Durstewitz, D. Self-organizing neural integrator predicts interval times through climbing activity. J. Neurosci. 23, 5342–5353 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Durstewitz, D., Huys, Q. J. M. & Koppe, G. Psychiatric illnesses as disorders of network dynamics. Biol. Psychiatry Cogn. Neurosci. Neuroimaging 6, 865–876 (2021).

    PubMed  Google Scholar 

  7. Durstewitz, D., Seamans, J. K. & Sejnowski, T. J. Neurocomputational models of working memory. Nat. Neurosci. 3, 1184–1191 (2000).

    Article  CAS  PubMed  Google Scholar 

  8. Goel, A. & Buonomano, D. V. Timing as an intrinsic property of neural networks: evidence from in vivo and in vitro experiments. Philos. Trans. R. Soc. Lond. B Biol. Sci. 369, 20120460 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Hopfield, J. J. Neural networks and physical systems with emergent collective computational abilities. Proc. Natl Acad. Sci. USA 79, 2554–2558 (1982).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Izhikevich, E. M. Dynamical Systems in Neuroscience (MIT Press, 2007).

  11. Machens, C. K., Romo, R. & Brody, C. D. Flexible control of mutual inhibition: a neural model of two-interval discrimination. Science 307, 1121–1124 (2005).

    Article  CAS  PubMed  Google Scholar 

  12. Mante, V., Sussillo, D., Shenoy, K. V. & Newsome, W. T. Context-dependent computation by recurrent dynamics in prefrontal cortex. Nature 503, 78–84 (2013). A milestone in RNN-based analysis of neural data, in which task-trained RNNs were used to elucidate potential dynamical mechanisms of context-dependent decision-making, involving the context-dependent integration of evidence by approximate line attractors, similar to the patterns observed in the actual experimental data.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Miller, P. Dynamical systems, attractors, and neural circuits. F1000Res. 5, F1000 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Rinzel, J. & Ermentrout, G. B. in Methods of Neuronal Modeling: From Synapses to Networks (eds Koch, C. & Segev, I.) 251–292 (MIT Press, 1998).

  15. Wang, X.-J. Synaptic basis of cortical persistent activity: the importance of NMDA receptors to working memory. J. Neurosci. 19, 9587–9603 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Wang, X.-J. Probabilistic decision making by slow reverberation in cortical circuits. Neuron 36, 955–968 (2002).

    Article  CAS  PubMed  Google Scholar 

  17. Wilson, H. R. Spikes, Decisions, and Actions: The Dynamical Foundations of Neuroscience (Oxford Univ. Press, 1999).

  18. Wilson, H. R. & Cowan, J. D. Excitatory and inhibitory interactions in localized populations of model neurons. Biophys. J. 12, 1–24 (1972).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Branicky, M. S. Universal computation and other capabilities of hybrid and continuous dynamical systems. Theor. Comput. Sci. 138, 67–100 (1995).

    Article  Google Scholar 

  20. Koiran, P., Cosnard, M. & Garzon, M. Computability with low-dimensional dynamical systems. Theor. Comput. Sci. 132, 113–128 (1994).

    Article  Google Scholar 

  21. Siegelmann, H. & Sontag, E. D. On the computational power of neural nets. J. Comput. Syst. Sci. 50, 132–150 (1995).

    Article  Google Scholar 

  22. Bhalla, U. S. & Iyengar, R. Emergent properties of networks of biological signaling pathways. Science 283, 381–387 (1999).

    Article  CAS  PubMed  Google Scholar 

  23. Bhalla, U. S. & Iyengar, R. Robustness of the bistable behavior of a biological signaling feedback loop. Chaos 11, 221–226 (2001).

    Article  CAS  PubMed  Google Scholar 

  24. Durstewitz, D. & Gabriel, T. Dynamical basis of irregular spiking in NMDA-driven prefrontal cortex neurons. Cereb. Cortex 17, 894–908 (2007).

    Article  PubMed  Google Scholar 

  25. Durstewitz, D. & Seamans, J. K. The computational role of dopamine D1 receptors in working memory. Neural Netw. 15, 561–572 (2002).

    Article  PubMed  Google Scholar 

  26. Mackey, M. C. & Glass, L. Oscillation and chaos in physiological control systems. Science 197, 287–289 (1977).

    Article  CAS  PubMed  Google Scholar 

  27. Sherman, A. Dynamical systems theory in physiology. J. Gen. Physiol. 138, 13–19 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Machado, T. A., Kauvar, I. V. & Deisseroth, K. Multiregion neuronal activity: the forest and the trees. Nat. Rev. Neurosci. 23, 683–704 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Paulk, A. C. et al. Large-scale neural recordings with single neuron resolution using Neuropixels probes in human cortex. Nat. Neurosci. 25, 252–263 (2022).

    Article  CAS  PubMed  Google Scholar 

  30. Steinmetz, N. A. et al. Neuropixels 2.0: a miniaturized high-density probe for stable, long-term brain recordings. Science 372, eabf4588 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Urai, A. E., Doiron, B., Leifer, A. M. & Churchland, A. K. Large-scale neural recordings call for new insights to link brain and behavior. Nat. Neurosci. 25, 11–19 (2022).

    Article  CAS  PubMed  Google Scholar 

  32. Vogt, N. Massively parallel intracellular recordings. Nat. Methods 16, 1079–1079 (2019).

    Article  CAS  PubMed  Google Scholar 

  33. Brunton, S. L., Proctor, J. L. & Kutz, J. N. Discovering governing equations from data by sparse identification of nonlinear dynamical systems. Proc. Natl Acad. Sci. USA 113, 3932–3937 (2016). Introduces the sparse identification of non-linear dynamical systems (SINDy) framework for DS reconstruction that delivers an interpretable representation of the dynamics, based on a known function library, and can be trained in a very efficient way.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Champion, K., Lusch, B., Kutz, J. N. & Brunton, S. L. Data-driven discovery of coordinates and governing equations. Proc. Natl Acad. Sci. USA 116, 22445–22451 (2019). The first study to combine autoencoders with a DS reconstruction model (SINDy) in order to find suitable low-dimensional latent representations and coordinate transformations on which the dynamics can be efficiently learned.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Durstewitz, D. A state space approach for piecewise-linear recurrent neural networks for identifying computational dynamics from neural measurements. PLoS Comput. Biol. 13, e1005542 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Hernandez, D. et al. Nonlinear evolution via spatially-dependent linear dynamics for electrophysiology and calcium data. Neurons Behav. Data Anal. Theory 3, 3 (2020).

  37. Kass, R. E., Eden, U. T. & Brown, E. N. Analysis of Neural Data (Springer, 2014).

  38. Kim, T. D., Luo, T. Z., Pillow, J. W. & Brody, C. D. Inferring latent dynamics underlying neural population activity via neural differential equations. In Proc. 38th International Conference on Machine Learning (eds Meila, M. & Tong, Z.) 5551–5561 (PMLR, 2021).

  39. Koppe, G., Toutounji, H., Kirsch, P., Lis, S. & Durstewitz, D. Identifying nonlinear dynamical systems via generative recurrent neural networks with applications to fMRI. PLoS Comput. Biol. 15, e1007263 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kramer, D., Bommer, P. L., Tombolini, C., Koppe, G. & Durstewitz, D. Reconstructing nonlinear dynamical systems from multi-modal time series. In Proc. 39th International Conference on Machine Learning (eds Chaudhuri, K. et al.) 11613–11633 (PMLR, 2022). Develops an architecture specifically for DS reconstruction that enables the exploitation of many statistically different data modalities simultaneously for reconstruction, such as neural recordings and behavioural responses.

  41. Pandarinath, C. et al. Inferring single-trial neural population dynamics using sequential auto-encoders. Nat. Methods 15, 805–815 (2018). Takes previous statistical inference frameworks for RNNs from neural data one step further, situating them in a deep variational autoencoder structure that also allows for the inference of unobserved inputs to a given target area.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Paninski, L. & Cunningham, J. P. Neural data science: accelerating the experiment-analysis-theory cycle in large-scale neuroscience. Curr. Opin. Neurobiol. 50, 232–241 (2018).

    Article  CAS  PubMed  Google Scholar 

  43. Alligood, K. T., Sauer, T. D. & Yorke, J. A. Chaos: An Introduction to Dynamical Systems (Springer, 1996).

  44. Perko, L. Differential Equations and Dynamical Systems Vol. 7 (Springer, 2001).

  45. Strogatz, S. H. Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry, and Engineering (CRC, 2018).

  46. Vyas, S., Golub, M. D., Sussillo, D. & Shenoy, K. V. Computation through neural population dynamics. Annu. Rev. Neurosci. 43, 249–275 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Funahashi, S., Bruce, C. J. & Goldman-Rakic, P. S. Mnemonic coding of visual space in the monkey’s dorsolateral prefrontal cortex. J. Neurophysiol. 61, 331–349 (1989).

    Article  CAS  PubMed  Google Scholar 

  48. Fuster, J. Unit activity in prefrontal cortex during delayed-response performance: neuronal correlates of transient memory. J. Neurophysiol. 36, 61–78 (1973).

    Article  CAS  PubMed  Google Scholar 

  49. Fuster, J. The Prefrontal Cortex 5th edn (Academic, 2015).

  50. Miller, E. K., Erickson, C. A. & Desimone, R. Neural mechanisms of visual working memory in prefrontal cortex of the macaque. J. Neurosci. 16, 5154 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Albantakis, L. & Deco, G. The encoding of alternatives in multiple-choice decision making. Proc. Natl Acad. Sci. USA 106, 10308–10313 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Wang, X.-J. Decision making in recurrent neuronal circuits. Neuron 60, 215–234 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Gardner, R. J. et al. Toroidal topology of population activity in grid cells. Nature 602, 123–128 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Seung, H. S. How the brain keeps the eyes still. Proc. Natl Acad. Sci. USA 93, 13339–13344 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Seung, H. S., Lee, D. D., Reis, B. Y. & Tank, D. W. Stability of the memory of eye position in a recurrent network of conductance-based model neurons. Neuron 26, 259–271 (2000).

    Article  CAS  PubMed  Google Scholar 

  56. Wang, J., Narain, D., Hosseini, E. A. & Jazayeri, M. Flexible timing by temporal scaling of cortical responses. Nat. Neurosci. 21, 102–110 (2018).

    Article  CAS  PubMed  Google Scholar 

  57. Zhang, K. Representation of spatial orientation by the intrinsic dynamics of the head-direction cell ensemble: a theory. J. Neurosci. 16, 2112–2126 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Marder, E. & Bucher, D. Central pattern generators and the control of rhythmic movements. Curr. Biol. 11, R986–R996 (2001).

    Article  CAS  PubMed  Google Scholar 

  59. Marder, E., Goeritz, M. L. & Otopalik, A. G. Robust circuit rhythms in small circuits arise from variable circuit components and mechanisms. Curr. Opin. Neurobiol. 31, 156–163 (2015).

    Article  CAS  PubMed  Google Scholar 

  60. Lindén, H., Petersen, P. C., Vestergaard, M. & Berg, R. W. Movement is governed by rotational neural dynamics in spinal motor networks. Nature 610, 526–531 (2022).

    Article  PubMed  Google Scholar 

  61. Russo, A. A. et al. Motor cortex embeds muscle-like commands in an untangled population response. Neuron 97, 953–966.e8 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Russo, A. A. et al. Neural trajectories in the supplementary motor area and motor cortex exhibit distinct geometries, compatible with different classes of computation. Neuron 107, 745–758.e6 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Landau, I. D. & Sompolinsky, H. Coherent chaos in a recurrent neural network with structured connectivity. PLoS Comput. Biol. 14, e1006309 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  64. London, M., Roth, A., Beeren, L., Häusser, M. & Latham, P. E. Sensitivity to perturbations in vivo implies high noise and suggests rate coding in cortex. Nature 466, 123–127 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Durstewitz, D., Vittoz, N. M., Floresco, S. B. & Seamans, J. K. Abrupt transitions between prefrontal neural ensemble states accompany behavioral transitions during rule learning. Neuron 66, 438–448 (2010).

    Article  CAS  PubMed  Google Scholar 

  66. Karlsson, M. P., Tervo, D. G. R. & Karpova, A. Y. Network resets in medial prefrontal cortex mark the onset of behavioral uncertainty. Science 338, 135–139 (2012).

    Article  CAS  PubMed  Google Scholar 

  67. Kopell, N., Ermentrout, G. B., Whittington, M. A. & Traub, R. D. Gamma rhythms and beta rhythms have different synchronization properties. Proc. Natl Acad. Sci. USA 97, 1867–1872 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Roxin, A., Brunel, N. & Hansel, D. Rate models with delays and the dynamics of large networks of spiking neurons. Prog. Theor. Phys. Supp. 161, 68–85 (2006).

    Article  Google Scholar 

  69. Traub, R. D., Whittington, M. A., Stanford, I. M. & Jefferys, J. G. R. A mechanism for generation of long-range synchronous fast oscillations in the cortex. Nature 383, 621–624 (1996).

    Article  CAS  PubMed  Google Scholar 

  70. Zipser, D., Kehoe, B., Littlewort, G. & Fuster, J. A spiking network model of short-term active memory. J. Neurosci. 13, 3406 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Zipser, D. Recurrent network model of the neural mechanism of short-term active memory. Neural Comput. 3, 179–193 (1991). Early study that introduces the idea of gaining insight into neural dynamics and computation by training RNNs on similar tasks to those used in animal experiments and comparing RNN unit responses to those neurophysiologically observed.

    Article  PubMed  Google Scholar 

  72. Elman, J. L. Finding structure in time. Cogn. Sci. 14, 179–211 (1990).

    Article  Google Scholar 

  73. Pearlmutter, B. A. Dynamic Recurrent Neural Networks (Carnegie Mellon Univ., 1990).

  74. Rumelhart, D. E., Hinton, G. E. & Williams, R. J. Learning representations by back-propagating errors. Nature 323, 533–536 (1986).

    Article  Google Scholar 

  75. Sussillo, D. & Abbott, L. F. Generating coherent patterns of activity from chaotic neural networks. Neuron 63, 544–557 (2009). Introduces a novel RNN training algorithm (FORCE) and developed the idea of shaping a repertoire of complex spontaneous chaotic dynamics into a variety of desired output patterns, such as human walking motions.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Beiran, M., Meirhaeghe, N., Sohn, H., Jazayeri, M. & Ostojic, S. Parametric control of flexible timing through low-dimensional neural manifolds. Neuron 111, 739–753.e8 (2023).

    Article  CAS  PubMed  Google Scholar 

  77. Barbosa, J. et al. Flexible selection of task-relevant features through population gating. Preprint at bioRxiv https://doi.org/10.1101/2022.07.21.500962 (2022).

  78. Chaisangmongkon, W., Swaminathan, S. K., Freedman, D. J. & Wang, X.-J. Computing by robust transience: how the fronto-parietal network performs sequential, category-based decisions. Neuron 93, 1504–1517.e4 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Rajalingham, R., Piccato, A. & Jazayeri, M. Recurrent neural networks with explicit representation of dynamic latent variables can mimic behavioral patterns in a physical inference task. Nat. Commun. 13, 5865 (2022). Elegant work that illustrates how modifying the loss function of an RNN to accommodate specific assumptions about how animals or humans learn a task can substantially improve an RNN’s fit with behavioural observations.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Remington, E. D., Narain, D., Hosseini, E. A. & Jazayeri, M. Flexible sensorimotor computations through rapid reconfiguration of cortical dynamics. Neuron 98, 1005–1019.e5 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Roach, J. P., Churchland, A. K. & Engel, T. A. Choice selective inhibition drives stability and competition in decision circuits. Nat. Commun. 14, 147 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Sohn, H., Narain, D., Meirhaeghe, N. & Jazayeri, M. Bayesian computation through cortical latent dynamics. Neuron 103, 934–947.e5 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Song, H. F., Yang, G. R. & Wang, X.-J. Training excitatory-inhibitory recurrent neural networks for cognitive tasks: a simple and flexible framework. PLoS Comput. Biol. 12, e1004792 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  84. Sussillo, D., Churchland, M. M., Kaufman, M. T. & Shenoy, K. V. A neural network that finds a naturalistic solution for the production of muscle activity. Nat. Neurosci. 18, 1025–1033 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Yang, G. R., Joglekar, M. R., Song, H. F., Newsome, W. T. & Wang, X.-J. Task representations in neural networks trained to perform many cognitive tasks. Nat. Neurosci. 22, 297–306 (2019).

    Article  CAS  PubMed  Google Scholar 

  86. Driscoll, L., Shenoy, K. & Sussillo, D. Flexible multitask computation in recurrent networks utilizes shared dynamical motifs. Preprint at bioRxiv https://doi.org/10.1101/2022.08.15.503870 (2022).

  87. Goudar, V., Peysakhovich, B., Freedman, D. J., Buffalo, E. A. & Wang, X.-J. Schema formation in a neural population subspace underlies learning-to-learn in flexible sensorimotor problem-solving. Nat. Neurosci. 26, 879–890 (2023).

    Article  CAS  PubMed  Google Scholar 

  88. Johnston, W. J. & Fusi, S. Abstract representations emerge naturally in neural networks trained to perform multiple tasks. Nat. Commun. 14, 1040 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Dubreuil, A., Valente, A., Beiran, M., Mastrogiuseppe, F. & Ostojic, S. The role of population structure in computations through neural dynamics. Nat. Neurosci. 25, 783–794 (2022). A series of elegant methodological investigations showcasing how task-trained low-rank RNNs can be used and systematically dissected and analysed to reveal the computations implemented by the RNN dynamics and the underlying network structure.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Mastrogiuseppe, F. & Ostojic, S. Linking connectivity, dynamics, and computations in low-rank recurrent neural networks. Neuron 99, 609–623.e29 (2018).

    Article  CAS  PubMed  Google Scholar 

  91. Yu, B. M. et al. Extracting dynamical structure embedded in neural activity. In Proc. 18th Advances in Neural Information Processing Systems (eds. Weiss, Y., Schölkopf, B. & Platt, J.) 1545-1552 (MIT Press, Vancouver, 2005). Early study that develops a statistical inference framework for probabilistic (data-inferred) RNNs in order to reveal smoothed latent trajectories underlying cortical multiple single-unit recordings.

  92. Zhao, Y. & Park, I. M. Variational online learning of neural dynamics. Front. Comput. Neurosci. 14 (2020).

  93. Rajan, K., Harvey, C. D. & Tank, D. W. Recurrent network models of sequence generation and memory. Neuron 90, 128–142 (2016). Trains RNNs using the FORCE algorithm directly on neurophysiological data to reveal dynamical mechanisms underlying sequence generation and working memory.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Archer, E., Park, I. M., Buesing, L., Cunningham, J. & Paninski, L. Black box variational inference for state space models. In International Conference on Learning Representations (ICLR, San Juan, 2016).

  95. Keshtkaran, M. R. et al. A large-scale neural network training framework for generalized estimation of single-trial population dynamics. Nat. Methods 19, 1572–1577 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Whiteway, M. R. & Butts, D. A. Revealing unobserved factors underlying cortical activity with a rectified latent variable model applied to neural population recordings. J. Neurophysiol. 117, 919–936 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  97. Zhao, Y. & Park, I. M. Interpretable nonlinear dynamic modeling of neural trajectories. In Proc. 29th Advances in Neural Information Processing Systems (eds. Lee D. et al.) 3333–3341 (Curran Associates, Inc., 2016).

  98. Buesing, L., Macke, J. H. & Sahani, M. Learning stable, regularised latent models of neural population dynamics. Network 23, 24–47 (2012).

    Article  PubMed  Google Scholar 

  99. Linderman, S. et al. Bayesian learning and inference in recurrent switching linear dynamical systems. (eds Singh, A. & Zhu, J.) In Proc. of the 20th International Conference on Artificial Intelligence and Statistics 914–922 (PMLR, Ft. Lauderdale, 2017).

  100. Macke, J. H., Buesing, L. & Sahani, M. in Advanced State Space Methods for Neural and Clinical Data 137–159 (Cambridge Univ. Press, 2015).

  101. Paninski, L. et al. A new look at state-space models for neural data. J. Comput. Neurosci. 29, 107–126 (2010).

    Article  PubMed  Google Scholar 

  102. Pillow, J. W., Ahmadian, Y. & Paninski, L. Model-based decoding, information estimation, and change-point detection techniques for multineuron spike trains. Neural Comput. 23, 1–45 (2011).

    Article  PubMed  Google Scholar 

  103. Smith, A. C. & Brown, E. N. Estimating a state-space model from point process observations. Neural Comput. 15, 965–991 (2003).

    Article  PubMed  Google Scholar 

  104. Ghahramani, Z. & Hinton, G. E. Variational learning for switching state-space models. Neural Comput. 12, 831–864 (2000).

    Article  CAS  PubMed  Google Scholar 

  105. Nassar, J., Linderman, S., Bugallo, M. & Park, I. M. Tree-structured recurrent switching linear dynamical systems for multi-scale modeling. In International Conference on Learning Representations (ICLR, New Orleans, 2019).

  106. Nair, A. et al. An approximate line attractor in the hypothalamus encodes an aggressive state. Cell 186, 178–193.e15 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Rezende, D. J., Mohamed, S. & Wierstra, D. Stochastic backpropagation and approximate inference in deep generative models. In Proc. 31st International Conference on Machine Learning (eds. Xing, E. P & Jebara. T) 1278–1286 (PMLR, 2014).

  108. Hess, F., Monfared, Z., Brenner, M. & Durstewitz, D. Generalized teacher forcing for learning chaotic dynamics. In Proc. 40th International Conference on Machine Learning (eds Krause, A. et al.) 13017–13049 (PMLR, 2023). Introduces a highly efficient algorithm based on the idea of generalized teacher forcing for training low-dimensional RNNs for DS reconstruction on complex chaotic real-world data, overcoming the exploding-gradient problem.

  109. Arribas, D., Zhao, Y. & Park, I. M. Rescuing neural spike train models from bad MLE. In Proc. 33rd Advances in Neural Information Processing Systems (eds. Larochelle, H. et al.) 2293–2303 (Curran Associates, Inc., 2020).

  110. Brenner, M. et al. Tractable dendritic RNNs for reconstructing nonlinear dynamical systems. In Proc. 39th International Conference on Machine Learning (eds. Chaudhuri, K. et al.) 2292–2320 (PMLR, 2022).

  111. Kantz, H. & Schreiber, T. Nonlinear Time Series Analysis Vol. 7 (Cambridge Univ. Press, 2004).

  112. Sauer, T., Yorke, J. A. & Casdagli, M. Embedology. J. Stat. Phys. 65, 579–616 (1991). A landmark paper generalizing and extending previous delay embedding theorems by Whitney and Takens to account for attractors with fractal geometry such as chaotic sets.

    Article  Google Scholar 

  113. Takens, F. in Dynamical Systems and Turbulence, Warwick 1980 Vol. 898 pp. 366–381 (Springer, 1981). A landmark paper formally developing the idea that a topologically equivalent reconstruction (embedding) of the trajectories of a dynamical system (and possibly attractor) can be achieved through a delay coordinate map under specific conditions.

  114. Tenenbaum, J. B., Silva, V. D. & Langford, J. C. A global geometric framework for nonlinear dimensionality reduction. Science 290, 2319–2323 (2000).

    Article  CAS  PubMed  Google Scholar 

  115. Belkin, M. & Niyogi, P. Laplacian eigenmaps and spectral techniques for embedding and clustering. (eds Dietterich, T., Becker, S. & Ghahramani, Z.) In Proc. 14th Advances in Neural Information Processing Systems 585–591 (Curran Associates, Inc., Vancouver, 2001).

  116. Llavona, J. G. Approximation of Continuously Differentiable Functions (Elsevier, 1986).

  117. Cybenko, G. Approximation by superpositions of a sigmoidal function. Math. Control Signals Syst. 2, 303–314 (1989).

    Article  Google Scholar 

  118. Hornik, K., Stinchcombe, M. & White, H. Multilayer feedforward networks are universal approximators. Neural Netw. 2, 359–366 (1989).

    Article  Google Scholar 

  119. Lu, Z., Pu, H., Wang, F., Hu, Z. & Wang, L. The expressive power of neural networks: a view from the width. In Proc. 30th Advance on Neural Information Processing Systems (eds. Guyon, I. et al.) 6231–6239 (Curran Associates, Inc., 2017).

  120. Storace, M. & De Feo, O. PWL approximation of nonlinear dynamical systems, part I: structural stability. J. Phys. Conf. Ser. 22, 208 (2005).

    Article  Google Scholar 

  121. Chen, T. & Chen, H. Universal approximation to nonlinear operators by neural networks with arbitrary activation functions and its application to dynamical systems. IEEE Trans. Neural Netw. 6, 911–917 (1995).

    Article  CAS  PubMed  Google Scholar 

  122. Funahashi, K. I. & Nakamura, Y. Approximation of dynamical systems by continuous time recurrent neural networks. Neural Netw. 6, 801–806 (1993). Early study proving that finite-time trajectories from DS can be universally approximated to arbitrary precision by RNNs, results that were later extended to infinite-time trajectories and DS more generally.

    Article  Google Scholar 

  123. Hanson, J. & Raginsky, M. In Learning for Dynamics and Control (eds Bayen, A. M. et al.) 384–392 (PMLR, 2020).

  124. Kimura, M. & Nakano, R. Learning dynamical systems by recurrent neural networks from orbits. Neural Netw. 11, 1589–1599 (1998).

    Article  CAS  PubMed  Google Scholar 

  125. Lu, L., Jin, P., Pang, G., Zhang, Z. & Karniadakis, G. E. Learning nonlinear operators via DeepONet based on the universal approximation theorem of operators. Nat. Mach. Intell. 3, 218–229 (2021).

    Article  Google Scholar 

  126. Trischler, A. P. & D’Eleuterio, G. M. T. Synthesis of recurrent neural networks for dynamical system simulation. Neural Netw. 80, 67–78 (2016).

    Article  PubMed  Google Scholar 

  127. Friston, K. J., Harrison, L. & Penny, W. Dynamic causal modelling. Neuroimage 19, 1273–1302 (2003).

    Article  CAS  PubMed  Google Scholar 

  128. Sani, O. G., Abbaspourazad, H., Wong, Y. T., Pesaran, B. & Shanechi, M. M. Modeling behaviorally relevant neural dynamics enabled by preferential subspace identification. Nat. Neurosci. 24, 140–149 (2021).

    Article  CAS  PubMed  Google Scholar 

  129. Yu, B. M. et al. Gaussian-process factor analysis for low-dimensional single-trial analysis of neural population activity. J. Neurophysiol. 102, 614–635 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  130. Haußmann, M., Gerwinn, S., Look, A., Rakitsch, B. & Kandemir, M. Learning partially known stochastic dynamics with empirical PAC Bayes. In International Conference on Artificial Intelligence and Statistics (eds. Banerjee, A. & Fukumizu, K.) 478–486 (PMLR, 2021).

  131. Mikhaeil, J. M., Monfared, Z. & Durstewitz, D. On the difficulty of learning chaotic dynamics with RNNs. In Proc. 35th Conference on Neural Information Processing Systems (eds. Koyejo, S. et al.) (Curran Associates, Inc., 2022). Establishes a formal connection between the dynamics of an empirically observed system and the RNN used for learning its dynamics, and the exploding and vanishing gradient problem.

  132. Pathak, J., Hunt, B., Grivan, M., Lu, Z. & Ott, E. Model-free prediction of large spatiotemporally chaotic systems from data: a reservoir computing approach. Phys. Rev. Lett. 120, 024102 (2018).

    Article  CAS  PubMed  Google Scholar 

  133. Seleznev, A., Mukhin, D., Gavrilov, A., Loskutov, E. & Feigin, A. Bayesian framework for simulation of dynamical systems from multidimensional data using recurrent neural network. Chaos 29, 123115 (2019).

    Article  PubMed  Google Scholar 

  134. Vlachas, P. R., Byeon, W., Wan, Z. Y., Sapsis, T. P. & Koumoutsakos, P. Data-driven forecasting of high-dimensional chaotic systems with long short-term memory networks. Proc. R. Soc. A: Math. Phys. Eng. Sci. https://doi.org/10.1098/rspa.2017.0844 (2018).

  135. Vlachas, P. R. et al. Backpropagation algorithms and reservoir computing in recurrent neural networks for the forecasting of complex spatiotemporal dynamics. Neural Netw. 126, 191–217 (2020).

    Article  CAS  PubMed  Google Scholar 

  136. Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: encoder–decoder approaches. In Proc. of SSST-8, Eighth Workshop on Syntax, Semantics and Structure in Statistical Translation (Association for Computational Linguistics, 2014).

  137. Hochreiter, S. & Schmidhuber, J. Long short-term memory. Neural Comput. 9, 1735–1780 (1997). Introduces the LSTM gated memory architecture for dealing with the previously unresolved exploding-gradient and vanishing-gradient problem, one of the most widely applied RNNs that led to much renewed interest in up-to-that-point difficult-to-train RNNs.

    Article  CAS  PubMed  Google Scholar 

  138. Chen, R. T. Q., Rubanova, Y., Bettencourt, J. & Duvenaud, D. K. Neural ordinary differential equations. In Proc. 31st Advances in Neural Information Processing Systems (eds. Bengio, S. et al.) 6571–6583 (Curran Associates, Inc., 2018). Introduces a novel class of continuous-time RNNs (neural ODEs) and efficient training algorithms for this class, which extend conventional deep NNs into possibly infinitely deep architectures.

  139. Rusch, T. K., Mishra, S., Erichson, N. B. & Mahoney, M. W. Long expressive memory for sequence modeling. In International Conference on Learning Representations (ICLR, 2022).

  140. Bengio, Y., Simard, P. & Frasconi, P. Learning long-term dependencies with gradient descent is difficult. IEEE Trans. Neural Netw. 5, 157–166 (1994).

    Article  CAS  PubMed  Google Scholar 

  141. Hochreiter, S. Untersuchungen zu Dynamischen Neuronalen Netzen Diploma thesis, Technische Universität München (1991).

  142. Werbos, P. J. Generalization of backpropagation with application to a recurrent gas market model. Neural Netw. 1, 339–356 (1988).

    Article  Google Scholar 

  143. Schmidt, D., Koppe, G., Monfared, Z., Beutelspacher, M. & Durstewitz, D. Identifying nonlinear dynamical systems with multiple time scales and long-range dependencies. In International Conference on Learning Representations (ICLR, 2021).

  144. Chung, J., Gulcehre, C., Cho, K. & Bengio, Y. Empirical evaluation of gated recurrent neural networks on sequence modeling. Preprint at arXiv https://doi.org/10.48550/arXiv.1412.3555 (2014).

  145. Rusch, T. K. & Mishra, S. UnICORNN: a recurrent model for learning very long time dependencies. In Proc. 38th International Conference on Machine Learning (eds. Meila, M. & Tong, Z.) 9168–9178 (PMLR, 2021).

  146. Rusch, T. K. & Mishra, S. Coupled oscillatory recurrent neural network (coRNN): an accurate and (gradient) stable architecture for learning long time dependencies. In International Conference on Learning Representations (ICLR, Vienna, 2021).

  147. Arjovsky, M., Shah, A. & Bengio, Y. Unitary evolution recurrent neural networks. In Proc. 33rd International Conference on Machine Learning (eds Balcan M. F. & Weinberger K. Q.) 1120–1128 (PMLR, 2016).

  148. Chang, B., Chen, M., Haber, E. & Chi, E. H. AntisymmetricRNN: a dynamical system view on recurrent neural networks. In International Conference on Learning Representations (ICLR, New Orleans, 2019)

  149. Erichson, N. B., Azencot, O., Queiruga, A., Hodgkinson, L. & Mahoney, M. W. Lipschitz recurrent neural networks. In International Conference on Learning Representations (ICLR, Vienna, 2021).

  150. Helfrich, K., Willmott, D. & Ye, Q. Orthogonal recurrent neural networks with scaled Cayley transform. In Proc. 35th International Conference on Machine Learning (eds. Dy, J. & Krause, A.) 1969–1978 (PMLR, 2018).

  151. Kag, A., Zhang, Z. & Saligrama, V. RNNs incrementally evolving on an equilibrium manifold: a panacea for vanishing and exploding gradients? In International Conference on Learning Representations (ICLR, 2020).

  152. Kolter, J. Z. & Manek, G. Learning stable deep dynamics models. In Proc. 32nd Advances in Neural Information Processing Systems (eds. Wallach, H. et al.) 11128–11136 (Curran Associates, Inc., 2019).

  153. Engelken, R., Wolf, F. & Abbott, L. F. Lyapunov spectra of chaotic recurrent neural networks. Preprint at arXiv https://doi.org/10.48550/arXiv.2006.02427 (2020).

  154. Degn, H., Holden, A. V. & Olsen, L. F. Chaos in Biological Systems Vol. 138 (Springer, 2013).

  155. Brenner, M., Koppe, G. & Durstewitz, D. Multimodal teacher forcing for reconstructing nonlinear dynamical systems. In The 37th AAAI Conference on Artificial Intelligence (AAAI, Washington, 2023).

  156. Lusch, B., Kutz, J. N. & Brunton, S. L. Deep learning for universal linear embeddings of nonlinear dynamics. Nat. Commun. 9, 4950 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  157. Platt, J. A., Penny, S. G., Smith, T. A., Chen, T.-C. & Abarbanel, H. D. I. Constraining chaos: enforcing dynamical invariants in the training of recurrent neural networks. Preprint at arXiv https://doi.org/10.48550/arXiv.2304.12865 (2023). Considers the inclusion of invariant DS characteristics like Lyapunov exponents directly into the loss function of the training method to improve DS reconstruction and long-term behaviour.

  158. Doya, K. Bifurcations in the learning of recurrent neural networks. In Proc. IEEE International Symposium on Circuits and Systems 2777–2780 (1992).

  159. Vlachas, P. R. & Koumoutsakos, P. Learning from predictions: fusing training and autoregressive inference for long-term spatiotemporal forecasts. Preprint at arXiv https://doi.org/10.48550/arXiv.2302.11101 (2023).

  160. Williams, R. J. & Zipser, D. A learning algorithm for continually running fully recurrent neural networks. Neural Comput. 1, 270–280 (1989).

    Article  Google Scholar 

  161. Abarbanel, H. Predicting the Future: Completing Models of Observed Complex Systems (Springer, 2013).

  162. Abarbanel, H. D. I., Creveling, D. R., Farsian, R. & Kostuk, M. Dynamical state and parameter estimation. SIAM J. Appl. Dyn. Syst. 8, 1341–1381 (2009).

    Article  Google Scholar 

  163. Abarbanel, H. D. I., Creveling, D. R. & Jeanne, J. M. Estimation of parameters in nonlinear systems using balanced synchronization. Phys. Rev. 77, 016208 (2008).

    Google Scholar 

  164. Platt, J. A., Wong, A., Clark, R., Penny, S. G. & Abarbanel, H. D. I. Robust forecasting using predictive generalized synchronization in reservoir computing. Chaos 31, 123118 (2021).

    Article  PubMed  Google Scholar 

  165. Verzelli, P., Alippi, C. & Livi, L. Learn to synchronize, synchronize to learn. Chaos 31, 083119 (2021).

    Article  PubMed  Google Scholar 

  166. Singh, S. K. et al. PI-LSTM: physics-infused long short-term memory network. In IEEE International Conference on Machine Learning and Applications 34–41 (IEEE, 2019).

  167. Voss, H. U., Timmer, J. & Kurths, J. Nonlinear dynamical system identification from uncertain and indirect measurements. Int. J. Bifurcat. Chaos 14, 1905–1933 (2004). One of the earlier studies reviewing ideas,  multiple shooting, on how to improve model-based DS reconstruction in the face of complex (possibly fractal) loss function landscapes.

    Article  Google Scholar 

  168. Botvinick-Greenhouse, J., Martin, R. & Yang, Y. Learning dynamics on invariant measures using PDE-constrained optimization. Chaos 33, 063152 (2023).

    Article  PubMed  Google Scholar 

  169. Jiang, R., Lu, P. Y., Orlova, E. & Willett, R. Training neural operators to preserve invariant measures of chaotic attractors. Preprint at arXiv https://doi.org/10.48550/arXiv.2306.01187 (2023).

  170. Chen, J. & Wu, K. Deep-OSG: a deep learning approach for approximating a family of operators in semigroup to model unknown autonomous systems. Preprint at arXiv https://doi.org/10.48550/arXiv.2302.03358 (2023).

  171. Rackauckas, C. et al. Universal differential equations for scientific machine learning. Preprint at arXiv https://doi.org/10.48550/arXiv.2001.04385 (2020).

  172. Chen, R. T. Q., Amos, B. & Nickel, M. Learning neural event functions for ordinary differential equations. In International Conference on Learning Representations (ICLR, 2021).

  173. Kaptanoglu, A. A. et al. PySINDy: a comprehensive python package for robust sparse system identification. J. Open Source Softw. 7, 3994 (2022).

    Article  Google Scholar 

  174. Bertschinger, N. & Natschläger, T. Real-time computation at the edge of chaos in recurrent neural networks. Neural Comput. 16, 1413–1436 (2004).

    Article  PubMed  Google Scholar 

  175. Jaeger, H. & Haas, H. Harnessing nonlinearity: predicting chaotic systems and saving energy in wireless communication. Science 304, 78–80 (2004). A landmark paper that introduces echo state networks (or reservoir computers), one of the most successful and still widely used architectures and training methods for learning DS and predicting their temporal evolution.

    Article  CAS  PubMed  Google Scholar 

  176. Maass, W., Natschläger, T. & Markram, H. Real-time computing without stable states: a new framework for neural computation based on perturbations. Neural Comput. 14, 2531–2560 (2002).

    Article  PubMed  Google Scholar 

  177. Jüngling, T. et al. Reconstruction of complex dynamical systems from time series using reservoir computing. In IEEE International Symposium on Circuits and Systems 1–5 (IEEE, 2019)

  178. Patel, D. & Ott, E. Using machine learning to anticipate tipping points and extrapolate to post-tipping dynamics of non-stationary dynamical systems. Chaos 33, 023143 (2023).

    Article  PubMed  Google Scholar 

  179. Raissi, M. Deep hidden physics models: deep learning of nonlinear partial differential equations. J. Mach. Learn. Res. 19, 1–24 (2018). Introduces a new approach to DS reconstruction, partly similar in spirit to neural ODEs, which combines approximation of the vector field and that of the solution operator through deep neural networks, and at the same time makes it possible to incorporate physical domain knowledge.

    Google Scholar 

  180. Abarbanel, H. D. I., Rozdeba, P. J. & Shirman, S. Machine learning: deepest learning as statistical data assimilation problems. Neural Comput. 30, 2025–2055 (2018).

    Article  PubMed  Google Scholar 

  181. Salvi, C., Lemercier, M. & Gerasimovics, A. Neural stochastic PDEs: resolution-invariant learning of continuous spatiotemporal dynamics. In Proc. 35th Advances in Neural Information Processing Systems (eds Koyejo, S. et al.) (Curran Associates, Inc., 2022).

  182. Gelbrecht, M., Boers, N. & Kurths, J. Neural partial differential equations for chaotic systems. New J. Phys. 23, 043005 (2021).

    Article  Google Scholar 

  183. Li, Z. et al. Fourier neural operator for parametric partial differential equations. In International Conference on Learning Representations (ICLR, 2021). Elegant and powerful solution for deep learning of DS described by (theoretically infinite dimensional) systems of partial different equations (PDEs), based on the idea of approximating the dynamics in function space by Fourier neural operators.

  184. Raissi, M., Perdikaris, P. & Karniadakis, G. E. Physics-informed neural networks: a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. J. Comput. Phys. 378, 686–707 (2019).

    Article  Google Scholar 

  185. Rudy, S. H., Brunton, S. L., Proctor, J. L. & Kutz, J. N. Data-driven discovery of partial differential equations. Sci. Adv. 3, e1602614 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  186. De Feo, O. & Storace, M. PWL approximation of nonlinear dynamical systems, part II: identification issues. J. Phys. Conf. Ser. 22, 002 (2005).

    Article  Google Scholar 

  187. Tibshirani, R. Regression shrinkage and selection via the Lasso. J. R. Stat. Soc. B Stat. Methodol. 58, 267–288 (1996).

    Google Scholar 

  188. Bahdanau, D., Cho, K. & Bengio, Y. Neural machine translation by jointly learning to align and translate. Preprint at arXiv https://doi.org/10.48550/arXiv.1409.0473 (2016).

  189. Sukhbaatar, S., Szlam, A., Weston, J. & Fergus, R. End-to-end memory networks. In Proc. 28th Advances in Neural Information Processing Systems (eds. Cortes, C. et al.) 2440–2448 (Curran Associates, Inc., 2015).

  190. Vaswani, A. et al. Attention is all you need. In Proc. 30th Advances in Neural Information Processing Systems (eds Guyon, I. et al.) 5998–6008 (Curran Associates, Inc., 2017).

  191. OpenAi. GPT-4 technical report. Preprint at arXiv https://doi.org/10.48550/arXiv.2303.08774 (2023).

  192. Geneva, N. & Zabaras, N. Transformers for modeling physical systems. Neural Netw. 146, 272–289 (2022).

    Article  PubMed  Google Scholar 

  193. Shalova, A. & Oseledets, I. Tensorized transformer for dynamical systems modeling.In International Conference on Learning Representations (ICLR, 2021).

  194. Hinton, G. E. & Salakhutdinov, R. R. Reducing the dimensionality of data with neural networks. Science 313, 504–507 (2006).

    Article  CAS  PubMed  Google Scholar 

  195. Bakarji, J., Champion, K., Kutz, J. N. & Brunton, S. L. Discovering governing equations from partial measurements with deep delay autoencoders. Preprint at arXiv https://doi.org/10.48550/arXiv.2201.05136 (2022).

  196. Gilpin, W. Deep reconstruction of strange attractors from time series. In Proc. 33rd Advance on Neural Information Processing Systems (eds Larochelle, H. et al.) 204–216 (Curran Associates, Inc., 2020).

  197. Allen, C. & Stevens, C. F. An evaluation of causes for unreliability of synaptic transmission. Proc. Natl Acad. Sci. USA 91, 10380–10383 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Zhao, Y. & Park, I. M. Variational latent Gaussian process for recovering single-trial dynamics from population spike trains. Neural Comput. 29, 1293–1316 (2017).

    Article  PubMed  Google Scholar 

  199. Duncker, L., Bohner, G., Boussard, J. & Sahani, M. Learning interpretable continuous-time models of latent stochastic dynamical systems. In Proc. 36th International Conference on Machine Learning (eds. Chaudhuri, K. & Salakhutdinov, R.) 1726–1734 (PMLR, Los Angeles, 2019).

  200. Look, A., Qiu, C., Rudolph, M. R., Peters, J. & Kandemir, M. Deterministic inference of neural stochastic differential equations. Preprint at arXiv https://doi.org/10.48550/arXiv.2006.08973 (2020).

  201. Xu, W., Chen, R. T. Q., Li, X. & Duvenaud, D. Infinitely deep Bayesian neural networks with stochastic differential equations. In Proc. 25th International Conference on Artificial Intelligence and Statistics (eds. Camps-Valls, G., Ruiz, F. J. R. & Valera I.) 721–738 (PMLR, 2022).

  202. Kingma, D. P. & Welling, M. Auto-encoding variational Bayes. In International Conference on Learning Representations (ICLR, 2013).

  203. Rahman, A., Srikumar, V. & Smith, A. D. Predicting electricity consumption for commercial and residential buildings using deep recurrent neural networks. Appl. Energy 212, 372–385 (2018).

    Article  Google Scholar 

  204. Kim, B. et al. Probabilistic vehicle trajectory prediction over occupancy grid map via recurrent neural network. In International Conference on Intelligent Transportation Systems 399–404 (IEEE, 2017).

  205. Wood, S. N. Statistical inference for noisy nonlinear ecological dynamic systems. Nature 466, 1102–1104 (2010). Important paper from the statistical community that points out that conventional likelihood functions are not suitable for learning parameters of a chaotic dynamical system, and instead suggests a surrogate likelihood based on (time-invariant in the limit) summary statistics like autocovariance functions.

    Article  CAS  PubMed  Google Scholar 

  206. Das, S., Giannakis, D. & Székely, E. An information-geometric approach to feature extraction and moment reconstruction in dynamical systems. Preprint at arXiv https://doi.org/10.48550/arXiv.2004.02172 (2020).

  207. Durstewitz, D. Advanced Data Analysis in Neuroscience: Integrating Statistical and Computational Models (Springer, 2017).

  208. Galgali, A. R., Sahani, M. & Mante, V. Residual dynamics resolves recurrent contributions to neural computation. Nat. Neurosci. 26, 326–338 (2023).

    Article  CAS  PubMed  Google Scholar 

  209. Nakahara, H. & Doya, K. Near-saddle-node bifurcation behavior as dynamics in working memory for goal-directed behavior. Neural Comput. 10, 113–132 (1998).

    Article  CAS  PubMed  Google Scholar 

  210. Sussillo, D. & Barak, O. Opening the black box: low-dimensional dynamics in high-dimensional recurrent neural networks. Neural Comput. 25, 626–649 (2013).

    Article  PubMed  Google Scholar 

  211. Brunton, S. L., Budišić, M., Kaiser, E. & Kutz, J. N. Modern Koopman Theory for Dynamical Systems. SIAM Rev. 64, 229–340 (2022).

    Article  Google Scholar 

  212. Smith, J., Linderman, S. & Sussillo, D. Reverse engineering recurrent neural networks with Jacobian switching linear dynamical systems. In Proc. 34th Advances in Neural Information Processing Systems (eds. Ranzato, M. et al.) 16700–16713 (Curran Associates, Inc., 2021).

  213. Smith, J. T., Warrington, A. & Linderman, S. W. Simplified state space layersfor sequence modeling. In International Conference on Learning Representations (ICLR, 2023).

  214. Floryan, D. & Graham, M. D. Data-driven discovery of intrinsic dynamics. Nat. Mach. Intell. 4, 1113–1120 (2022).

    Article  Google Scholar 

  215. Turner, E., Dabholkar, K. V. & Barak, O. Charting and navigating the space of solutions for recurrent neural networks. In Proc. 34th Advances in Neural Information Processing Systems (eds. Ranzato, M. et al.) 25320–25333 (Curran Associates, Inc., 2021). Introduces a set of ideas and tools of how dynamics and computations in RNNs trained on neuroscience tasks could be algorithmically interpreted.

  216. Reinbold, P. A. K., Kageorge, L. M., Schatz, M. F. & Grigoriev, R. O. Robust learning from noisy, incomplete, high-dimensional experimental data via physically constrained symbolic regression. Nat. Commun. 12, 3219 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. Altan, E., Solla, S. A., Miller, L. E. & Perreault, E. J. Estimating the dimensionality of the manifold underlying multi-electrode neural recordings. PLoS Comput. Biol. 17, e1008591 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  218. Duncker, L. & Sahani, M. Dynamics on the manifold: identifying computational dynamical activity from neural population recordings. Curr. Opin. Neurobiol. 70, 163–170 (2021).

    Article  CAS  PubMed  Google Scholar 

  219. Gallego, J. A., Perich, M. G., Miller, L. E. & Solla, S. A. Neural manifolds for the control of movement. Neuron 94, 978–984 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. Jazayeri, M. & Ostojic, S. Interpreting neural computations by examining intrinsic and embedding dimensionality of neural activity. Curr. Opin. Neurobiol. 70, 113–120 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. Melbaum, S. et al. Conserved structures of neural activity in sensorimotor cortex of freely moving rats allow cross-subject decoding. Nat. Commun. 13, 7420 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. Hyman, J. M., Ma, L., Balaguer-Ballester, E., Durstewitz, D. & Seamans, J. K. Contextual encoding by ensembles of medial prefrontal cortex neurons. Proc. Natl Acad. Sci. USA 109, 5086–5091 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. Kossio, Y. F. K., Goedeke, S., Klos, C. & Memmesheimer, R.-M. Drifting assemblies for persistent memory: neuron transitions and unsupervised compensation. Proc. Natl Acad. Sci. USA 118, e2023832118 (2021).

    Article  CAS  PubMed  Google Scholar 

  224. Sadeh, S. & Clopath, C. Contribution of behavioural variability to representational drift. eLife 11, e77907 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  225. Feulner, B. & Clopath, C. Neural manifold under plasticity in a goal driven learning behaviour. PLoS Comput. Biol. 17, e1008621 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  226. Sauer, T. Reconstruction of dynamical systems from interspike intervals. Phys. Rev. Lett. 72, 3811–3814 (1994).

    Article  CAS  PubMed  Google Scholar 

  227. Sauer, T. Interspike interval embedding of chaotic signals. Chaos 5, 127–132 (1995).

    Article  PubMed  Google Scholar 

  228. Clopath, C., Bonhoeffer, T., Hübener, M. & Rose, T. Variance and invariance of neuronal long-term representations. Philos. Trans. R. Soc. Lond. B Biol. Sci. 372, 20160161 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  229. Ecker, A. S. et al. Decorrelated neuronal firing in cortical microcircuits. Science 327, 584–587 (2010).

    Article  CAS  PubMed  Google Scholar 

  230. Mai, B., Sommer, S. & Hauber, W. Motivational states influence effort-based decision making in rats: the role of dopamine in the nucleus accumbens. Cogn. Affect. Behav. Neurosci. 12, 74–84 (2012).

    Article  PubMed  Google Scholar 

  231. Russo, E. et al. Coordinated prefrontal state transition leads extinction of reward-seeking behaviors. J. Neurosci. 41, 2406–2419 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  232. Shimazaki, H., Amari, S.-i, Brown, E. N. & Grün, S. State-space analysis of time-varying higher-order spike correlation for multiple neural spike train data. PLoS Comput. Biol. 8, e1002385 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  233. Park, M., Bohner, G. & Macke, J. H. Unlocking neural population non-stationarities using hierarchical dynamics models. In Proc. 28th Advances in Neural Information Processing Systems (eds Cortes, C. et al.) 145–153 (Curran Associates, Inc., 2015).

  234. Kim, J. Z., Lu, Z., Nozari, E., Pappas, G. J. & Bassett, D. S. Teaching recurrent neural networks to infer global temporal structure from local examples. Nat. Mach. Intell. 3, 316–323 (2021).

    Article  Google Scholar 

  235. Kirchmeyer, M. et al. Generalizing to new physical systems via context-informed dynamics model. In Proc. 39th International Conference on Machine Learning (eds. Chaudhuri, K. et al.) 11283–11301 (PMLR, 2022).

  236. Krueger, D. et al. Out-of-distribution generalization via risk extrapolation (REx). In Proc. 38th International Conference on Machine Learning (eds. Meila, M. & Tong, Z.) 5815–5826 (PMLR, 2021).

  237. Hastie, T., Tibshirani, R., Friedman, J. H. & Friedman, J. H. The Elements of Statistical Learning: Data Mining, Inference, and Prediction 2nd edn (Springer, 2009).

  238. Jirsa, V. K., Stacey, W. C., Quilichini, P. P., Ivanov, A. I. & Bernard, C. On the nature of seizure dynamics. Brain 137, 2210–2230 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  239. Naze, S., Bernard, C. & Jirsa, V. Computational modeling of seizure dynamics using coupled neuronal networks: factors shaping epileptiform activity. PLoS Comput. Biol. 11, e1004209 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  240. Fusi, S., Asaad, W. F., Miller, E. K. & Wang, X.-J. A neural circuit model of flexible sensorimotor mapping: learning and forgetting on multiple timescales. Neuron 54, 319–333 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  241. Russo, E. & Durstewitz, D. Cell assemblies at multiple time scales with arbitrary lag constellations. eLife 6, e19428 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  242. Spitmaan, M., Seo, H., Lee, D. & Soltani, A. Multiple timescales of neural dynamics and integration of task-relevant signals across cortex. Proc. Natl Acad. Sci. USA 117, 22522–22531 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  243. Tanaka, G., Matsumori, T., Yoshida, H. & Aihara, K. Reservoir computing with diverse timescales for prediction of multiscale dynamics. Phys. Rev. Res. 4, L032014 (2022).

    Article  CAS  Google Scholar 

  244. van Vreeswijk, C. & Sompolinsky, H. Chaos in neuronal networks with balanced excitatory and inhibitory activity. Science 274, 1724–1726 (1996).

    Article  PubMed  Google Scholar 

  245. Pereira-Obilinovic, U., Aljadeff, J. & Brunel, N. Forgetting leads to chaos in attractor networks. Phys. Rev. X 13, 011009 (2023).

    CAS  Google Scholar 

  246. Durstewitz, D. Implications of synaptic biophysics for recurrent network dynamics and active memory. Neural Netw. 22, 1189–1200 (2009).

    Article  PubMed  Google Scholar 

  247. Lorenz, E. N. Deterministic nonperiodic flow. J. Atmos. Sci. 20, 130–141 (1963).

    Article  Google Scholar 

  248. Schalk, G., McFarland, D. J., Hinterberger, T., Birbaumer, N. & Wolpaw, J. R. BCI2000: a general-purpose brain–computer interface (BCI) system. IEEE Trans. Biomed. Eng. 51, 1034–1043 (2004).

    Article  PubMed  Google Scholar 

  249. Hyman, J. M., Whitman, J., Emberly, E., Woodward, T. S. & Seamans, J. K. Action and outcome activity state patterns in the anterior cingulate cortex. Cereb. Cortex 23, 1257–1268 (2013).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

D.D. discloses support for this work from the German Research Foundation (DFG) through individual grants (Du 354/10–1; Du 354/15–1), within research cluster FOR-5159 (“Resolving prefrontal flexibility”; Du 354/14–1) and through Germany’s Excellence Strategy EXC 2181/1–390900948 (STRUCTURES). The authors thank A. Draguhn, C. Lapish, J. Mikhaeil, K. Mitchell, A. Meyer-Lindenberg, Z. Monfared and R. Traub for providing detailed feedback and suggestions on this article, L. Judith for providing the EEG reconstructions in Fig. 3d, J. Hyman for providing the multiple single-unit data used in Fig. 3e, F. Hess for generating the DS reconstruction used in Supplementary Fig. 4 and M. Brenner for providing the code for the RNN animation.

Author information

Authors and Affiliations

Authors

Contributions

All authors reviewed and/or edited the manuscript before submission and researched data for the article. D.D. wrote the article and contributed substantially to the discussion of the content.

Corresponding author

Correspondence to Daniel Durstewitz.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Neuroscience thanks Demba Ba and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Glossary

Activation function

The non-linear function in a neural network computed on the inputs to a unit (node) of the network.

Attractor

A subset of the state space of a DS towards which the DS evolves over time from the basin of attraction of the attractor; it can, for example, be a single point (point attractor), a closed orbit (limit cycle) or a complex, fractal geometrical structure (chaotic attractor).

Autoencoder

A type of (usually non-linear) neural network architecture used to learn a compressed (lower-dimensional) representation of the data in an unsupervised manner, consisting of an encoder that maps input data to the lower-dimensional latent representation and a decoder that reconstructs the input data from the encoded representation.

Back propagation through time

(BPTT). A gradient-based training algorithm for training RNNs; BPTT computes the gradients (partial derivatives) of the loss function between RNN-generated outputs and target values and propagates these backwards through time to update the RNN weights.

Basin of attraction

The set of initial conditions from which the trajectory of a DS will eventually converge into the attractor (in the limit t → ∞).

Bifurcation

A sudden qualitative (topological) change in the state space and behaviour of a DS as one or more of its parameters cross a certain threshold, usually involving the creation or destruction of attractors.

Decoder

A component of a neural network model that maps the latent state of a model back into observation space (in other words, the space of the observed data).

Delay coordinate map

A map that embeds an observed time series into a space in which the resulting trajectory will be diffeomorphic to the true trajectory of the observed system.

Diffeomorphism

A bijective (1:1 and onto) function that maps one differentiable manifold onto another such that both the function and its inverse are continuously differentiable (implying a 1:1 relation also between gradients).

Dynamical system

A system that evolves in time (and possibly along other dimensions such as space) according to a set of rules or equations in a state space, which is the space spanned by all its dynamical variables.

Encoder

A component of a neural network model that maps input data (observations) into a latent space, in which an RNN may operate.

Equilibrium point (state)

Steady state of a DS described by differential equations, in which — when exactly placed at this point — the state of a DS would not change anymore (the same type of object is called a fixed point in a discrete-time DS).

Exploding or vanishing gradient problem

The problem that in RNNs or deep neural networks, the gradients of the loss function will eventually diverge (‘explode’) or vanish during the training process, if not controlled in some way.

Feedforward neural network

A neural network in which connections between nodes exclusively point in one direction, leading from input to final output.

Flow

A function that maps states of a DS to future or past states, given by the solution to the system of differential equations describing the DS.

Fractal dimensionality

The dimensionality of a geometrical object is commonly thought to be an integer number, but chaotic sets often have a self-similar geometrical structure that is more accurately captured by a non-integer (such as a transcendental real) number.

Gradient descent

A class of optimization techniques that aim to find a (local) minimum of a differentiable objective function (such as a loss function) by iteratively adjusting model parameters such that they are pushed into directions of descending slope (gradients).

Initial condition

The state in state space of a DS from which a trajectory originates (starts).

Invariant sets

Sets of states in state space of a DS, in which the state of the DS remains for all time under the action of the flow (the dynamical rules of the system).

Latent model

A statistical or ML model that contains unobserved (latent) variables that need to be inferred in order to account for the data observed.

Limit set

A set of states into which a DS converges as time goes to infinity.

Loss function

A function (also known as cost or objective function) that quantifies the mismatch between outputs predicted by a model and the target or desired outputs (it could be a negative likelihood, for instance).

Manifold

Any topological space that locally resembles Euclidean space (that is, for which there exists a continuous (bijective) function, with continuous inverse, that maps any neighbourhood of any point in that space to an open ball of Euclidean space).

Recurrent neural network

A type of neural network in which connections also recurrently couple different network units, in other words can run both forwards and backwards, unlike in feedforward neural networks.

State

A (vector) point in state space.

State (or phase) space

The space of all possible states a DS may be in, which is spanned by all dynamical variables of the DS.

Teacher forcing

A technique used in training algorithms for sequence generation and DS reconstruction tasks, in which during training (but not during model deployment), the latent states of an RNN are pushed to agree with the observations (in DS reconstruction models, specific, recently developed amendments of these techniques are used).

Temporal delay embedding

The vector space produced by the delay coordinate map.

Training algorithm

An algorithmic procedure by which the parameters of an ML model are obtained given a specified loss function and a set of training data as targets.

Training data

The set of sampled data points used for training an ML model (part of the acquired empirical data are usually held back as validation and test sets and not used for training).

Trajectory or orbit

The sequence or continuous series of states a DS moves through, starting from some initial condition, as time progresses (for a continuous-time DS, it is formally the solution curve from a specific initial condition).

Turing complete

A system that can emulate the operations of any Turing machine, a general model of computation.

Variational autoencoder

A specific type of autoencoder in which the latent states are probabilistic (treated as random variables), such that the encoder and decoder operate on probability distributions rather than on single data points.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Durstewitz, D., Koppe, G. & Thurm, M.I. Reconstructing computational system dynamics from neural data with recurrent neural networks. Nat. Rev. Neurosci. 24, 693–710 (2023). https://doi.org/10.1038/s41583-023-00740-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41583-023-00740-7

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing