Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

GABA tone regulation and its cognitive functions in the brain

Abstract

γ-Aminobutyric acid (GABA) is the major inhibitory neurotransmitter released at GABAergic synapses, mediating fast-acting phasic inhibition. Emerging lines of evidence unequivocally indicate that a small amount of extracellular GABA — GABA tone — exists in the brain and induces a tonic GABA current that controls neuronal activity on a slow timescale relative to that of phasic inhibition. Surprisingly, studies indicate that glial cells that synthesize GABA, such as astrocytes, release GABA through non-vesicular mechanisms, such as channel-mediated release, and thereby act as the source of GABA tone in the brain. In this Review, we first provide an overview of major advances in our understanding of the cell-specific molecular and cellular mechanisms of GABA synthesis, release and clearance that regulate GABA tone in various brain regions. We next examine the diverse ways in which the tonic GABA current regulates synaptic transmission and synaptic plasticity through extrasynaptic GABAA-receptor-mediated mechanisms. Last, we discuss the physiological mechanisms through which tonic inhibition modulates cognitive function on a slow timescale. In this Review, we emphasize that the cognitive functions of tonic GABA current extend beyond mere inhibition, laying a foundation for future research on the physiological and pathophysiological roles of GABA tone regulation in normal and abnormal psychiatric conditions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Cell-type-specific GABA tone regulatory mechanisms in the brain.
Fig. 2: Astrocytic regulation of GABA tone.
Fig. 3: Tonic GABA current mediates diverse subcellular localization-dependent effects.
Fig. 4: Shunting inhibition in synaptic transmission.
Fig. 5: Cognitive and other functions of GABA tone in the brain.

Similar content being viewed by others

References

  1. Roberts, E. & Frankel, S. γ-Aminobutyric acid in brain: its formation from glutamic acid. J. Biol. Chem. 187, 55–63 (1950).

    Article  CAS  PubMed  Google Scholar 

  2. Kaneda, M., Farrant, M. & Cull-Candy, S. G. Whole-cell and single-channel currents activated by GABA and glycine in granule cells of the rat cerebellum. J. Physiol. 485, 419–435 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Otis, T. S., Staley, K. J. & Mody, I. Perpetual inhibitory activity in mammalian brain slices generated by spontaneous GABA release. Brain Res. 545, 142–150 (1991).

    Article  CAS  PubMed  Google Scholar 

  4. Nusser, Z., Roberts, J. D., Baude, A., Richards, J. G. & Somogyi, P. Relative densities of synaptic and extrasynaptic GABAA receptors on cerebellar granule cells as determined by a quantitative immunogold method. J. Neurosci. 15, 2948–2960 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Brown, D. A., Adams, P. R., Higgins, A. J. & Marsh, S. Distribution of GABA-receptors and GABA-carriers in the mammalian nervous system. J. Physiol. 75, 667–671 (1979).

    CAS  Google Scholar 

  6. Ruiz, A., Campanac, E., Scott, R. S., Rusakov, D. A. & Kullmann, D. M. Presynaptic GABAA receptors enhance transmission and LTP induction at hippocampal mossy fiber synapses. Nat. Neurosci. 13, 431–438 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Lee, S. et al. Channel-mediated tonic GABA release from glia. Science 330, 790–796 (2010).

    Article  CAS  PubMed  Google Scholar 

  8. Hepsomali, P., Groeger, J. A., Nishihira, J. & Scholey, A. Effects of oral γ-aminobutyric acid (GABA) administration on stress and sleep in humans: a systematic review. Front. Neurosci. 14, 923 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Esclapez, M., Tillakaratne, N. J., Kaufman, D. L., Tobin, A. J. & Houser, C. R. Comparative localization of two forms of glutamic acid decarboxylase and their mRNAs in rat brain supports the concept of functional differences between the forms. J. Neurosci. 14, 1834–1855 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kaufman, D. L., Houser, C. R. & Tobin, A. J. Two forms of the γ-aminobutyric acid synthetic enzyme glutamate decarboxylase have distinct intraneuronal distributions and cofactor interactions. J. Neurochem. 56, 720–723 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Asada, H. et al. Cleft palate and decreased brain γ-aminobutyric acid in mice lacking the 67-kDa isoform of glutamic acid decarboxylase. Proc. Natl Acad. Sci. USA 94, 6496–6499 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Chattopadhyaya, B. et al. GAD67-mediated GABA synthesis and signaling regulate inhibitory synaptic innervation in the visual cortex. Neuron 54, 889–903 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Engel, D. et al. Plasticity of rat central inhibitory synapses through GABA metabolism. J. Physiol. 535, 473–482 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Walls, A. B. et al. GAD65 is essential for synthesis of GABA destined for tonic inhibition regulating epileptiform activity. J. Neurochem. 115, 1398–1408 (2010).

    Article  CAS  PubMed  Google Scholar 

  15. Mathews, G. C. & Diamond, J. S. Neuronal glutamate uptake contributes to GABA synthesis and inhibitory synaptic strength. J. Neurosci. 23, 2040–2048 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Dicken, M. S., Hughes, A. R. & Hentges, S. T. Gad1 mRNA as a reliable indicator of altered GABA release from orexigenic neurons in the hypothalamus. Eur. J. Neurosci. 42, 2644–2653 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Serrano-Regal, M. P. et al. Oligodendrocyte differentiation and myelination is potentiated via GABAB receptor activation. Neuroscience 439, 163–180 (2020).

    Article  CAS  PubMed  Google Scholar 

  18. Bhandage, A. K., Kanatani, S. & Barragan, A. Toxoplasma-induced hypermigration of primary cortical microglia implicates GABAergic signaling. Front. Cell. Infect. Microbiol. 9, 73 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Tochitani, S. & Kondo, S. Immunoreactivity for GABA, GAD65, GAD67 and Bestrophin-1 in the meninges and the choroid plexus: implications for non-neuronal sources for GABA in the developing mouse brain. PLoS One 8, e56901 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Wang, D. D., Krueger, D. D. & Bordey, A. GABA depolarizes neuronal progenitors of the postnatal subventricular zone via GABAA receptor activation. J. Physiol. 550, 785–800 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Lee, M., Schwab, C. & McGeer, P. L. Astrocytes are GABAergic cells that modulate microglial activity. Glia 59, 152–165 (2011).

    Article  PubMed  Google Scholar 

  22. Zhang, X. et al. NG2 glia-derived GABA release tunes inhibitory synapses and contributes to stress-induced anxiety. Nat. Commun. 12, 5740 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Seiler, N., Schmidt-Glenewinkel, T. & Sarhan, S. On the formation of γ-aminobutyric acid from putrescine in brain. J. Biochem. 86, 277–278 (1979).

    CAS  PubMed  Google Scholar 

  24. Seiler, N., al-Therib, M. J. & Kataoka, K. Formation of GABA from putrescine in the brain of fish (Salmo irideus Gibb.). J. Neurochem. 20, 699–708 (1973).

    Article  CAS  PubMed  Google Scholar 

  25. Seiler, N. On the role of GABA in vertebrate polyamine metabolism. Physiol. Chem. Phys. 12, 411–429 (1980).

    CAS  PubMed  Google Scholar 

  26. Jo, S. et al. GABA from reactive astrocytes impairs memory in mouse models of Alzheimer’s disease. Nat. Med. 20, 886–896 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Levitt, P., Pintar, J. E. & Breakefield, X. O. Immunocytochemical demonstration of monoamine oxidase B in brain astrocytes and serotonergic neurons. Proc. Natl Acad. Sci. USA 79, 6385–6389 (1982).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Yoon, B. E. et al. Glial GABA, synthesized by monoamine oxidase B, mediates tonic inhibition. J. Physiol. 592, 4951–4968 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Lee, J. M. et al. Generation of astrocyte-specific MAOB conditional knockout mouse with minimal tonic GABA inhibition. Exp. Neurobiol. 31, 158–172 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Yoon, B. E. et al. The amount of astrocytic GABA positively correlates with the degree of tonic inhibition in hippocampal CA1 and cerebellum. Mol. Brain 4, 42 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Dot, J., Lluch, M., Blanco, I. & Rodriguez-Alvarez, J. Polyamine uptake in cultured astrocytes: characterization and modulation by protein kinases. J. Neurochem. 75, 1917–1926 (2000).

    Article  CAS  PubMed  Google Scholar 

  32. Laschet, J., Grisar, T., Bureau, M. & Guillaume, D. Characteristics of putrescine uptake and subsequent GABA formation in primary cultured astrocytes from normal C57BL/6J and epileptic DBA/2J mouse brain cortices. Neuroscience 48, 151–157 (1992).

    Article  CAS  PubMed  Google Scholar 

  33. Ju, Y. H. et al. Astrocytic urea cycle detoxifies Aβ-derived ammonia while impairing memory in Alzheimer’s disease. Cell Metab. 34, 1104–1120 e1108 (2022).

    Article  CAS  PubMed  Google Scholar 

  34. Mallajosyula, J. K. et al. MAO-B elevation in mouse brain astrocytes results in Parkinson’s pathology. PLoS One 3, e1616 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Woo, J. et al. Control of motor coordination by astrocytic tonic GABA release through modulation of excitation/inhibition balance in cerebellum. Proc. Natl Acad. Sci. USA 115, 5004–5009 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. An, H., Heo, J. Y., Lee, C. J. & Nam, M. H. The pathological role of astrocytic MAOB in Parkinsonism revealed by genetic ablation and over-expression of MAOB. Exp. Neurobiol. 30, 113–119 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Chun, H., Lim, J., Park, K. D. & Lee, C. J. Inhibition of monoamine oxidase B prevents reactive astrogliosis and scar formation in stab wound injury model. Glia 70, 354–367 (2022).

    Article  CAS  PubMed  Google Scholar 

  38. Nam, M. H. et al. Excessive astrocytic GABA causes cortical hypometabolism and impedes functional recovery after subcortical stroke. Cell Rep. 32, 107861 (2020).

    Article  CAS  PubMed  Google Scholar 

  39. Heo, J. Y. et al. Aberrant tonic inhibition of dopaminergic neuronal activity causes motor symptoms in animal models of Parkinson’s disease. Curr. Biol. 30, 276–291 e279 (2020).

    Article  CAS  PubMed  Google Scholar 

  40. Kim, J. I. et al. Aldehyde dehydrogenase 1a1 mediates a GABA synthesis pathway in midbrain dopaminergic neurons. Science 350, 102–106 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Melani, R. & Tritsch, N. X. Inhibitory co-transmission from midbrain dopamine neurons relies on presynaptic GABA uptake. Cell Rep. 39, 110716 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Kwak, H. et al. Astrocytes control sensory acuity via tonic inhibition in the thalamus. Neuron 108, 691–706.e610 (2020).

    Article  CAS  PubMed  Google Scholar 

  43. Egashira, Y. et al. Unique pH dynamics in GABAergic synaptic vesicles illuminates the mechanism and kinetics of GABA loading. Proc. Natl Acad. Sci. USA 113, 10702–10707 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Rossi, D. J. & Hamann, M. Spillover-mediated transmission at inhibitory synapses promoted by high affinity α6 subunit GABAA receptors and glomerular geometry. Neuron 20, 783–795 (1998).

    Article  CAS  PubMed  Google Scholar 

  45. Kullmann, D. M. Spillover and synaptic cross talk mediated by glutamate and GABA in the mammalian brain. Prog. Brain Res. 125, 339–351 (2000).

    Article  CAS  PubMed  Google Scholar 

  46. Kardos, J. et al. Molecular plasticity of the nucleus accumbens revisited — astrocytic waves shall rise. Mol. Neurobiol. 56, 7950–7965 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Glykys, J. & Mody, I. The main source of ambient GABA responsible for tonic inhibition in the mouse hippocampus. J. Physiol. 582, 1163–1178 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Liu, Q. et al. A photoactivatable botulinum neurotoxin for inducible control of neurotransmission. Neuron 101, 863–875.e866 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Won, J. et al. Opto-vTrap, an optogenetic trap for reversible inhibition of vesicular release, synaptic transmission, and behavior. Neuron 110, 423–435.e424 (2022).

    Article  CAS  PubMed  Google Scholar 

  50. Wang, Y. F., Sun, M. Y., Hou, Q. & Hamilton, K. A. GABAergic inhibition through synergistic astrocytic neuronal interaction transiently decreases vasopressin neuronal activity during hypoosmotic challenge. Eur. J. Neurosci. 37, 1260–1269 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Woo, D. H. et al. TREK-1 and Best1 channels mediate fast and slow glutamate release in astrocytes upon GPCR activation. Cell 151, 25–40 (2012).

    Article  CAS  PubMed  Google Scholar 

  52. Oh, S. J. et al. Protease activated receptor 1-induced glutamate release in cultured astrocytes is mediated by Bestrophin-1 channel but not by vesicular exocytosis. Mol. Brain 5, 38 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Woo, D. H., Hur, Y. N., Jang, M. W., Justin Lee, C. & Park, M. Inhibitors of synaptic vesicle exocytosis reduce surface expression of postsynaptic glutamate receptors. Anim. Cell Syst. 24, 341–348 (2020).

    Article  CAS  Google Scholar 

  54. Barakat, L. & Bordey, A. GAT-1 and reversible GABA transport in Bergmann glia in slices. J. Neurophysiol. 88, 1407–1419 (2002).

    Article  CAS  PubMed  Google Scholar 

  55. Oh, S. J. & Lee, C. J. Distribution and function of the Bestrophin-1 (Best1) channel in the brain. Exp. Neurobiol. 26, 113–121 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Scimemi, A. Structure, function, and plasticity of GABA transporters. Front. Cell Neurosci. 8, 161 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Attwell, D., Barbour, B. & Szatkowski, M. Nonvesicular release of neurotransmitter. Neuron 11, 401–407 (1993).

    Article  CAS  PubMed  Google Scholar 

  58. Richerson, G. B. & Wu, Y. Dynamic equilibrium of neurotransmitter transporters: not just for reuptake anymore. J. Neurophysiol. 90, 1363–1374 (2003).

    Article  CAS  PubMed  Google Scholar 

  59. Wu, Y., Wang, W., Diez-Sampedro, A. & Richerson, G. B. Nonvesicular inhibitory neurotransmission via reversal of the GABA transporter GAT-1. Neuron 56, 851–865 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Savtchenko, L., Megalogeni, M., Rusakov, D. A., Walker, M. C. & Pavlov, I. Synaptic GABA release prevents GABA transporter type-1 reversal during excessive network activity. Nat. Commun. 6, 6597 (2015).

    Article  CAS  PubMed  Google Scholar 

  61. Eskandari, S., Willford, S. L. & Anderson, C. M. Revised ion/substrate coupling stoichiometry of GABA transporters. Adv. Neurobiol. 16, 85–116 (2017).

    Article  PubMed  Google Scholar 

  62. Clarkson, A. N., Huang, B. S., Macisaac, S. E., Mody, I. & Carmichael, S. T. Reducing excessive GABA-mediated tonic inhibition promotes functional recovery after stroke. Nature 468, 305–309 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Tonsfeldt, K. J. et al. Sex differences in GABAA signaling in the periaqueductal gray induced by persistent inflammation. J. Neurosci. 36, 1669–1681 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Kersante, F. et al. A functional role for both γ-aminobutyric acid (GABA) transporter-1 and GABA transporter-3 in the modulation of extracellular GABA and GABAergic tonic conductances in the rat hippocampus. J. Physiol. 591, 2429–2441 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Patel, B., Bright, D. P., Mortensen, M., Frolund, B. & Smart, T. G. Context-dependent modulation of GABAAR-mediated tonic currents. J. Neurosci. 36, 607–621 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Sa, M. et al. Unaltered tonic inhibition in the arcuate nucleus of diet-induced obese mice. Exp. Neurobiol. 31, 147–157 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Yang, J. et al. Ventral tegmental area astrocytes modulate cocaine reward by tonically releasing GABA. Neuron 111, 1104–1117 (2023).

    Article  CAS  PubMed  Google Scholar 

  68. Koh, W. et al. Astrocytes render memory flexible by releasing d-serine and regulating NMDA receptor tone in the hippocampus. Biol. Psychiat. 91, 740–752 (2022).

    Article  CAS  PubMed  Google Scholar 

  69. Owji, A. P. et al. Bestrophin-2 and glutamine synthetase form a complex for glutamate release. Nature 611, 180–187 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Lee, J. M., Gadhe, C. G., Kang, H., Pae, A. N. & Lee, C. J. Glutamate permeability of chicken Best1. Exp. Neurobiol. 31, 277–288 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  71. Pandit, S. et al. Bestrophin1-mediated tonic GABA release from reactive astrocytes prevents the development of seizure-prone network in kainate-injected hippocampi. Glia 68, 1065–1080 (2020).

    Article  PubMed  Google Scholar 

  72. Cheng, Y. T. et al. Social deprivation induces astrocytic TRPA1-GABA suppression of hippocampal circuits. Neuron 111, 1301–1315 e1305 (2023).

    Article  CAS  PubMed  Google Scholar 

  73. Vargas-Parada, A. et al. γ-Aminobutyric acid (GABA) from satellite glial cells tonically depresses the excitability of primary afferent fibers. Neurosci. Res. 170, 50–58 (2021).

    Article  CAS  PubMed  Google Scholar 

  74. Platel, J. C., Lacar, B. & Bordey, A. GABA and glutamate signaling: homeostatic control of adult forebrain neurogenesis. J. Mol. Histol. 38, 602–610 (2007).

    Article  PubMed  Google Scholar 

  75. Syeda, R. et al. LRRC8 proteins form volume-regulated anion channels that sense ionic strength. Cell 164, 499–511 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Lutter, D., Ullrich, F., Lueck, J. C., Kempa, S. & Jentsch, T. J. Selective transport of neurotransmitters and modulators by distinct volume-regulated LRRC8 anion channels. J. Cell Sci. 130, 1122–1133 (2017).

    CAS  PubMed  Google Scholar 

  77. Cook, J. R. et al. LRRC8A is dispensable for a variety of microglial functions and response to acute stroke. Glia 70, 1068–1083 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Akita, T. & Okada, Y. Characteristics and roles of the volume-sensitive outwardly rectifying (VSOR) anion channel in the central nervous system. Neuroscience 275, 211–231 (2014).

    Article  CAS  PubMed  Google Scholar 

  79. Jin, X. T., Pare, J. F. & Smith, Y. Differential localization and function of GABA transporters, GAT-1 and GAT-3, in the rat globus pallidus. Eur. J. Neurosci. 33, 1504–1518 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  80. Melone, M., Ciappelloni, S. & Conti, F. A quantitative analysis of cellular and synaptic localization of GAT-1 and GAT-3 in rat neocortex. Brain Struct. Funct. 220, 885–897 (2015).

    Article  CAS  PubMed  Google Scholar 

  81. Jensen, K., Chiu, C. S., Sokolova, I., Lester, H. A. & Mody, I. GABA transporter-1 (GAT1)-deficient mice: differential tonic activation of GABAA versus GABAB receptors in the hippocampus. J. Neurophysiol. 90, 2690–2701 (2003).

    Article  CAS  PubMed  Google Scholar 

  82. Semyanov, A., Walker, M. C. & Kullmann, D. M. GABA uptake regulates cortical excitability via cell type-specific tonic inhibition. Nat. Neurosci. 6, 484–490 (2003).

    Article  CAS  PubMed  Google Scholar 

  83. Pandit, S., Lee, G. S. & Park, J. B. Developmental changes in GABA(A) tonic inhibition are compromised by multiple mechanisms in preadolescent dentate gyrus granule cells. Korean J. Physiol. Pharmacol. 21, 695–702 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Keros, S. & Hablitz, J. J. Subtype-specific GABA transporter antagonists synergistically modulate phasic and tonic GABAA conductances in rat neocortex. J. Neurophysiol. 94, 2073–2085 (2005).

    Article  CAS  PubMed  Google Scholar 

  85. Chiu, C. S. et al. GABA transporter deficiency causes tremor, ataxia, nervousness, and increased GABA-induced tonic conductance in cerebellum. J. Neurosci. 25, 3234–3245 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Kirmse, K., Dvorzhak, A., Kirischuk, S. & Grantyn, R. GABA transporter 1 tunes GABAergic synaptic transmission at output neurons of the mouse neostriatum. J. Physiol. 586, 5665–5678 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Moldavan, M., Cravetchi, O. & Allen, C. N. GABA transporters regulate tonic and synaptic GABAA receptor-mediated currents in the suprachiasmatic nucleus neurons. J. Neurophysiol. 118, 3092–3106 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Fattorini, G. et al. Microglial expression of GAT-1 in the cerebral cortex. Glia 68, 646–655 (2020).

    Article  PubMed  Google Scholar 

  89. Fattorini, G. et al. GAT-1 mediated GABA uptake in rat oligodendrocytes. Glia 65, 514–522 (2017).

    Article  PubMed  Google Scholar 

  90. Tritsch, N. X., Oh, W. J., Gu, C. & Sabatini, B. L. Midbrain dopamine neurons sustain inhibitory transmission using plasma membrane uptake of GABA, not synthesis. eLlife 3, e01936 (2014).

    Article  Google Scholar 

  91. van Bemmelen, F. J., Schouten, M. J., Fekkes, D. & Bruinvels, J. Succinic semialdehyde as a substrate for the formation of γ-aminobutyric acid. J. Neurochem. 45, 1471–1474 (1985).

    Article  PubMed  Google Scholar 

  92. Shelp, B. J., Bown, A. W. & McLean, M. D. Metabolism and functions of γ-aminobutyric acid. Trends Plant. Sci. 4, 446–452 (1999).

    Article  CAS  PubMed  Google Scholar 

  93. Wu, Y., Wang, W. & Richerson, G. B. GABA transaminase inhibition induces spontaneous and enhances depolarization-evoked GABA efflux via reversal of the GABA transporter. J. Neurosci. 21, 2630–2639 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Wu, Y., Wang, W. & Richerson, G. B. Vigabatrin induces tonic inhibition via GABA transporter reversal without increasing vesicular GABA release. J. Neurophysiol. 89, 2021–2034 (2003).

    Article  CAS  PubMed  Google Scholar 

  95. Drasbek, K. R., Vardya, I., Delenclos, M., Gibson, K. M. & Jensen, K. SSADH deficiency leads to elevated extracellular GABA levels and increased GABAergic neurotransmission in the mouse cerebral cortex. J. Inherit. Metab. Dis. 31, 662–668 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Errington, A. C., Gibson, K. M., Crunelli, V. & Cope, D. W. Aberrant GABAA receptor-mediated inhibition in cortico-thalamic networks of succinic semialdehyde dehydrogenase deficient mice. PLoS One 6, e19021 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Lee, H. H. C., Pearl, P. L. & Rotenberg, A. Enzyme replacement therapy for succinic semialdehyde dehydrogenase deficiency: relevance in γ-aminobutyric acid plasticity. J. Child. Neurol. 36, 1200–1209 (2021).

    Article  PubMed  Google Scholar 

  98. Schulte, J. T., Wierenga, C. J. & Bruining, H. Chloride transporters and GABA polarity in developmental, neurological and psychiatric conditions. Neurosci. Biobehav. Rev. 90, 260–271 (2018).

    Article  CAS  PubMed  Google Scholar 

  99. Bormann, J., Hamill, O. P. & Sakmann, B. Mechanism of anion permeation through channels gated by glycine and γ-aminobutyric acid in mouse cultured spinal neurones. J. Physiol. 385, 243–286 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Kilb, W. When are depolarizing GABAergic responses excitatory? Front. Mol. Neurosci. 14, 747835 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Maguire, J. L., Stell, B. M., Rafizadeh, M. & Mody, I. Ovarian cycle-linked changes in GABA(A) receptors mediating tonic inhibition alter seizure susceptibility and anxiety. Nat. Neurosci. 8, 797–804 (2005).

    Article  CAS  PubMed  Google Scholar 

  102. Maguire, J. & Mody, I. GABAAR plasticity during pregnancy: relevance to postpartum depression. Neuron 59, 207–213 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Maguire, J., Ferando, I., Simonsen, C. & Mody, I. Excitability changes related to GABAA receptor plasticity during pregnancy. J. Neurosci. 29, 9592–9601 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Olsen, R. W. & Sieghart, W. International Union of Pharmacology. LXX. Subtypes of γ-aminobutyric acid(A) receptors: classification on the basis of subunit composition, pharmacology, and function. Update. Pharmacol. Rev. 60, 243–260 (2008).

    Article  CAS  PubMed  Google Scholar 

  105. Olsen, R. W. & Sieghart, W. GABAA receptors: subtypes provide diversity of function and pharmacology. Neuropharmacology 56, 141–148 (2009).

    Article  CAS  PubMed  Google Scholar 

  106. Mody, I. Distinguishing between GABAA receptors responsible for tonic and phasic conductances. Neurochem. Res. 26, 907–913 (2001).

    Article  CAS  PubMed  Google Scholar 

  107. Cope, D. W., Hughes, S. W. & Crunelli, V. GABAA receptor-mediated tonic inhibition in thalamic neurons. J. Neurosci. 25, 11553–11563 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Ade, K. K., Janssen, M. J., Ortinski, P. I. & Vicini, S. Differential tonic GABA conductances in striatal medium spiny neurons. J. Neurosci. 28, 1185–1197 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Hamann, M., Rossi, D. J. & Attwell, D. Tonic and spillover inhibition of granule cells control information flow through cerebellar cortex. Neuron 33, 625–633 (2002).

    Article  CAS  PubMed  Google Scholar 

  110. Caraiscos, V. B. et al. Tonic inhibition in mouse hippocampal CA1 pyramidal neurons is mediated by α5 subunit-containing γ-aminobutyric acid type A receptors. Proc. Natl Acad. Sci. USA 101, 3662–3667 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Zurek, A. A. et al. Sustained increase in α5GABAA receptor function impairs memory after anesthesia. J. Clin. Invest. 124, 5437–5441 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  112. Brickley, S. G. & Mody, I. Extrasynaptic GABAA receptors: their function in the CNS and implications for disease. Neuron 73, 23–34 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Yamada, J., Furukawa, T., Ueno, S., Yamamoto, S. & Fukuda, A. Molecular basis for the GABAA receptor-mediated tonic inhibition in rat somatosensory cortex. Cereb. Cortex 17, 1782–1787 (2007).

    Article  PubMed  Google Scholar 

  114. Wei, W. Z., Zhang, N. H., Peng, Z. C., Houser, C. R. & Mody, I. Perisynaptic localization of delta subunit-containing GABAA receptors and their activation by GABA spillover in the mouse dentate gyrus. J. Neurosci. 23, 10650–10661 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Xiao, C., Zhou, C., Li, K. & Ye, J. H. Presynaptic GABAA receptors facilitate GABAergic transmission to dopaminergic neurons in the ventral tegmental area of young rats. J. Physiol. 580, 731–743 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Wang, L., Kloc, M., Maher, E., Erisir, A. & Maffei, A. Presynaptic GABAA receptors modulate thalamocortical inputs in layer 4 of rat V1. Cereb. Cortex 29, 921–936 (2019).

    Article  CAS  PubMed  Google Scholar 

  117. Dembitskaya, Y., Wu, Y. W. & Semyanov, A. Tonic GABAA conductance favors spike-timing-dependent over θ-burst-induced long-term potentiation in the hippocampus. J. Neurosci. 40, 4266–4276 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Kramer, P. F., Twedell, E. L., Shin, J. H., Zhang, R. & Khaliq, Z. M. Axonal mechanisms mediating γ-aminobutyric acid receptor type A (GABAA) inhibition of striatal dopamine release. eLlife 9, e55729 (2020).

    Article  CAS  Google Scholar 

  119. Stell, B. M. & Mody, I. Receptors with different affinities mediate phasic and tonic GABAA conductances in hippocampal neurons. J. Neurosci. 22, RC223 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  120. Lee, V. & Maguire, J. The impact of tonic GABAA receptor-mediated inhibition on neuronal excitability varies across brain region and cell type. Front. Neural Circ. 8, 3 (2014).

    Google Scholar 

  121. Newberry, N. R. & Nicoll, R. A. Direct hyperpolarizing action of baclofen on hippocampal pyramidal cells. Nature 308, 450–452 (1984).

    Article  CAS  PubMed  Google Scholar 

  122. Sodickson, D. L. & Bean, B. P. Neurotransmitter activation of inwardly rectifying potassium current in dissociated hippocampal CA3 neurons: interactions among multiple receptors. J. Neurosci. 18, 8153–8162 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Cope, D. W. et al. Enhanced tonic GABAA inhibition in typical absence epilepsy. Nat. Med. 15, 1392–1398 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Cho, F. S. et al. Enhancing GAT-3 in thalamic astrocytes promotes resilience to brain injury in rodents. Sci. Transl. Med. 14, eabj4310 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Ha, G. E. et al. The Ca2+-activated chloride channel anoctamin-2 mediates spike-frequency adaptation and regulates sensory transmission in thalamocortical neurons. Nat. Commun. 7, 13791 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Herbison, A. E. & Moenter, S. M. Depolarising and hyperpolarising actions of GABAA receptor activation on gonadotrophin-releasing hormone neurones: towards an emerging consensus. J. Neuroendocrinol. 23, 557–569 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Berglund, K., Wen, L., Dunbar, R. L., Feng, G. & Augustine, G. J. Optogenetic visualization of presynaptic tonic inhibition of cerebellar parallel fibers. J. Neurosci. 36, 5709–5723 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  128. Untiet, V. et al. Astrocytic chloride is brain state dependent and modulates inhibitory neurotransmission in mice. Nat. Commun. 14, 1871 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Fatt, P. & Katz, B. The effect of inhibitory nerve impulses on a crustacean muscle fibre. J. Physiol. 121, 374–389 (1953).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Mitchell, S. J. & Silver, R. A. Shunting inhibition modulates neuronal gain during synaptic excitation. Neuron 38, 433–445 (2003).

    Article  CAS  PubMed  Google Scholar 

  131. Prescott, S. A. & De Koninck, Y. Gain control of firing rate by shunting inhibition: roles of synaptic noise and dendritic saturation. Proc. Natl Acad. Sci. USA 100, 2076–2081 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Nusser, Z., Sieghart, W. & Somogyi, P. Segregation of different GABAA receptors to synaptic and extrasynaptic membranes of cerebellar granule cells. J. Neurosci. 18, 1693–1703 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Song, I., Savtchenko, L. & Semyanov, A. Tonic excitation or inhibition is set by GABAA conductance in hippocampal interneurons. Nat. Commun. 2, 376 (2011).

    Article  PubMed  Google Scholar 

  134. Wlodarczyk, A. I. et al. Tonic GABAA conductance decreases membrane time constant and increases EPSP-spike precision in hippocampal pyramidal neurons. Front. Neural Circ. 7, 205 (2013).

    CAS  Google Scholar 

  135. Tang, Z. Q., Dinh, E. H., Shi, W. & Lu, Y. Ambient GABA-activated tonic inhibition sharpens auditory coincidence detection via a depolarizing shunting mechanism. J. Neurosci. 31, 6121–6131 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Sylantyev, S., Savtchenko, L. P., O’Neill, N. & Rusakov, D. A. Extracellular GABA waves regulate coincidence detection in excitatory circuits. J. Physiol. 598, 4047–4062 (2020).

    Article  CAS  PubMed  Google Scholar 

  137. Bryson, A. et al. GABA-mediated tonic inhibition differentially modulates gain in functional subtypes of cortical interneurons. Proc. Natl Acad. Sci. USA 117, 3192–3202 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Yarishkin, O., Lee, J., Jo, S., Hwang, E. M. & Lee, C. J. Disinhibitory action of astrocytic GABA at the perforant path to dentate gyrus granule neuron synapse reverses to inhibitory in Alzheimer’s disease model. Exp. Neurobiol. 24, 211–218 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  139. Magnin, E. et al. Input-specific synaptic location and function of the α5 GABAA receptor subunit in the mouse CA1 hippocampal neurons. J. Neurosci. 39, 788–801 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Johnston, G. A. Advantages of an antagonist: bicuculline and other GABA antagonists. Br. J. Pharmacol. 169, 328–336 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Groen, M. R. et al. Development of dendritic tonic GABAergic inhibition regulates excitability and plasticity in CA1 pyramidal neurons. J. Neurophysiol. 112, 287–299 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Pofantis, H. & Papatheodoropoulos, C. The α5GABAA receptor modulates the induction of long-term potentiation at ventral but not dorsal CA1 hippocampal synapses. Synapse 68, 394–401 (2014).

    Article  CAS  PubMed  Google Scholar 

  143. Wu, Z., Guo, Z., Gearing, M. & Chen, G. Tonic inhibition in dentate gyrus impairs long-term potentiation and memory in an Alzheimer’s [corrected] disease model. Nat. Commun. 5, 4159 (2014).

    Article  CAS  PubMed  Google Scholar 

  144. Won, W. et al. Inhibiting peripheral and central MAO-B ameliorates joint inflammation and cognitive impairment in rheumatoid arthritis. Exp. Mol. Med. 54, 1188–1200 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Paydar, A. et al. Extrasynaptic GABAA receptors in mediodorsal thalamic nucleus modulate fear extinction learning. Mol. Brain 7, 39 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  146. Engin, E. et al. Tonic inhibitory control of dentate gyrus granule cells by alpha5-containing GABAA receptors reduces memory interference. J. Neurosci. 35, 13698–13712 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Lee, V., MacKenzie, G., Hooper, A. & Maguire, J. Reduced tonic inhibition in the dentate gyrus contributes to chronic stress-induced impairments in learning and memory. Hippocampus 26, 1276–1290 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Hirata, A., Aguilar, J. & Castro-Alamancos, M. A. Noradrenergic activation amplifies bottom-up and top-down signal-to-noise ratios in sensory thalamus. J. Neurosci. 26, 4426–4436 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Duguid, I., Branco, T., London, M., Chadderton, P. & Hausser, M. Tonic inhibition enhances fidelity of sensory information transmission in the cerebellar cortex. J. Neurosci. 32, 11132–11143 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Roy, S. A. & Alloway, K. D. Coincidence detection or temporal integration? What the neurons in somatosensory cortex are doing. J. Neurosci. 21, 2462–2473 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Wang, Q., Webber, R. M. & Stanley, G. B. Thalamic synchrony and the adaptive gating of information flow to cortex. Nat. Neurosci. 13, 1534–1541 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Sherman, S. M. Tonic and burst firing: dual modes of thalamocortical relay. Trends Neurosci. 24, 122–126 (2001).

    Article  CAS  PubMed  Google Scholar 

  153. Moldavan, M., Cravetchi, O. & Allen, C. N. Diurnal properties of tonic and synaptic GABAA receptor-mediated currents in suprachiasmatic nucleus neurons. J. Neurophysiol. 126, 637–652 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Kwon, J., Jang, M. W. & Lee, C. J. Retina-attached slice recording reveals light-triggered tonic GABA signaling in suprachiasmatic nucleus. Mol. Brain 14, 171 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Choi, H. J. et al. Excitatory actions of GABA in the suprachiasmatic nucleus. J. Neurosci. 28, 5450–5459 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. DeWoskin, D. et al. Distinct roles for GABA across multiple timescales in mammalian circadian timekeeping. Proc. Natl Acad. Sci. USA 112, E3911–E3919 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Ono, D., Honma, K. I., Yanagawa, Y., Yamanaka, A. & Honma, S. GABA in the suprachiasmatic nucleus refines circadian output rhythms in mice. Commun. Biol. 2, 232 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  158. Llinas, R. R. & Steriade, M. Bursting of thalamic neurons and states of vigilance. J. Neurophysiol. 95, 3297–3308 (2006).

    Article  PubMed  Google Scholar 

  159. Weyand, T. G., Boudreaux, M. & Guido, W. Burst and tonic response modes in thalamic neurons during sleep and wakefulness. J. Neurophysiol. 85, 1107–1118 (2001).

    Article  CAS  PubMed  Google Scholar 

  160. Winsky-Sommerer, R., Vyazovskiy, V. V., Homanics, G. E. & Tobler, I. The EEG effects of THIP (Gaboxadol) on sleep and waking are mediated by the GABAAδ-subunit-containing receptors. Eur. J. Neurosci. 25, 1893–1899 (2007).

    Article  PubMed  Google Scholar 

  161. Vyazovskiy, V. V., Kopp, C., Bosch, G. & Tobler, I. The GABAA receptor agonist THIP alters the EEG in waking and sleep of mice. Neuropharmacology 48, 617–626 (2005).

    Article  CAS  PubMed  Google Scholar 

  162. Lancel, M. & Faulhaber, J. The GABAA agonist THIP (gaboxadol) increases non-REM sleep and enhances delta activity in the rat. Neuroreport 7, 2241–2245 (1996).

    Article  CAS  PubMed  Google Scholar 

  163. Kim, Y. S., Woo, J., Lee, C. J. & Yoon, B. E. Decreased glial GABA and tonic inhibition in cerebellum of mouse model for attention-deficit/hyperactivity disorder (ADHD). Exp. Neurobiol. 26, 206–212 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  164. Handforth, A., Kadam, P. A., Kosoyan, H. P. & Eslami, P. Suppression of harmaline tremor by activation of an extrasynaptic GABAA receptor: implications for essential tremor. Tremor Other Hyperkinet. Mov. 8, 546 (2018).

    Article  Google Scholar 

  165. Huang, Y.-H. et al. Cerebellar α6GABAA receptors as a therapeutic target for essential tremor: proof-of-concept study with ethanol and pyrazoloquinolinones. Neurotherapeutics 20, 399–418 (2023).

    Article  CAS  PubMed  Google Scholar 

  166. Maguire, E. P. et al. Tonic inhibition of accumbal spiny neurons by extrasynaptic α4βδ GABAA receptors modulates the actions of psychostimulants. J. Neurosci. 34, 823–838 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Yu, X. et al. Reducing astrocyte calcium signaling in vivo alters striatal microcircuits and causes repetitive behavior. Neuron 99, 1170–1187.e1179 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Cepeda, C. et al. Multiple sources of striatal inhibition are differentially affected in Huntington’s disease mouse models. J. Neurosci. 33, 7393–7406 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Wojtowicz, A. M., Dvorzhak, A., Semtner, M. & Grantyn, R. Reduced tonic inhibition in striatal output neurons from Huntington mice due to loss of astrocytic GABA release through GAT-3. Front. Neural Circ. 7, 188 (2013).

    CAS  Google Scholar 

  170. Rosas-Arellano, A. et al. Huntington’s disease leads to decrease of GABAA tonic subunits in the D2 neostriatal pathway and their relocalization into the synaptic cleft. Neurobiol. Dis. 110, 142–153 (2018).

    Article  CAS  PubMed  Google Scholar 

  171. Gafford, G. M. et al. Cell-type specific deletion of GABAAα1 in corticotropin-releasing factor-containing neurons enhances anxiety and disrupts fear extinction. Proc. Natl Acad. Sci. USA 109, 16330–16335 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Botta, P. et al. Regulating anxiety with extrasynaptic inhibition. Nat. Neurosci. 18, 1493–1500 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Marowsky, A., Rudolph, U., Fritschy, J. M. & Arand, M. Tonic inhibition in principal cells of the amygdala: a central role for α3 subunit-containing GABAA receptors. J. Neurosci. 32, 8611–8619 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Sanders, S. K. & Shekhar, A. Regulation of anxiety by GABAA receptors in the rat amygdala. Pharmacol. Biochem. Behav. 52, 701–706 (1995).

    Article  CAS  PubMed  Google Scholar 

  175. Zhang, W. H. et al. δ subunit-containing GABAA receptor prevents overgeneralization of fear in adult mice. Learn. Mem. 24, 381–384 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Liu, Z. P. et al. δ subunit-containing γ-aminobutyric acid A receptor disinhibits lateral amygdala and facilitates fear expression in mice. Biol. Psychiat. 81, 990–1002 (2017).

    Article  CAS  PubMed  Google Scholar 

  177. de Miguel, E. et al. Conditioned aversion and neuroplasticity induced by a superagonist of extrasynaptic GABAA receptors: correlation with activation of the oval BNST neurons and CRF mechanisms. Front. Mol. Neurosci. 12, 130 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  178. Rudolph, S. et al. Cerebellum-specific deletion of the GABAA receptor δ subunit leads to sex-specific disruption of behavior. Cell Rep. 33, 108338 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Myers, D. A., Gibson, M., Schulkin, J. & Greenwood Van-Meerveld, B. Corticosterone implants to the amygdala and type 1 CRH receptor regulation: effects on behavior and colonic sensitivity. Behav. Brain Res. 161, 39–44 (2005).

    Article  CAS  PubMed  Google Scholar 

  180. Pan, H. Q. et al. Chronic stress oppositely regulates tonic inhibition in Thy1-expressing and non-expressing neurons in amygdala. Front. Neurosci. 14, 299 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  181. Carter, B. S., Meng, F. & Thompson, R. C. Glucocorticoid treatment of astrocytes results in temporally dynamic transcriptome regulation and astrocyte-enriched mRNA changes in vitro. Physiol. Genom. 44, 1188–1200 (2012).

    Article  CAS  Google Scholar 

  182. Carter, B. S., Hamilton, D. E. & Thompson, R. C. Acute and chronic glucocorticoid treatments regulate astrocyte-enriched mRNAs in multiple brain regions in vivo. Front. Neurosci. 7, 139 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Olsen, R. W., Hanchar, H. J., Meera, P. & Wallner, M. GABAA receptor subtypes: the “one glass of wine” receptors. Alcohol 41, 201–209 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Engin, E., Benham, R. S. & Rudolph, U. An emerging circuit pharmacology of GABAA receptors. Trends Pharmacol. Sci. 39, 710–732 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Fritz, B. M. & Boehm, S. L. II Site-specific microinjection of Gaboxadol into the infralimbic cortex modulates ethanol intake in male C57BL/6J mice. Behav. Brain Res. 273, 8–15 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Rewal, M. et al. α4-containing GABAA receptors in the nucleus accumbens mediate moderate intake of alcohol. J. Neurosci. 29, 543–549 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Rewal, M. et al. α4 subunit-containing GABAA receptors in the accumbens shell contribute to the reinforcing effects of alcohol. Addict. Biol. 17, 309–321 (2012).

    Article  CAS  PubMed  Google Scholar 

  188. Melon, L. C., Nolan, Z. T., Colar, D., Moore, E. M. & Boehm, S. L. II Activation of extrasynaptic δ-GABAA receptors globally or within the posterior-VTA has estrous-dependent effects on consumption of alcohol and estrous-independent effects on locomotion. Horm. Behav. 95, 65–75 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Juarez, B. et al. Midbrain circuit regulation of individual alcohol drinking behaviors in mice. Nat. Commun. 8, 2220 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  190. Tossell, K., Dodhia, R. A., Galet, B., Tkachuk, O. & Ungless, M. A. Tonic GABAergic inhibition, via GABAA receptors containing αβE subunits, regulates excitability of ventral tegmental area dopamine neurons. Eur. J. Neurosci. 53, 1722–1737 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Field, M. et al. Tonic GABAA receptor-mediated currents of human cortical GABAergic interneurons vary amongst cell types. J. Neurosci. 41, 9702–9719 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Jung, J. Y., Lee, S. E., Hwang, E. M. & Lee, C. J. Neuronal expression and cell-type-specific gene-silencing of Best1 in thalamic reticular nucleus neurons using pSico-Red system. Exp. Neurobiol. 25, 120–129 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  193. Bourdelais, A. J. & Kalivas, P. W. Modulation of extracellular γ-aminobutyric acid in the ventral pallidum using in vivo microdialysis. J. Neurochem. 58, 2311–2320 (1992).

    Article  CAS  PubMed  Google Scholar 

  194. Marvin, J. S. et al. A genetically encoded fluorescent sensor for in vivo imaging of GABA. Nat. Methods 16, 763–770 (2019).

    Article  CAS  PubMed  Google Scholar 

  195. Lodovichi, C., Ratto, G. M., Trevelyan, A. J. & Arosio, D. Genetically encoded sensors for chloride concentration. J. Neurosci. Methods 368, 109455 (2022).

    Article  CAS  PubMed  Google Scholar 

  196. Cavelier, P., Hamann, M., Rossi, D., Mobbs, P. & Attwell, D. Tonic excitation and inhibition of neurons: ambient transmitter sources and computational consequences. Prog. Biophys. Mol. Biol. 87, 3–16 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Martin, D. L. & Rimvall, K. Regulation of γ-aminobutyric acid synthesis in the brain. J. Neurochem. 60, 395–407 (1993).

    Article  CAS  PubMed  Google Scholar 

  198. Lim, J., Bhalla, M., Park, M. G., Koh, W. & Lee, C. J. Putrescine acetyltransferase (PAT/SAT1) dependent GABA synthesis in astrocytes. Preprint at bioRxiv https://doi.org/10.1101/2023.05.15.540086 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  199. Bhalla, M. et al. Molecular identification of ALDH1A1 and SIRT2 in the astrocytic putrescine-to-GABA metabolic pathway. Preprint at bioRxiv https://doi.org/10.1101/2023.01.11.523573 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  200. Marchitti, S. A., Brocker, C., Stagos, D. & Vasiliou, V. Non-P450 aldehyde oxidizing enzymes: The aldehyde dehydrogenase superfamily. Expert. Opin. Drug Metab. Toxicol. 4, 697–720 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Baxter, P. S. & Hardingham, G. E. Adaptive regulation of the brain’s antioxidant defences by neurons and astrocytes. Free Radic. Biol. Med. 100, 147–152 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was supported by the Center for Cognition and Sociality (grant IBS-R001-D2 to C.J.L.) and a Young Scientist Fellowship (grant IBS-R001-Y1 to W.K.) from the Institute for Basic Science, South Korea, by the National Research Foundation (grant NRF-2021R1A2C3007164 and grant NRF-2022M3E5E8016325 to E.C. and grant NRF-2021R1C1C2007673 to H.K.) funded by the Ministry of ICT and Science (MSIT) of the Korean government, and by the Samsung Science and Technology Foundation (grant SSTF-BA2201-12 to E.C.).

Author information

Authors and Affiliations

Authors

Contributions

W.K. and H.K. researched data for the article and wrote the article. All authors made substantial contributions to the discussion of content and reviewed/edited the article before submission.

Corresponding authors

Correspondence to Eunji Cheong or C. Justin Lee.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Neuroscience thanks Carmignoto Piergiorgio, who co-reviewed with Gabriele Losi; and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koh, W., Kwak, H., Cheong, E. et al. GABA tone regulation and its cognitive functions in the brain. Nat. Rev. Neurosci. 24, 523–539 (2023). https://doi.org/10.1038/s41583-023-00724-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41583-023-00724-7

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing