Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

From cognitive maps to spatial schemas

Abstract

A schema refers to a structured body of prior knowledge that captures common patterns across related experiences. Schemas have been studied separately in the realms of episodic memory and spatial navigation across different species and have been grounded in theories of memory consolidation, but there has been little attempt to integrate our understanding across domains, particularly in humans. We propose that experiences during navigation with many similarly structured environments give rise to the formation of spatial schemas (for example, the expected layout of modern cities) that share properties with but are distinct from cognitive maps (for example, the memory of a modern city) and event schemas (such as expected events in a modern city) at both cognitive and neural levels. We describe earlier theoretical frameworks and empirical findings relevant to spatial schemas, along with more targeted investigations of spatial schemas in human and non-human animals. Consideration of architecture and urban analytics, including the influence of scale and regionalization, on different properties of spatial schemas may provide a powerful approach to advance our understanding of spatial schemas.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Neurocognitive framework of spatial gist and schema.
Fig. 2: Spatial navigation paradigms.
Fig. 3: Sketch map test of remote spatial memory.
Fig. 4: Examples of street networks and their association with the development of navigation ability.

Similar content being viewed by others

References

  1. Richards, B. A. et al. Patterns across multiple memories are identified over time. Nat. Neurosci. 17, 981–986 (2014).

    Article  CAS  Google Scholar 

  2. Epstein, R. A., Patai, E. Z., Julian, J. B. & Spiers, H. J. The cognitive map in humans: spatial navigation and beyond. Nat. Neurosci. 20, 1504–1513 (2017).

    Article  CAS  Google Scholar 

  3. Robin, J., Rivest, J., Rosenbaum, R. S. & Moscovitch, M. Remote spatial and autobiographical memory in cases of episodic amnesia and topographical disorientation. Cortex 119, 237–257 (2019).

    Article  Google Scholar 

  4. Miller, T. D. et al. Human hippocampal CA3 damage disrupts both recent and remote episodic memories. eLife 9, e41836 (2020).

    Article  CAS  Google Scholar 

  5. Bartsch, T., Döhring, J., Rohr, A., Jansen, O. & Deuschl, G. CA1 neurons in the human hippocampus are critical for autobiographical memory, mental time travel, and autonoetic consciousness. Proc. Natl Acad. Sci. USA 108, 17562–17567 (2011).

    Article  CAS  Google Scholar 

  6. Rosenbaum, R. S. et al. Patterns of autobiographical memory loss in medial-temporal lobe amnesic patients. J. Cogn. Neurosci. 20, 1490–1506 (2008).

    Article  Google Scholar 

  7. Bellmund, J. L. S., Gardenfors, P., Moser, E. I. & Doeller, C. F. Navigating cognition: spatial codes for human thinking. Science 362, eaat6766 (2018).

    Article  Google Scholar 

  8. Brunec, I. K., Moscovitch, M. & Barense, M. D. Boundaries shape cognitive representations of spaces and events. Trends Cogn. Sci. 22, 637–650 (2018).

    Article  Google Scholar 

  9. O’Keefe, J. & Nadel, L. The Hippocampus as a Cognitive Map (Clarendon Press, 1978).

  10. Keinath, A. T., Rechnitz, O., Balasubramanian, V. & Epstein, R. A. Environmental deformations dynamically shift human spatial memory. Hippocampus 31, 89–101 (2021).

    Article  Google Scholar 

  11. Moser, E. I., Moser, M.-B. & McNaughton, B. L. Spatial representation in the hippocampal formation: a history. Nat. Neurosci. 20, 1448 (2017).

    Article  CAS  Google Scholar 

  12. Alme, C. B. et al. Place cells in the hippocampus: eleven maps for eleven rooms. Proc. Natl Acad. Sci. USA 111, 18428–18435 (2014).

    Article  CAS  Google Scholar 

  13. Leutgeb, S. et al. Independent codes for spatial and episodic memory in hippocampal neuronal ensembles. Science 309, 619–623 (2005).

    Article  CAS  Google Scholar 

  14. Baraduc, P., Duhamel, J. R. & Wirth, S. Schema cells in the macaque hippocampus. Science 363, 635–639 (2019). Recordings from hippocampal neurons in the macaque monkey during virtual navigation show the existence of cells that generalize parts of similar environments across environments.

    Article  CAS  Google Scholar 

  15. Spiers, H., Hayman, R. M., Jovalekic, A., Marozzi, E. & Jeffery, K. J. Place field repetition and purely local remapping in a multicompartment environment. Cereb. Cortex 25, 10–25 (2015).

    Article  Google Scholar 

  16. Derdikman, D. et al. Fragmentation of grid cell maps in a multicompartment environment. Nat. Neurosci. 12, 1325–1332 (2009).

    Article  CAS  Google Scholar 

  17. Singer, A. C., Karlsson, M. P., Nathe, A. R., Carr, M. F. & Frank, L. M. Experience-dependent development of coordinated hippocampal spatial activity representing the similarity of related locations. J. Neurosci. 30, 11586–11604 (2010).

    Article  CAS  Google Scholar 

  18. McKenzie, S. et al. Hippocampal representation of related and opposing memories develop within distinct, hierarchically organized neural schemas. Neuron 83, 202–215 (2014).

    Article  CAS  Google Scholar 

  19. Marchette, S. A., Ryan, J. & Epstein, R. A. Schematic representations of local environmental space guide goal-directed navigation. Cognition 158, 68–80 (2017).

    Article  Google Scholar 

  20. Robin, J. & Moscovitch, M. Details, gist and schema: hippocampal–neocortical interactions underlying recent and remote episodic and spatial memory. Curr. Opin. Behav. Sci. 17, 114–123 (2017).

    Article  Google Scholar 

  21. Bartlett, F. Remembering: A Study in Experimental and Social Psychology (Cambridge University Press, 1932).

  22. Gilboa, A. & Marlatte, H. Neurobiology of schemas and schema-mediated memory. Trends Cogn. Sci. 21, 618–631 (2017).

    Article  Google Scholar 

  23. Piaget, J. The Origins of Intelligence in Children (International Universities Press, 1952).

  24. Rumelhart, D. E., Hinton, G. E. & Williams, R. J. Learning representations by back-propagating errors. Nature 323, 533–536 (1986).

    Article  Google Scholar 

  25. Frankland, P. W. & Bontempi, B. The organization of recent and remote memories. Nat. Rev. Neurosci. 6, 119–130 (2005).

    Article  CAS  Google Scholar 

  26. Tonegawa, S., Morrissey, M. D. & Kitamura, T. The role of engram cells in the systems consolidation of memory. Nat. Rev. Neurosci. 19, 485–498 (2018).

    Article  CAS  Google Scholar 

  27. Spiers, H. J. & Maguire, E. A. The neuroscience of remote spatial memory: a tale of two cities. Neuroscience 149, 7–27 (2007).

    Article  CAS  Google Scholar 

  28. de Lange, F. P., Heilbron, M. & Kok, P. How do expectations shape perception? Trends Cogn. Sci. 22, 764–779 (2018).

    Article  Google Scholar 

  29. Noack, H., Schick, W., Mallot, H. & Born, J. Sleep enhances knowledge of routes and regions in spatial environments. Learn. Mem. 24, 140–144 (2017).

    Article  Google Scholar 

  30. Brewer, W. F. & Treyens, J. C. Role of schemata in memory for places. Cogn. Psychol. 13, 207–230 (1981).

    Article  Google Scholar 

  31. Babichev, A., Cheng, S. & Dabaghian, Y. A. Topological schemas of cognitive maps and spatial learning. Front. Comput. Neurosci. 10, 18 (2016).

    Article  Google Scholar 

  32. Ocampo, A. C., Squire, L. R. & Clark, R. E. The beneficial effect of prior experience on the acquisition of spatial memory in rats with CA1, but not large hippocampal lesions: a possible role for schema formation. Learn. Mem. 25, 115–121 (2018).

    Article  Google Scholar 

  33. Lynch, K. The Image of the City. Vol. 11 (MIT Press, 1960).

  34. Filomena, G., Verstegen, J. & Manley, E. A computational approach to ‘The Image of the City’. Cities 89, 14–25 (2019). The authors apply a mathematical analysis to the layout of cities to identify hidden structures in the street layouts for regions.

    Article  Google Scholar 

  35. Portugali, J. Complexity, Cognition and the City (Springer Science & Business Media, 2011).

  36. Alonso, A., van der Meij, J., Tse, D. & Genzel, L. Naïve to expert: considering the role of previous knowledge in memory. Brain Neurosci. Adv. 4, 2398212820948686 (2020).

    Article  Google Scholar 

  37. He, Q., Beveridge, E. H., Starnes, J., Goodroe, S. C. & Brown, T. I. Environmental overlap and individual encoding strategy modulate memory interference in spatial navigation. Cognition 207, 104508 (2021).

    Article  Google Scholar 

  38. Zheng, L., Gao, Z., McAvan, A. S., Isham, E. A. & Ekstrom, A. D. Partially overlapping spatial environments trigger reinstatement in hippocampus and schema representations in prefrontal cortex. Nat. Commun. 12, 6231 (2021).

    Article  CAS  Google Scholar 

  39. Peer, M. & Epstein, R. A. The human brain uses spatial schemas to represent segmented environments. Curr. Biol. 31, 4677–4688.e8 (2021). Collectively, refs 37–39 investigate the cognitive and neural precursors to, and properties of, schema formation in humans, including the effects of overlap with previously learned environments, segmentation, and the roles of the hippocampus, retrosplenial cortex, and medial prefrontal cortex.

    Article  CAS  Google Scholar 

  40. Lee, M., Barbosa, H., Youn, H., Holme, P. & Ghoshal, G. Morphology of travel routes and the organization of cities. Nat. Commun. 8, 2229 (2017).

    Article  Google Scholar 

  41. Lämmer, S., Gehlsen, B. & Helbing, D. Scaling laws in the spatial structure of urban road networks. Phys. A Stat. Mech. Appl. 363, 89–95 (2006).

    Article  Google Scholar 

  42. Strano, E. et al. Urban street networks, a comparative analysis of ten European cities. Environ. Plan. B Plan. Des. 40, 1071–1086 (2013).

    Article  Google Scholar 

  43. Roth, C., Kang, S. M., Batty, M. & Barthelemy, M. Structure of urban movements: polycentric activity and entangled hierarchical flows. PLoS One 6, e15923 (2011).

    Article  CAS  Google Scholar 

  44. Kostof, S. The City Shaped: Urban Patterns and Meanings Through History (Brown and Co., 1991).

  45. Wagner, I. C. et al. Schematic memory components converge within angular gyrus during retrieval. eLife 4, e09668 (2015).

    Article  Google Scholar 

  46. Kumaran, D., Hassabis, D. & McClelland, J. L. What learning systems do intelligent agents need? Complementary learning systems theory updated. Trends Cogn. Sci. 20, 512–534 (2016).

    Article  Google Scholar 

  47. Mack, M. L., Love, B. C. & Preston, A. R. Dynamic updating of hippocampal object representations reflects new conceptual knowledge. Proc. Natl Acad. Sci. USA 113, 13203–13208 (2016).

    Article  CAS  Google Scholar 

  48. Moses, S. N., Ostreicher, M. L., Rosenbaum, R. S. & Ryan, J. D. Successful transverse patterning in amnesia using semantic knowledge. Hippocampus 18, 121–124 (2008).

    Article  Google Scholar 

  49. Schlichting, M. L., Mumford, J. A. & Preston, A. R. Learning-related representational changes reveal dissociable integration and separation signatures in the hippocampus and prefrontal cortex. Nat. Commun. 6, 8151 (2015).

    Article  CAS  Google Scholar 

  50. Spalding, K. N., Jones, S. H., Duff, M. C., Tranel, D. & Warren, D. E. Investigating the neural correlates of schemas: ventromedial prefrontal cortex is necessary for normal schematic influence on memory. J. Neurosci. 35, 15746–15751 (2015).

    Article  CAS  Google Scholar 

  51. Spalding, K. N. et al. Ventromedial prefrontal cortex is necessary for normal associative inference and memory integration. J. Neurosci. 38, 3767–3775 (2018).

    Article  CAS  Google Scholar 

  52. Zeithamova, D., Dominick, A. L. & Preston, A. R. Hippocampal and ventral medial prefrontal activation during retrieval-mediated learning supports novel inference. Neuron 75, 168–179 (2012).

    Article  CAS  Google Scholar 

  53. Tse, D. et al. Schemas and memory consolidation. Science 316, 76–82 (2007). This study in rodents with hippocampal lesions provides evidence for spatial schemas and the involvement of the hippocampus in rapid learning.

    Article  CAS  Google Scholar 

  54. Tse, D. et al. Schema-dependent gene activation and memory encoding in neocortex. Science 333, 891–895 (2011).

    Article  CAS  Google Scholar 

  55. Gilboa, A., Alain, C., He, Y., Stuss, D. T. & Moscovitch, M. Ventromedial prefrontal cortex lesions produce early functional alterations during remote memory retrieval. J. Neurosci. 29, 4871–4881 (2009).

    Article  CAS  Google Scholar 

  56. van Kesteren, M. T., Fernandez, G., Norris, D. G. & Hermans, E. J. Persistent schema-dependent hippocampal-neocortical connectivity during memory encoding and postencoding rest in humans. Proc. Natl Acad. Sci. USA 107, 7550–7555 (2010).

    Article  Google Scholar 

  57. van Kesteren, M. T., Rijpkema, M., Ruiter, D. J. & Fernandez, G. Retrieval of associative information congruent with prior knowledge is related to increased medial prefrontal activity and connectivity. J. Neurosci. 30, 15888–15894 (2010).

    Article  Google Scholar 

  58. Tolman, E. C. Cognitive maps in rats and men. Psychol. Rev. 55, 189–208 (1948).

    Article  CAS  Google Scholar 

  59. Morris, R. G., Garrud, P., Rawlins, J. N. & O’Keefe, J. Place navigation impaired in rats with hippocampal lesions. Nature 297, 681–683 (1982).

    Article  CAS  Google Scholar 

  60. O’Keefe, J. & Dostrovsky, J. The hippocampus as a spatial map. Preliminary evidence from unit activity in the freely-moving rat. Brain Res. 34, 171–175 (1971).

    Article  Google Scholar 

  61. Ekstrom, A. D. et al. Cellular networks underlying human spatial navigation. Nature 425, 184 (2003).

    Article  CAS  Google Scholar 

  62. Head, H. & Holmes, G. Sensory disturbances from cerebral lesions. Brain 34, 102–254 (1911).

    Article  Google Scholar 

  63. Ghosh, V. E. & Gilboa, A. What is a memory schema? A historical perspective on current neuroscience literature. Neuropsychologia 53, 104–114 (2014).

    Article  Google Scholar 

  64. Moscovitch, M., Cabeza, R., Winocur, G. & Nadel, L. Episodic memory and beyond: the hippocampus and neocortex in transformation. Annu. Rev. Psychol. 67, 105–134 (2016).

    Article  Google Scholar 

  65. Rolls, E. T. On pattern separation in the primate, including human, hippocampus. Trends Cogn. Sci. 25, 920–922 (2021).

    Article  Google Scholar 

  66. Yassa, M. A. & Stark, C. E. Pattern separation in the hippocampus. Trends Neurosci. 34, 515–525 (2011).

    Article  CAS  Google Scholar 

  67. Bein, O., Reggev, N. & Maril, A. Prior knowledge promotes hippocampal separation but cortical assimilation in the left inferior frontal gyrus. Nat. Comm. 11, 4590 (2020).

    Article  CAS  Google Scholar 

  68. Woollett, K. & Maguire, E. A. The effect of navigational expertise on wayfinding in new environments. J. Environ. Psychol. 30, 565–573 (2010).

    Article  Google Scholar 

  69. Alonso, A. et al. The HexMaze: a previous knowledge task on map learning for mice. eNeuro 8, ENEURO.0554–20.2021 (2021).

    Article  Google Scholar 

  70. Winocur, G., Moscovitch, M., Fogel, S., Rosenbaum, R. S. & Sekeres, M. Preserved spatial memory after hippocampal lesions: effects of extensive experience in a complex environment. Nat. Neurosci. 8, 273–275 (2005).

    Article  CAS  Google Scholar 

  71. Gahnstrom, C. & Spiers, H. J. Striatal and hippocampal contributions to flexible navigation. Brain Neurosci. Adv. 4, 239821282097977 (2020).

    Article  Google Scholar 

  72. Sommer, T. The emergence of knowledge and how it supports the memory for novel related information. Cereb. Cortex 27, 1906–1921 (2017).

    Google Scholar 

  73. van Buuren, M. et al. Initial investigation of the effects of an experimentally learned schema on spatial associative memory in humans. J. Neurosci. 34, 16662–16670 (2014).

    Article  Google Scholar 

  74. Guo, D. & Yang, J. Interplay of the long axis of the hippocampus and ventromedial prefrontal cortex in schema-related memory retrieval. Hippocampus https://doi.org/10.1002/hipo.23154 (2019).

    Article  Google Scholar 

  75. van Kesteren, M. T. R., Brown, T. I. & Wagner, A. D. Learned spatial schemas and prospective hippocampal activity support navigation after one-shot learning. Front. Hum. Neurosci. 12, 486 (2018).

    Article  Google Scholar 

  76. Poppenk, J., Evensmoen, H. R., Moscovitch, M. & Nadel, L. Long-axis specialization of the human hippocampus. Trends Cogn. Sci. 17, 230–240 (2013).

    Article  Google Scholar 

  77. Brunec, I. K. et al. Multiple scales of representation along the hippocampal anteroposterior axis in humans. Curr. Biol. 28, 2129–2135.e6 (2018).

    Article  CAS  Google Scholar 

  78. Poppenk, J. & Moscovitch, M. A hippocampal marker of recollection memory ability among healthy young adults: contributions of posterior and anterior segments. Neuron 72, 931–937 (2011).

    Article  CAS  Google Scholar 

  79. Libby, L. A., Reagh, Z. M., Bouffard, N. R., Ragland, J. D. & Ranganath, C. The hippocampus generalizes across memories that share item and context information. J. Cogn. Neurosci. 31, 24–35 (2019).

    Article  Google Scholar 

  80. Rosenbaum, R. S. et al. Remote spatial memory in an amnesic person with extensive bilateral hippocampal lesions. Nat. Neurosci. 3, 1044–1048 (2000).

    Article  CAS  Google Scholar 

  81. Herdman, K. A., Calarco, N., Moscovitch, M., Hirshhorn, M. & Rosenbaum, R. S. Impoverished descriptions of familiar routes in three cases of hippocampal/medial temporal lobe amnesia. Cortex 71, 248–263 (2015). This patient-lesion study provides converging evidence that the hippocampus is needed to support remote spatial memory for visuospatial details but not the gist of environments learned long ago.

    Article  Google Scholar 

  82. Rosenbaum, R. S., Cassidy, B. N. & Herdman, K. A. Patterns of preserved and impaired spatial memory in a case of developmental amnesia. Front. Hum. Neurosci. 9, 196 (2015).

    Article  Google Scholar 

  83. Rosenbaum, R. S., Ziegler, M., Winocur, G., Grady, C. L. & Moscovitch, M. “I have often walked down this street before”: fMRI studies on the hippocampus and other structures during mental navigation of an old environment. Hippocampus 14, 826–835 (2004).

    Article  Google Scholar 

  84. McAvan, A. S. et al. Largely intact memory for spatial locations during navigation in an individual with dense amnesia. Neuropsychologia 170, 108225 (2022).

    Article  Google Scholar 

  85. Rumelhart, D. E. Schemata: the building blocks. in Theoretical Issues in Reading Comprehension: Perspectives from Cognitive Psychology, Linguistics, Artificial Intelligence, and Education (Routledge, 2017).

  86. Preston, A. R. & Eichenbaum, H. Interplay of hippocampus and prefrontal cortex in memory. Curr. Biol. 23, R764–R773 (2013).

    Article  CAS  Google Scholar 

  87. Preston, A., Molitor, R. J., Pudhiyidath, A. & Schlichting, M. L. in Learning and Memory: A Comprehensive Reference 125–132 (Elsevier Inc., 2017).

  88. van Kesteren, M. T., Ruiter, D. J., Fernández, G. & Henson, R. N. How schema and novelty augment memory formation. Trends Neurosci. 35, 211–219 (2012).

    Article  Google Scholar 

  89. Lewis, P. A. & Durrant, S. J. Overlapping memory replay during sleep builds cognitive schemata. Trends Cogn. Sci. 15, 343–351 (2011).

    Article  Google Scholar 

  90. Maviel, T., Durkin, T. P., Menzaghi, F. & Bontempi, B. Sites of neocortical reorganization critical for remote spatial memory. Science 305, 96–99 (2004).

    Article  CAS  Google Scholar 

  91. Ngo, C. T., Benear, S. L., Popal, H., Olson, I. R. & Newcombe, N. S. Contingency of semantic generalization on episodic specificity varies across development. Curr. Biol. 31, 2690–2697.e5 (2021).

    Article  CAS  Google Scholar 

  92. Winocur, G. & Moscovitch, M. Memory transformation and systems consolidation. J. Int. Neuropsychol. Soc. 17, 766–780 (2011).

    Article  Google Scholar 

  93. Sekeres, M. J., Winocur, G. & Moscovitch, M. The hippocampus and related neocortical structures in memory transformation. Neurosci. Lett. 680, 39–53 (2018).

    Article  CAS  Google Scholar 

  94. Gilboa, A. & Moscovitch, M. No consolidation without representation: correspondence between neural and psychological representations in recent and remote memory. Neuron 109, 2239–2255 (2021).

    Article  CAS  Google Scholar 

  95. Durrant, S. J., Taylor, C., Cairney, S. & Lewis, P. A. Sleep-dependent consolidation of statistical learning. Neuropsychologia 49, 1322–1331 (2011).

    Article  Google Scholar 

  96. Peyrache, A., Khamassi, M., Benchenane, K., Wiener, S. I. & Battaglia, F. P. Replay of rule-learning related neural patterns in the prefrontal cortex during sleep. Nat. Neurosci. 12, 919–926 (2009).

    Article  CAS  Google Scholar 

  97. Stickgold, R. & Walker, M. P. Sleep-dependent memory triage: evolving generalization through selective processing. Nat. Neurosci. 16, 139–145 (2013).

    Article  CAS  Google Scholar 

  98. Tamminen, J., Payne, J. D., Stickgold, R., Wamsley, E. J. & Gaskell, M. G. Sleep spindle activity is associated with the integration of new memories and existing knowledge. J. Neurosci. 30, 14356–14360 (2010).

    Article  CAS  Google Scholar 

  99. Maingret, N., Girardeau, G., Todorova, R., Goutierre, M. & Zugaro, M. Hippocampo-cortical coupling mediates memory consolidation during sleep. Nat. Neurosci. 19, 959–964 (2016).

    Article  CAS  Google Scholar 

  100. Ohki, T. & Takei, Y. Neural mechanisms of mental schema: a triplet of delta, low beta/spindle and ripple oscillations. Eur. J. Neurosci. 48, 2416–2430 (2018).

    Article  Google Scholar 

  101. Lee, A. K. & Wilson, M. A. Memory of sequential experience in the hippocampus during slow wave sleep. Neuron 36, 1183–1194 (2002).

    Article  CAS  Google Scholar 

  102. Wilson, M. A. & McNaughton, B. L. Reactivation of hippocampal ensemble memories during sleep. Science 265, 676–679 (1994).

    Article  CAS  Google Scholar 

  103. Girardeau, G., Benchenane, K., Wiener, S. I., Buzsaki, G. & Zugaro, M. B. Selective suppression of hippocampal ripples impairs spatial memory. Nat. Neurosci. 12, 1222–1223 (2009).

    Article  CAS  Google Scholar 

  104. Quiroga, R. Q., Reddy, L., Kreiman, G., Koch, C. & Fried, I. Invariant visual representation by single neurons in the human brain. Nature 435, 1102–1107 (2005).

    Article  CAS  Google Scholar 

  105. Quiroga, R. Q. Neural representations across species. Science 363, 1388–1389 (2019).

    Article  CAS  Google Scholar 

  106. Quiroga, R. Concept cells: the building blocks of declarative memory functions. Nat. Rev. Neurosci. 13, 587–597 (2012).

    Article  CAS  Google Scholar 

  107. Duvelle, É. et al. Hippocampal place cells encode global location but not connectivity in a complex space. Curr. Biol. 31, 1221–1233.e9 (2021).

    Article  CAS  Google Scholar 

  108. Dillon, M. R., Huang, Y. & Spelke, E. S. Core foundations of abstract geometry. Proc. Natl Acad. Sci. USA 110, 14191–14195 (2013).

    Article  CAS  Google Scholar 

  109. Hermer, L. & Spelke, E. S. A geometric process for spatial reorientation in young children. Nature 370, 57–59 (1994).

    Article  CAS  Google Scholar 

  110. Lee, S. A., Shusterman, A. & Spelke, E. S. Reorientation and landmark-guided search by young children: evidence for two systems. Psychol. Sci. 17, 577–582 (2006).

    Article  Google Scholar 

  111. Spelke, E. S. & Lee, S. A. Core systems of geometry in animal minds. Philos. Trans. R. Soc. Lond. B Biol. Sci. 367, 2784–2793 (2012).

    Article  Google Scholar 

  112. Rosenbaum, R. S. et al. Dramatic changes to well-known places go unnoticed. Preprint at PsyArXiv https://doi.org/10.31234/osf.io/ypg96 (2020).

    Article  Google Scholar 

  113. Kubie, J. L., Levy, E. R. J. & Fenton, A. A. Is hippocampal remapping the physiological basis for context? Hippocampus https://doi.org/10.1002/hipo.23160 (2019).

    Article  Google Scholar 

  114. Latuske, P., Kornienko, O., Kohler, L. & Allen, K. Hippocampal remapping and its entorhinal origin. Front. Behav. Neurosci. 11, 253 (2017).

    Article  Google Scholar 

  115. Hartley, T., Burgess, N., Lever, C., Cacucci, F. & O’Keefe, J. Modeling place fields in terms of the cortical inputs to the hippocampus. Hippocampus 10, 369–379 (2000).

    Article  CAS  Google Scholar 

  116. Sanders, H., Wilson, M. A. & Gershman, S. J. Hippocampal remapping as hidden state inference. eLife 9, e51140 (2020).

    Article  Google Scholar 

  117. Coutrot, A. et al. Entropy of city street networks linked to future spatial navigation ability. Nature 604, 104–110 (2022). This study reports evidence that growing up in griddy cities adapts navigators to navigate better in grid-like environments but less so in more disorganized environments.

    Article  CAS  Google Scholar 

  118. Wirth, S., Baraduc, P., Plante, A., Pinede, S. & Duhamel, J. R. Gaze-informed, task-situated representation of space in primate hippocampus during virtual navigation. PLoS Biol. 15, e2001045 (2017).

    Article  Google Scholar 

  119. Antony, J. et al. Spatial gist extraction during human memory consolidation. J. Exp. Psychol. Learn. Mem. Cogn. 48, 929–941 (2022). Distributional learning during spatial navigation is examined in three behavioural experiments, demonstrating the extraction of spatial gist representations that decrease over time.

    Article  Google Scholar 

  120. Schlichting, M. L., Guarino, K. F., Schapiro, A. C., Turk-Browne, N. B. & Preston, A. R. Hippocampal structure predicts statistical learning and associative inference abilities during development. J. Cogn. Neurosci. 29, 37–51 (2017).

    Article  Google Scholar 

  121. Wang, S. H., Tse, D. & Morris, R. G. Anterior cingulate cortex in schema assimilation and expression. Learn. Mem. 19, 315–318 (2012).

    Article  Google Scholar 

  122. Teng, E. & Squire, L. R. Memory for places learned long ago is intact after hippocampal damage. Nature 400, 675–677 (1999).

    Article  CAS  Google Scholar 

  123. Rosenbaum, R. S., Gao, F., Richards, B., Black, S. E. & Moscovitch, M. “Where to?” remote memory for spatial relations and landmark identity in former taxi drivers with Alzheimer’s disease and encephalitis. J. Cogn. Neurosci. 17, 446–462 (2005).

    Article  Google Scholar 

  124. Maguire, E. A., Nannery, R. & Spiers, H. J. Navigation around London by a taxi driver with bilateral hippocampal lesions. Brain 129, 2894–2907 (2006).

    Article  Google Scholar 

  125. Winocur, G., Moscovitch, M., Rosenbaum, R. S. & Sekeres, M. An investigation of the effects of hippocampal lesions in rats on pre- and postoperatively acquired spatial memory in a complex environment. Hippocampus 20, 1350–1365 (2010).

    Article  Google Scholar 

  126. Spiers, H. J. & Gilbert, S. J. Solving the detour problem in navigation: a model of prefrontal and hippocampal interactions. Front. Hum. Neurosci. 9, 125 (2015).

    Article  Google Scholar 

  127. Rosenbaum, R. S. et al. fMRI studies of remote spatial memory in an amnesic person. Brain Cogn. 54, 170–172 (2004).

    CAS  Google Scholar 

  128. Hirshhorn, M., Grady, C., Rosenbaum, R. S., Winocur, G. & Moscovitch, M. Brain regions involved in the retrieval of spatial and episodic details associated with a familiar environment: an fMRI study. Neuropsychologia 50, 3094–3106 (2012).

    Article  Google Scholar 

  129. Batty, M. Cities and Complexity: Understanding Cities with Cellular Automata, Agent-Based Models, and Fractals (The MIT Press, 2007).

  130. Kim, M. & Maguire, E. A. Hippocampus, retrosplenial and parahippocampal cortices encode multicompartment 3D space in a hierarchical manner. Cereb. Cortex 28, 1898–1909 (2018).

    Article  Google Scholar 

  131. He, Q. & Brown, T. I. Environmental barriers disrupt grid-like representations in humans during navigation. Curr. Biol. 29, 2718–2722.e13 (2019).

    Article  Google Scholar 

  132. Zhong, C., Arisona, S. M., Huang, X., Batty, M. & Schmitt, G. Detecting the dynamics of urban structure through spatial network analysis. Int. J. Geogr. Inf. Sci. 28, 2178–2199 (2014). The authors apply network analysis to transport network travel data in Singapore to reveal hierarchies in human movement patterns and their change over time.

    Article  Google Scholar 

  133. Schick, W., Halfmann, M., Hardiess, G. & Mallot, H. A. Language cues in the formation of hierarchical representation of space. Cogn. Process. 16, S78–S78 (2015).

    Article  Google Scholar 

  134. Schirmer, P. M. & Axhausen, K. W. A multiscale classification of urban morphology. J. Transp. Land Use 9, 101–130 (2016).

    Google Scholar 

  135. Louail, T. et al. Uncovering the spatial structure of mobility networks. Nat. Commun. 6, 6007 (2015).

    Article  CAS  Google Scholar 

  136. Tversky, B. Distortions in cognitive maps. Geoforum 23, 131–138 (1992).

    Article  Google Scholar 

  137. Poucet, B. Spatial cognitive maps in animals: new hypotheses on their structure and neural mechanisms. Psychol. Rev. 100, 163–182 (1993).

    Article  CAS  Google Scholar 

  138. Waller, D. E. & Nadel, L. E. Handbook of Spatial Cognition (American Psychological Association, 2013).

  139. Brunec, I. K. & Momennejad, I. Predictive representations in hippocampal and prefrontal hierarchies. J. Neurosci. 42, 299–312 (2022).

    Article  CAS  Google Scholar 

  140. Tversky, B. Mind in Motion: How Action Shapes Thought (Hachette UK, 2019).

  141. Jafarpour, A. & Spiers, H. Familiarity expands space and contracts time. Hippocampus 27, 12–16 (2017).

    Article  Google Scholar 

  142. Schedlbauer, A. M., Copara, M. S., Watrous, A. J. & Ekstrom, A. D. Multiple interacting brain areas underlie successful spatiotemporal memory retrieval in humans. Sci. Rep. 4, 6431 (2014).

    Article  CAS  Google Scholar 

  143. Watrous, A. J., Tandon, N., Conner, C. R., Pieters, T. & Ekstrom, A. D. Frequency-specific network connectivity increases underlie accurate spatiotemporal memory retrieval. Nat. Neurosci. 16, 349–356 (2013).

    Article  CAS  Google Scholar 

  144. Ekstrom, A. D., Arnold, A. E. & Iaria, G. A critical review of the allocentric spatial representation and its neural underpinnings: toward a network-based perspective. Front. Hum. Neurosci. 8, 803 (2014).

    Article  Google Scholar 

  145. Ekstrom, A. D., Huffman, D. J. & Starrett, M. Interacting networks of brain regions underlie human spatial navigation: a review and novel synthesis of the literature. J. Neurophysiol. 118, 3328–3344 (2017).

    Article  Google Scholar 

  146. Bicanski, A. & Burgess, N. A neural-level model of spatial memory and imagery. eLife 7, e33752 (2018).

    Article  Google Scholar 

  147. Jasnow, A. M., Lynch, J. F. III, Gilman, T. L. & Riccio, D. C. Perspectives on fear generalization and its implications for emotional disorders. J. Neurosci. Res. 95, 821–835 (2017).

    Article  CAS  Google Scholar 

  148. Takehara-Nishiuchi, K. Prefrontal–hippocampal interaction during the encoding of new memories. Brain Neurosci. Adv. 4, 2398212820925580 (2020).

    Article  Google Scholar 

  149. Sutherland, R. & Lehmann, H. Alternative conceptions of memory consolidation and the role of the hippocampus at the systems level in rodents. Curr. Opin. Neurobiol. 21, 446–451 (2011).

    Article  CAS  Google Scholar 

  150. Sutherland, R. J., Lee, J. Q., McDonald, R. J. & Lehmann, H. Has multiple trace theory been refuted? Hippocampus 30, 842–850 (2020).

    Article  Google Scholar 

  151. Alexander, A. S. & Nitz, D. A. Retrosplenial cortex maps the conjunction of internal and external spaces. Nat. Neurosci. 18, 1143–1151 (2015).

    Article  CAS  Google Scholar 

  152. Marchette, S. A., Vass, L. K., Ryan, J. & Epstein, R. A. Anchoring the neural compass: coding of local spatial reference frames in human medial parietal lobe. Nat. Neurosci. 17, 1598–1606 (2014).

    Article  CAS  Google Scholar 

  153. Patai, E. Z. et al. Hippocampal and retrosplenial goal distance coding after long-term consolidation of a real-world environment. Cereb. Cortex 29, 2748–2758 (2019). This fMRI study provides evidence that the retrosplenial cortex codes spatial information in familiar environments in line with extraction of spatial knowledge to cortical regions.

    Article  Google Scholar 

  154. Spiers, H. J., & Maguire, E. A. (2006). Thoughts, behaviour, and brain dynamics during navigation in the real world. Neuroimage, 31(4), 1826–1840.

    Article  Google Scholar 

  155. Nau, M., Julian, J. B. & Doeller, C. F. How the brain’s navigation system shapes our visual experience. Trends Cogn. Sci. 22, 810–825 (2018).

    Article  Google Scholar 

  156. Nau, M., Navarro Schroder, T., Bellmund, J. L. S. & Doeller, C. F. Hexadirectional coding of visual space in human entorhinal cortex. Nat. Neurosci. 21, 188–190 (2018).

    Article  CAS  Google Scholar 

  157. Behrens, T. E. J. et al. What is a cognitive map? Organizing knowledge for flexible behavior. Neuron 100, 490–509 (2018).

    Article  CAS  Google Scholar 

  158. Javadi, A. H. et al. Hippocampal and prefrontal processing of network topology to simulate the future. Nat. Commun. 8, 14652 (2017).

    Article  CAS  Google Scholar 

  159. Balaguer, J., Spiers, H., Hassabis, D. & Summerfield, C. Neural mechanisms of hierarchical planning in a virtual subway network. Neuron 90, 893–903 (2016).

    Article  CAS  Google Scholar 

  160. Schick, W., Halfmann, M., Hardiess, G. & Mallot, H. A. Language cues in the formation of hierarchical representation of space. Cogn. Process. 15, S63–S64 (2014).

    Google Scholar 

  161. Summerfield, C., Luyckx, F. & Sheahan, H. Structure learning and the parietal cortex. Prog. Neurobiol. 184, 101717 (2020).

    Article  Google Scholar 

  162. Koolhaas, R. The Generic City (Sikkens Foundation, 1995).

  163. Kristan, W. B. & Katz, P. Form and function in systems neuroscience. Curr. Biol. 16, R828–R831 (2006).

    Article  CAS  Google Scholar 

  164. Hillier, B., Penn, A., Hanson, J., Grajewski, T. & Xu, J. Natural movement: or, configuration and attraction in urban pedestrian movement. Environ. Plan. B Plan. Des. 20, 29–66 (1993).

    Article  Google Scholar 

  165. Penn, A. & Turner, J. S. Can we identify general architectural principles that impact the collective behaviour of both human and animal systems? Philos. Trans. R. Soc. B Biol. Sci. 373, 20180253 (2018).

    Article  Google Scholar 

  166. Hillier, B. & Julienne, H. The Social Logic of Space (Cambridge University Press, 1989).

  167. Pallasmaa, J. The Eyes of the Skin: Architecture and the Senses (John Wiley & Sons, 2012).

  168. Haq, S. & Zimring, C. Just down the road a piece: the development of topological knowledge of building layouts. Environ. Behav. 35, 132–160 (2003).

    Article  Google Scholar 

  169. Hillier, B. Space is the Machine: A Configurational Theory of Architecture (Space Syntax, 2007).

  170. Levi-Strauss, C. Structural Anthropology Translated from the French by Jacobson, C. & Grundfest Schoepf, B. (Basic Books, 1963).

  171. Sorrows, M. E. & Hirtle, S. C. The nature of landmarks for real and electronic spaces. Spatial Information Theory. Cognitive and Computational Foundations of Geographic Information Science, Vol. 1661, 37–50 (Springer, 1999).

  172. Peponis, J., Zimring, C. & Choi, Y. K. Finding the building in wayfinding. Environ. Behav. 22, 555–590 (1990).

    Article  Google Scholar 

  173. Manley, E., Addison, J. & Cheng, T. Shortest path or anchor-based route choice: a large-scale empirical analysis of minicab routing in London. J. Transp. Geogr. 43, 123–139 (2015).

    Article  Google Scholar 

  174. Manley, E., Orr, S. W. & Cheng, T. A heuristic model of bounded route choice in urban areas. Transp. Res. C. Emerg. Technol. 56, 195–209 (2015).

    Article  Google Scholar 

  175. Emo, B. Seeing the axial line: evidence from wayfinding experiments. Behav. Sci. 4, 167–180 (2014).

    Article  Google Scholar 

  176. Bettencourt, L. & West, G. A unified theory of urban living. Nature 467, 912 (2010).

    Article  CAS  Google Scholar 

  177. Schneider, C. M., Belik, V., Couronne, T., Smoreda, Z. & Gonzalez, M. C. Unravelling daily human mobility motifs. J. R. Soc. Interface 10, 20130246 (2013).

    Article  Google Scholar 

  178. Coutrot, A. et al. Global determinants of navigation ability. Curr. Biol. 28, 2861–2866.e4 (2018).

    Article  CAS  Google Scholar 

  179. Behrmann, M. & Kimchi, R. What does visual agnosia tell us about perceptual organization and its relationship to object perception? J. Exp. Psychol. Hum. Percept. Perform. 29, 19–42 (2003).

    Article  Google Scholar 

  180. Elder, J. H. & Goldberg, R. M. Ecological statistics of Gestalt laws for the perceptual organization of contours. J. Vis. 2, 324–353 (2002).

    Article  Google Scholar 

  181. Wannig, A., Stanisor, L. & Roelfsema, P. R. Automatic spread of attentional response modulation along Gestalt criteria in primary visual cortex. Nat. Neurosci. 14, 1243 (2011).

    Article  CAS  Google Scholar 

  182. Wertheimer, M. in A Source Book of Gestalt Psychology (ed Willis. E) (Humanities Press, 1950).

  183. Juliani, A. W., Bies, A. J., Boydston, C. R., Taylor, R. P. & Sereno, M. E. Navigation performance in virtual environments varies with fractal dimension of landscape. J. Environ. Psychol. 47, 155–165 (2016).

    Article  Google Scholar 

  184. Encarnacao, S., Gaudiano, M., Santos, F. C., Tenedorio, J. A. & Pacheco, J. M. Fractal cartography of urban areas. Sci. Rep. 2, 527 (2012).

    Article  CAS  Google Scholar 

  185. Emo, B. Choice zones: architecturally relevant areas of interest. Spat. Cogn. Comput. 18, 173–193 (2018).

    Article  Google Scholar 

  186. Bonner, M. F. & Epstein, R. A. Computational mechanisms underlying cortical responses to the affordance properties of visual scenes. PLoS Comput. Biol. 14, e1006111 (2018).

    Article  Google Scholar 

  187. Barhorst-Cates, E. M., Meneghetti, C., Zhao, Y., Pazzaglia, F. & Creem-Regehr, S. H. Effects of home environment structure on navigation preference and performance: a comparison in Veneto, Italy and Utah, USA. J. Environ. Psychol. 74, 101580 (2021).

    Article  Google Scholar 

  188. Nitzan, N. et al. Propagation of hippocampal ripples to the neocortex by way of a subiculum-retrosplenial pathway. Nat. Commun. 11, 1–17 (2020).

    Google Scholar 

  189. Crooks, A., Malleson, N., Manley, E. & Heppenstall, A. Agent-based Modelling and Geographical Information Systems: A Practical Primer (SAGE Publications Limited, 2018).

  190. Rosenbaum, R. S. et al. The case of KC: contributions of a memory-impaired person to memory theory. Neuropsychologia 43, 989–1021 (2005).

    Article  Google Scholar 

  191. Kan, I. P., Rosenbaum, R. S. & Verfaellie, M. Schema processing across the lifespan: from theory to applications. Cogn. Neuropsychol. 37, 1–7 (2020).

    Article  Google Scholar 

  192. Yu, L. Q., Kan, I. P. & Kable, J. W. Beyond a rod through the skull: a systematic review of lesion studies of the human ventromedial frontal lobe. Cogn. Neuropsychol. 37, 97–141 (2020).

    Article  Google Scholar 

  193. Amodio, D. M. & Frith, C. D. Meeting of minds: the medial frontal cortex and social cognition. Nat. Rev. Neurosci. 7, 268–277 (2006).

    Article  CAS  Google Scholar 

  194. Doeller, C. F., Barry, C. & Burgess, N. Evidence for grid cells in a human memory network. Nature 463, 657–661 (2010).

    Article  CAS  Google Scholar 

  195. Yeterian, E. H., Pandya, D. N., Tomaiuolo, F. & Petrides, M. (2012). The cortical connectivity of the prefrontal cortex in the monkey brain. Cortex 48, 58–81 (2012).

    Article  Google Scholar 

  196. Mack, M. L., Preston, A. R. & Love, B. C. Ventromedial prefrontal cortex compression during concept learning. Nat. Commun. 11, 46 (2020).

    Article  CAS  Google Scholar 

  197. Teixeira, C. M., Pomedli, S. R., Maei, H. R., Kee, N. & Frankland, P. W. Involvement of the anterior cingulate cortex in the expression of remote spatial memory. J. Neurosci. 26, 7555–7564 (2006).

    Article  Google Scholar 

  198. Ross, R. S. & Eichenbaum, H. Dynamics of hippocampal and cortical activation during consolidation of a nonspatial memory. J. Neurosci. 26, 4852–4859 (2006).

    Article  CAS  Google Scholar 

  199. Rosenbaum, R. S., Winocur, G., Grady, C. L., Ziegler, M. & Moscovitch, M. Memory for familiar environments learned in the remote past: fMRI studies of healthy people and an amnesic person with extensive bilateral hippocampal lesions. Hippocampus 17, 1241–1251 (2007).

    Article  Google Scholar 

  200. Ciaramelli, E. The role of ventromedial prefrontal cortex in navigation: a case of impaired wayfinding and rehabilitation. Neuropsychologia 46, 2099–2105 (2008).

    Article  Google Scholar 

  201. Goh, S., Choi, M., Lee, K. & Kim, K.-M. How complexity emerges in urban systems: Theory of urban morphology. Phys. Rev. E 93, 052309 (2016).

    Article  Google Scholar 

  202. Hwu, T. & Krichmar, J. L. A neural model of schemas and memory encoding. Biol. Cybern. https://doi.org/10.1007/s00422-019-00808-7 (2019).

    Article  Google Scholar 

  203. Hindy, N. C., Ng, F. Y. & Turk-Browne, N. B. Linking pattern completion in the hippocampus to predictive coding in visual cortex. Nat. Neurosci. 19, 665–667 (2016).

    Article  CAS  Google Scholar 

  204. Kriegeskorte, N. & Douglas, P. K. Cognitive computational neuroscience. Nat. Neurosci. 21, 1148–1160 (2018).

    Article  CAS  Google Scholar 

  205. McNamee, D., Wolpert, D. & Lengyel, M. in Advances in Neural Information Processing Systems 29 (NIPS, 2016).

  206. Wiener, J. M. & Mallot, H. A. ‘Fine-to-coarse’ route planning and navigation in regionalized environments. Spat. Cogn. Comput. 3, 331–358 (2003).

    Article  Google Scholar 

  207. Brown, T. I. et al. Prospective representation of navigational goals in the human hippocampus. Science 352, 1323–1326 (2016).

    Article  CAS  Google Scholar 

  208. de Cothi, W. J. et al. Predictive maps in rats and humans for spatial navigation. Curr. Biol. 32, 3676–3689.e5 (2022).

    Article  Google Scholar 

  209. Brelsford, C., Martin, T., Hand, J. & Bettencourt, L. M. A. Toward cities without slums: Topology and the spatial evolution of neighborhoods. Sci. Adv. 4, eaar4644 (2018).

    Article  Google Scholar 

  210. Berry, B. J. & Garrison, W. L. The functional bases of the central place hierarchy. Econ. Geogr. 34, 145–154 (1958).

    Article  Google Scholar 

  211. Jiang, S., Ferreira, J. & González, M. C. Clustering daily patterns of human activities in the city. Data Min. Knowl. Discov. 25, 478–510 (2012).

    Article  Google Scholar 

  212. Girshick, A. R., Landy, M. S. & Simoncelli, E. P. Cardinal rules: visual orientation perception reflects knowledge of environmental statistics. Nat. Neurosci. 14, 926–932 (2011).

    Article  CAS  Google Scholar 

  213. Kok, P., Mostert, P. & de Lange, F. P. Prior expectations induce prestimulus sensory templates. Proc. Natl Acad. Sci. USA 114, 10473–10478 (2017).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank E. Manley, R.G.M. Morris and D. Yesiltepe for their valuable insight. Preparation of this Review was supported by a Vision: Science to Applications (VISTA) York Research Chair to R.S.R. and funded by the Canada First Research Excellence Fund (CFREF), Canadian Institutes of Health Research (CIHR) grant to M.M. and R.S.R., and an Alzheimer’s Research UK grant to H.J.S.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to researching data for the article, to discussion of article content, and to reviewing and editing the manuscript before submission. R.S.R. and D.F. wrote a first draft of the article.

Corresponding author

Correspondence to R. Shayna Rosenbaum.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Neuroscience thanks H. Mallot and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Allocentric

A frame of the representation of spatial relationships among objects in an environment that is irrespective of an observer’s point of view.

Associative inference

Assesses learning of a third latent association B–C following direct learning of overlapping associations A–B and A–C.

Axial line

The longest straight line representing the maximum extension of a point of space.

Cognitive map

A representation of relationships among allocentric spatial elements or features in a particular or single environment.

Centrality

In network analyses, measures such as degree, betweenness and closeness that provide indices of connectivity.

Dimensionality reduction

A technique that is widely used in machine learning to reduce the number of attributes in a dataset while maintaining similar information.

Districts

Large-scale sections with a common identifying character, into which observers can enter.

Edges

Boundaries between two regions that break line continuity such as a waterfront.

Event schema

A structured body of prior knowledge that captures common patterns across related experiences of events.

Geometric properties

Three-dimensional structural features of an environment such as the arrangement of buildings at an intersection.

Geometric resemblance

Similarities in geometry within an environment or across multiple environments such as highly similar arrangements of buildings at two different intersections.

Gestalt

Principles to explain how individual elements are perceived as an organized whole.

HPC replay

Reactivation of the sequence of neuronal firing within the hippocampus (HPC) that occurred during a previous experience, believed to contribute to the long-term storage and reconsolidation of memories.

Landmarks

Defined physical elements, such as objects and buildings, that are salient and/or hold functional or navigational meaning.

Nodes

Strategic points of crossing or convergence.

Paths

Channels along which observers move such as streets or walkways.

Pattern separation

A process by which overlapping patterns of neural activity that represent highly similar items or events are made more distinct as they are encoded in memory.

Predictive coding

A neural process by which expectations or ‘mental models’ of the external world based on prior experience are compared against sensory input.

Repetition suppression

Reduced neural activity in response to repeated presentation of a stimulus.

Representational similarity analyses

Characterizations of the neural representation of a stimulus presentation through direct pairwise comparisons of imaged activity patterns associated with each experimental condition in selected brain regions of interest.

Sparse codes

Activation of a small subset of neurons representing a distinct item or event.

Spatial gist

Essential elements of a particular environment.

Spatial schemas

Generalizable spatial representations derived from experiencing many similar environments.

Surface properties

Two-dimensional features such as visual patterns, textures and colours.

Street segments

All the unique sections of a street between junctions that make up a street.

Topology

Mathematical property of geometric objects that are unaffected by continuous change of size and shape.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Farzanfar, D., Spiers, H.J., Moscovitch, M. et al. From cognitive maps to spatial schemas. Nat Rev Neurosci 24, 63–79 (2023). https://doi.org/10.1038/s41583-022-00655-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41583-022-00655-9

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing