Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Neurons as will and representation

Abstract

Memory recollections and voluntary actions are often perceived as spontaneously generated irrespective of external stimuli. Although products of our neurons, they are only rarely accessible in humans at the neuronal level. Here I review insights gleaned from unique neurosurgical opportunities to record and stimulate single-neuron activity in people who can declare their thoughts, memories and wishes. I discuss evidence that the subjective experience of human recollection and that of voluntary action arise from the activity of two internal neuronal generators, the former from medial temporal lobe reactivation and the latter from frontoparietal preactivation. I characterize properties of these generators and their interaction, enabling flexible recruitment of memory-based choices for action as well as recruitment of action-based plans for the representation of conceptual knowledge in memories. Both internal generators operate on surprisingly explicit but different neuronal codes, which appear to arise with distinct single-neuron activity, often observed before participants’ reports of conscious awareness. I discuss prediction of behaviour based on these codes, and the potential for their modulation. The prospects of editing human memories and volitions by enhancement, inception or deletion of specific, selected content raise therapeutic possibilities and ethical concerns.

Your institute does not have access to this article

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Responses of human medial temporal lobe neurons to images and episodes.
Fig. 2: Responses of medial temporal lobe neurons during encoding and free recall of episodes.
Fig. 3: MFL neuronal activity preceding volition.
Fig. 4: MTL and MFL single-neuron activity in binocular rivalry.

References

  1. Passingham, R. E., Bengtsson, S. L. & Lau, H. C. Medial frontal cortex: from self-generated action to reflection on one’s own performance. Trends Cognit. Sci. 14, 16–21 (2010).

    Google Scholar 

  2. Engel, A. K., Moll, C. K., Fried, I. & Ojemann, G. A. Invasive recordings from the human brain: clinical insights and beyond. Nat. Rev. Neurosci. 6, 35–47 (2005).

    CAS  PubMed  Google Scholar 

  3. Cash, S. S. & Hochberg, L. R. The emergence of single neurons in clinical neurology. Neuron 86, 79–91 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Fried, I. et al. Cerebral microdialysis combined with single-neuron and electroencephalographic recording in neurosurgical patients. J. Neurosurg. 91, 697–705 (1999).

    CAS  PubMed  Google Scholar 

  5. Squire, L. R., Stark, C. E. & Clark, R. E. The medial temporal lobe. Annu. Rev. Neurosci. 27, 279–306 (2004).

    CAS  PubMed  Google Scholar 

  6. O’Keefe, J. & Dostrovsky, J. The hippocampus as a spatial map. Preliminary evidence from unit activity in the freely-moving rat. Brain Res. 34, 171–175 (1971).

    PubMed  Google Scholar 

  7. Hafting, T., Fyhn, M., Molden, S., Moser, M. B. & Moser, E. I. Microstructure of a spatial map in the entorhinal cortex. Nature 436, 801–806 (2005).

    CAS  PubMed  Google Scholar 

  8. Ekstrom, A. D. et al. Cellular networks underlying human spatial navigation. Nature 425, 184–188 (2003).

    CAS  PubMed  Google Scholar 

  9. Jacobs, J. et al. Direct recordings of grid-like neuronal activity in human spatial navigation. Nat. Neurosci. 16, 1188–1190 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Clark, R. E. & Squire, L. R. Similarity in form and function of the hippocampus in rodents, monkeys, and humans. Proc. Natl Acad. Sci. USA 110 (Suppl. 2), 10365–10370 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Buzsáki, G. & Moser, E. I. Memory, navigation and theta rhythm in the hippocampal-entorhinal system. Nat. Neurosci. 16, 130–138 (2013).

    PubMed  PubMed Central  Google Scholar 

  12. Bellmund, J. L. S., Gärdenfors, P., Moser, E. I. & Doeller, C. F. Navigating cognition: Spatial codes for human thinking. Science https://doi.org/10.1126/science.aat6766 (2018).

    Article  PubMed  Google Scholar 

  13. Haggard, P. Neuroscience. The sources of human volition. Science 324, 731–733 (2009).

    CAS  PubMed  Google Scholar 

  14. Crick, F. & Koch, C. A framework for consciousness. Nat. Neurosci. 6, 119–126 (2003).

    CAS  PubMed  Google Scholar 

  15. Kreiman, G., Fried, I. & Koch, C. Single-neuron correlates of subjective vision in the human medial temporal lobe. Proc. Natl Acad. Sci. USA 99, 8378–8383 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Gelbard-Sagiv, H., Mudrik, L., Hill, M. R., Koch, C. & Fried, I. Human single neuron activity precedes emergence of conscious perception. Nat. Commun. 9, 2057 (2018).

    PubMed  PubMed Central  Google Scholar 

  17. Eriksson, J., Fontan, A. & Pedale, T. Make the unconscious explicit to boost the science of consciousness. Front. Psychol. 11, 260 (2020).

    PubMed  PubMed Central  Google Scholar 

  18. Boly, M. et al. Are the neural correlates of consciousness in the front or in the back of the cerebral cortex? Clinical and neuroimaging evidence. J. Neurosci. 37, 9603–9613 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Moser, E. I., Moser, M. B. & McNaughton, B. L. Spatial representation in the hippocampal formation: a history. Nat. Neurosci. 20, 1448–1464 (2017).

    CAS  PubMed  Google Scholar 

  20. O”Keefe John, N. L. The Hippocampus as a Cognitive Map (Clarendon Press, 1978).

  21. Fried, I., MacDonald, K. A. & Wilson, C. L. Single neuron activity in human hippocampus and amygdala during recognition of faces and objects. Neuron 18, 753–765 (1997).

    CAS  PubMed  Google Scholar 

  22. Nau, M., Navarro Schröder, T., Bellmund, J. L. S. & Doeller, C. F. Hexadirectional coding of visual space in human entorhinal cortex. Nat. Neurosci. 21, 188–190 (2018).

    CAS  PubMed  Google Scholar 

  23. Staudigl, T. et al. Hexadirectional modulation of high-frequency electrophysiological activity in the human anterior medial temporal lobe maps visual space. Curr. Biol. 28, 3325–3329.e3324 (2018).

    CAS  PubMed  Google Scholar 

  24. Kreiman, G., Koch, C. & Fried, I. Category-specific visual responses of single neurons in the human medial temporal lobe. Nat. Neurosci. 3, 946–953 (2000).

    CAS  PubMed  Google Scholar 

  25. Mormann, F. et al. A category-specific response to animals in the right human amygdala. Nat. Neurosci. 14, 1247–1249 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Quiroga, R. Q., Reddy, L., Kreiman, G., Koch, C. & Fried, I. Invariant visual representation by single neurons in the human brain. Nature 435, 1102–1107 (2005).

    CAS  PubMed  Google Scholar 

  27. Heit, G., Smith, M. E. & Halgren, E. Neural encoding of individual words and faces by the human hippocampus and amygdala. Nature 333, 773–775 (1988).

    CAS  PubMed  Google Scholar 

  28. Viskontas, I. V., Quiroga, R. Q. & Fried, I. Human medial temporal lobe neurons respond preferentially to personally relevant images. Proc. Natl Acad. Sci. USA 106, 21329–21334 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Gelbard-Sagiv, H., Mukamel, R., Harel, M., Malach, R. & Fried, I. Internally generated reactivation of single neurons in human hippocampus during free recall. Science 322, 96–101 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Quian Quiroga, R., Kraskov, A., Koch, C. & Fried, I. Explicit encoding of multimodal percepts by single neurons in the human brain. Curr. Biol. 19, 1308–1313 (2009).

    CAS  PubMed  Google Scholar 

  31. Mormann, F. et al. Latency and selectivity of single neurons indicate hierarchical processing in the human medial temporal lobe. J. Neurosci. 28, 8865–8872 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Nir, Y. et al. Selective neuronal lapses precede human cognitive lapses following sleep deprivation. Nat. Med. 23, 1474–1480 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Waydo, S., Kraskov, A., Quian Quiroga, R., Fried, I. & Koch, C. Sparse representation in the human medial temporal lobe. J. Neurosci. 26, 10232–10234 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Rolls, E. T. & Tovee, M. J. The responses of single neurons in the temporal visual cortical areas of the macaque when more than one stimulus is present in the receptive field. Exp. Brain Res. 101, 409–420 (1995).

    Google Scholar 

  35. Young, M. P. & Yamane, S. Sparse population coding of faces in the inferotemporal cortex. Science 256, 1327–1331 (1992).

    CAS  PubMed  Google Scholar 

  36. Quiroga, R. Q., Mukamel, R., Isham, E. A., Malach, R. & Fried, I. Human single-neuron responses at the threshold of conscious recognition. Proc. Natl Acad. Sci. USA 105, 3599–3604 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Quiroga, R. Q., Kraskov, A., Mormann, F., Fried, I. & Koch, C. Single-cell responses to face adaptation in the human medial temporal lobe. Neuron 84, 363–369 (2014).

    Google Scholar 

  38. Reber, T. P. et al. Single-neuron correlates of conscious perception in the human medial temporal lobe. CB 27, 2991–2998.e2992 (2017).

    CAS  PubMed  Google Scholar 

  39. Miller, J. F. et al. Neural activity in human hippocampal formation reveals the spatial context of retrieved memories. Science 342, 1111–1114 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Ison, M. J., Quian Quiroga, R. & Fried, I. Rapid encoding of new memories by individual neurons in the human brain. Neuron 87, 220–230 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. De Falco, E., Ison, M. J., Fried, I. & Quian Quiroga, R. Long-term coding of personal and universal associations underlying the memory web in the human brain. Nat. Commun. 7, 13408 (2016).

    PubMed  PubMed Central  Google Scholar 

  42. Xie, W., Bainbridge, W. A., Inati, S. K., Baker, C. I. & Zaghloul, K. A. Memorability of words in arbitrary verbal associations modulates memory retrieval in the anterior temporal lobe. Nat. Hum. Behav. 4, 937–948 (2020).

    PubMed  PubMed Central  Google Scholar 

  43. Kamin´ski, J. et al. Persistently active neurons in human medial frontal and medial temporal lobe support working memory. Nat. Neurosci. 20, 590–601 (2017).

    PubMed  PubMed Central  Google Scholar 

  44. Kornblith, S., Quian Quiroga, R., Koch, C., Fried, I. & Mormann, F. Persistent single-neuron activity during working memory in the human medial temporal lobe. Curr. Biol. 27, 1026–1032 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Kreiman, G., Koch, C. & Fried, I. Imagery neurons in the human brain. Nature 408, 357–361 (2000).

    CAS  PubMed  Google Scholar 

  46. Yassa, M. A. & Stark, C. E. Pattern separation in the hippocampus. Trends Neurosci. 34, 515–525 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Rolls, E. T. Pattern separation, completion, and categorisation in the hippocampus and neocortex. Neurobiol. Learn. Mem. 129, 4–28 (2016).

    PubMed  Google Scholar 

  48. Suthana, N. A. et al. Specific responses of human hippocampal neurons are associated with better memory. Proc. Natl Acad. Sci. USA 112, 10503–10508 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Huxter, J., Burgess, N. & O’Keefe, J. Independent rate and temporal coding in hippocampal pyramidal cells. Nature 425, 828–832 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Hyman, J. M., Zilli, E. A., Paley, A. M. & Hasselmo, M. E. Medial prefrontal cortex cells show dynamic modulation with the hippocampal theta rhythm dependent on behavior. Hippocampus 15, 739–749 (2005).

    PubMed  Google Scholar 

  51. Rutishauser, U., Ross, I. B., Mamelak, A. N. & Schuman, E. M. Human memory strength is predicted by theta-frequency phase-locking of single neurons. Nature 464, 903–907 (2010).

    CAS  PubMed  Google Scholar 

  52. Belitski, A. et al. Low-frequency local field potentials and spikes in primary visual cortex convey independent visual information. J. Neurosci. 28, 5696–5709 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Kayser, C., Montemurro, M. A., Logothetis, N. K. & Panzeri, S. Spike-phase coding boosts and stabilizes information carried by spatial and temporal spike patterns. Neuron 61, 597–608 (2009).

    CAS  PubMed  Google Scholar 

  54. Siegel, M., Warden, M. R. & Miller, E. K. Phase-dependent neuronal coding of objects in short-term memory. Proc. Natl Acad. Sci. USA 106, 21341–21346 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Terada, S., Sakurai, Y., Nakahara, H. & Fujisawa, S. Temporal and rate coding for discrete event sequences in the hippocampus. Neuron 94, 1248–1262.e1244 (2017).

    CAS  PubMed  Google Scholar 

  56. O’Keefe, J. & Recce, M. L. Phase relationship between hippocampal place units and the EEG theta rhythm. Hippocampus 3, 317–330 (1993).

    PubMed  Google Scholar 

  57. Watrous, A. J., Miller, J., Qasim, S. E., Fried, I. & Jacobs, J. Phase-tuned neuronal firing encodes human contextual representations for navigational goals. eLife https://doi.org/10.7554/eLife.32554 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Qasim, S. E., Fried, I. & Jacobs, J. Phase precession in the human hippocampus and entorhinal cortex. bioRxiv https://doi.org/10.1101/2020.09.06.285320 (2020).

    Article  Google Scholar 

  59. Polyn, S. M., Natu, V. S., Cohen, J. D. & Norman, K. A. Category-specific cortical activity precedes retrieval during memory search. Science 310, 1963–1966 (2005).

    CAS  PubMed  Google Scholar 

  60. Joo, H. R. & Frank, L. M. The hippocampal sharp wave-ripple in memory retrieval for immediate use and consolidation. Nat. Rev. Neurosci. 19, 744–757 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Jadhav, S. P., Kemere, C., German, P. W. & Frank, L. M. Awake hippocampal sharp-wave ripples support spatial memory. Science 336, 1454–1458 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Girardeau, G., Benchenane, K., Wiener, S. I., Buzsaki, G. & Zugaro, M. B. Selective suppression of hippocampal ripples impairs spatial memory. Nat. Neurosci. 12, 1222–1223 (2009).

    CAS  PubMed  Google Scholar 

  63. Fernandez-Ruiz, A. et al. Long-duration hippocampal sharp wave ripples improve memory. Science 364, 1082–1086 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Norman, Y. et al. Hippocampal sharp-wave ripples linked to visual episodic recollection in humans. Science https://doi.org/10.1126/science.aax1030 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Vaz, A. P., Inati, S. K., Brunel, N. & Zaghloul, K. A. Coupled ripple oscillations between the medial temporal lobe and neocortex retrieve human memory. Science 363, 975–978 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Vaz, A. P., Wittig, J. H. Jr, Inati, S. K. & Zaghloul, K. A. Replay of cortical spiking sequences during human memory retrieval. Science 367, 1131–1134 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Nyberg, L., Kim, A. S., Habib, R., Levine, B. & Tulving, E. Consciousness of subjective time in the brain. Proc. Natl Acad. Sci. USA 107, 22356–22359 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Garvert, M. M., Dolan, R. J. & Behrens, T. E. A map of abstract relational knowledge in the human hippocampal-entorhinal cortex. eLife https://doi.org/10.7554/eLife.17086 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Constantinescu, A. O., O’Reilly, J. X. & Behrens, T. E. J. Organizing conceptual knowledge in humans with a gridlike code. Science 352, 1464–1468 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Behrens, T. E. J. et al. What is a cognitive map? Organizing knowledge for flexible behavior. Neuron 100, 490–509 (2018).

    CAS  PubMed  Google Scholar 

  71. Schafer, M. & Schiller, D. Navigating social space. Neuron 100, 476–489 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Stangl, M. et al. Boundary-anchored neural mechanisms of location-encoding for self and others. Nature https://doi.org/10.1038/s41586-020-03073-y (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Wittgenstein, L. Philosophical Investigations; the English Text of the Third Edition. (Macmillan, 1973).

  74. Fried, I. et al. Functional organization of human supplementary motor cortex studied by electrical stimulation. J. Neurosci. 11, 3656–3666 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Hampson, M., Tokoglu, F., King, R. A., Constable, R. T. & Leckman, J. F. Brain areas coactivating with motor cortex during chronic motor tics and intentional movements. Biol. Psychiatry 65, 594–599 (2009).

    PubMed  Google Scholar 

  76. Parvizi, J., Rangarajan, V., Shirer, W. R., Desai, N. & Greicius, M. D. The will to persevere induced by electrical stimulation of the human cingulate gyrus. Neuron 80, 1359–1367 (2013).

    CAS  PubMed  Google Scholar 

  77. Desmurget, M. et al. Movement intention after parietal cortex stimulation in humans. Science 324, 811–813 (2009).

    CAS  PubMed  Google Scholar 

  78. Desmurget, M. & Sirigu, A. Conscious motor intention emerges in the inferior parietal lobule. Curr. Opin. Neurobiol. 22, 1004–1011 (2012).

    CAS  PubMed  Google Scholar 

  79. Sirigu, A. et al. Altered awareness of voluntary action after damage to the parietal cortex. Nat. Neurosci. 7, 80–84 (2004).

    CAS  PubMed  Google Scholar 

  80. Laplane, D., Talairach, J., Meininger, V., Bancaud, J. & Orgogozo, J. M. Clinical consequences of corticectomies involving the supplementary motor area in man. J. Neurol. Sci. 34, 301–314 (1977).

    CAS  PubMed  Google Scholar 

  81. Freemon, F. R. Akinetic mutism and bilateral anterior cerebral artery occlusion. J. Neurol. Neurosurg. Psychiatry 34, 693–698 (1971).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Hassan, A. & Josephs, K. A. Alien hand syndrome. Curr. Neurol. Neurosci. Rep. 16, 73 (2016).

    PubMed  Google Scholar 

  83. Assal, F., Schwartz, S. & Vuilleumier, P. Moving with or without will: functional neural correlates of alien hand syndrome. Ann. Neurol. 62, 301–306 (2007).

    PubMed  Google Scholar 

  84. Libet, B., Gleason, C. A., Wright, E. W. & Pearl, D. K. Time of conscious intention to act in relation to onset of cerebral activity (readiness-potential). The unconscious initiation of a freely voluntary act. Brain 106, 623–642 (1983).

    PubMed  Google Scholar 

  85. Frith, C. D. & Haggard, P. Volition and the brain- revisiting a classic experimental study. Trends Neurosci. 41, 405–407 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Haggard, P. Conscious intention and motor cognition. Trends Cognit. Sci. 9, 290–295 (2005).

    Google Scholar 

  87. Haggard, P. & Eimer, M. On the relation between brain potentials and the awareness of voluntary movements. Exp. Brain Res. 126, 128–133 (1999).

    CAS  PubMed  Google Scholar 

  88. Salvaris, M. & Haggard, P. Decoding intention at sensorimotor timescales. PLoS ONE 9, e85100 (2014).

    PubMed  PubMed Central  Google Scholar 

  89. Perez, O. et al. Preconscious prediction of a driver’s decision using intracranial recordings. J. Cognit. Neurosci. 27, 1492–1502 (2015).

    Google Scholar 

  90. Erdler, M. et al. Supplementary motor area activation preceding voluntary movement is detectable with a whole-scalp magnetoencephalography system. Neuroimage 11, 697–707 (2000).

    CAS  PubMed  Google Scholar 

  91. Soon, C. S., Brass, M., Heinze, H. J. & Haynes, J. D. Unconscious determinants of free decisions in the human brain. Nat. Neurosci. 11, 543–545 (2008).

    CAS  PubMed  Google Scholar 

  92. Bode, S. et al. Tracking the unconscious generation of free decisions using ultra-high field fMRI. PLoS ONE 6, e21612 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Soon, C. S., He, A. H., Bode, S. & Haynes, J. D. Predicting free choices for abstract intentions. Proc. Natl Acad. Sci. USA 110, 6217–6222 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Schurger, A., Sitt, J. D. & Dehaene, S. An accumulator model for spontaneous neural activity prior to self-initiated movement. Proc. Natl Acad. Sci. USA 109, E2904–E2913 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Maoz, U., Yaffe, G., Koch, C. & Mudrik, L. Neural precursors of decisions that matter-an ERP study of deliberate and arbitrary choice. eLife https://doi.org/10.7554/eLife.39787 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  96. Fried, I., Mukamel, R. & Kreiman, G. Internally generated preactivation of single neurons in human medial frontal cortex predicts volition. Neuron 69, 548–562 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Andersen, R. A., Aflalo, T. & Kellis, S. From thought to action: The brain-machine interface in posterior parietal cortex. Proc. Natl Acad. Sci. USA 116, 26274–26279 (2019).

    CAS  PubMed Central  Google Scholar 

  98. Gnadt, J. W. & Andersen, R. A. Memory related motor planning activity in posterior parietal cortex of macaque. Exp. Brain Res. 70, 216–220 (1988).

    CAS  PubMed  Google Scholar 

  99. Snyder, L. H., Batista, A. P. & Andersen, R. A. Coding of intention in the posterior parietal cortex. Nature 386, 167–170 (1997).

    CAS  PubMed  Google Scholar 

  100. Cohen, Y. E. & Andersen, R. A. A common reference frame for movement plans in the posterior parietal cortex. Nat. reviews. Neurosci. 3, 553–562 (2002).

    CAS  Google Scholar 

  101. Zhang, C. Y. et al. Partially mixed selectivity in human posterior parietal association cortex. Neuron 95, 697–708.e694 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Erlich, J. C., Brunton, B. W., Duan, C. A., Hanks, T. D. & Brody, C. D. Distinct effects of prefrontal and parietal cortex inactivations on an accumulation of evidence task in the rat. eLife https://doi.org/10.7554/eLife.05457 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  103. Wilke, M., Kagan, I. & Andersen, R. A. Functional imaging reveals rapid reorganization of cortical activity after parietal inactivation in monkeys. Proc. Natl Acad. Sci. USA 109, 8274–8279 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. d’Avella, A., Giese, M., Ivanenko, Y. P., Schack, T. & Flash, T. Editorial: Modularity in motor control: from muscle synergies to cognitive action representation. Front. Comput. Neurosci. 9, 126 (2015).

    PubMed  PubMed Central  Google Scholar 

  105. Hayon, G., Abeles, M. & Lehmann, D. A model for representing the dynamics of a system of synfire chains. J. Comput. Neurosci. 18, 41–53 (2005).

    PubMed  Google Scholar 

  106. Gold, J. I. & Shadlen, M. N. The neural basis of decision making. Annu. Rev. Neurosci. 30, 535–574 (2007).

    CAS  PubMed  Google Scholar 

  107. Raichle, M. E. The brain’s default mode network. Annu. Rev. Neurosci. 38, 433–447 (2015).

    CAS  PubMed  Google Scholar 

  108. Minxha, J., Adolphs, R., Fusi, S., Mamelak, A. N. & Rutishauser, U. Flexible recruitment of memory-based choice representations by the human medial frontal cortex. Science https://doi.org/10.1126/science.aba3313 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  109. Pastalkova, E., Itskov, V., Amarasingham, A. & Buzsaki, G. Internally generated cell assembly sequences in the rat hippocampus. Science 321, 1322–1327 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Shin, J. D., Tang, W. & Jadhav, S. P. Dynamics of awake hippocampal-prefrontal replay for spatial learning and memory-guided decision making. Neuron 104, 1110–1125.e1117 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Boran, E. et al. Persistent hippocampal neural firing and hippocampal-cortical coupling predict verbal working memory load. Sci. Adv. 5, eaav3687 (2019).

    PubMed  PubMed Central  Google Scholar 

  112. Cerf, M. et al. On-line, voluntary control of human temporal lobe neurons. Nature 467, 1104–1108 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Logothetis, N. K. & Schall, J. D. Neuronal correlates of subjective visual perception. Science 245, 761–763 (1989).

    CAS  PubMed  Google Scholar 

  114. Kant, I. Critique of Pure Reason. 1781 (Houghton Mifflin, 1908).

  115. Moutard, C., Dehaene, S. & Malach, R. Spontaneous fluctuations and non-linear ignitions: two dynamic faces of cortical recurrent loops. Neuron 88, 194–206 (2015).

    CAS  PubMed  Google Scholar 

  116. Rutishauser, U. et al. Representation of retrieval confidence by single neurons in the human medial temporal lobe. Nat. Neurosci. 18, 1041–1050 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Schultze-Kraft, M., Parés-Pujolràs, E., Matić, K., Haggard, P. & Haynes, J. D. Preparation and execution of voluntary action both contribute to awareness of intention. Proc. Biol. Sci. 287, 20192928 (2020).

    PubMed  PubMed Central  Google Scholar 

  118. Cerf, M., Gelbard-Sagiv, H. & Fried, I. in Single Neuron Studies of the Human Brain (eds Fried I., Rutishauser U., Cerf M. & Kreiman G.) (MIT Press, 2014).

  119. Yadav, D., Yadav, S. & Veer, K. A comprehensive assessment of brain computer interfaces: recent trends and challenges. J. Neurosci. Methods 346, 108918 (2020).

    PubMed  Google Scholar 

  120. Lozano, A. M. & Gross, R. E. Introduction to deep brain stimulation. Neurosurg. Focus. https://doi.org/10.3171/2017.2.FocusVid.Intro (2017).

    Article  PubMed  Google Scholar 

  121. Bari, A. A. et al. Charting the road forward in psychiatric neurosurgery: proceedings of the 2016 American Society for Stereotactic and Functional Neurosurgery workshop on neuromodulation for psychiatric disorders. J. Neurol. Neurosurg. Psychiatry 89, 886–896 (2018).

    PubMed  Google Scholar 

  122. Suthana, N. et al. Memory enhancement and deep-brain stimulation of the entorhinal area. N. Engl. J. Med. 366, 502–510 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Jun, J. J. et al. Fully integrated silicon probes for high-density recording of neural activity. Nature 551, 232–236 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Nurmikko, A. Challenges for large-scale cortical interfaces. Neuron 108, 259–269 (2020).

    CAS  PubMed  Google Scholar 

  125. Livezey, J. A. & Glaser, J. I. Deep learning approaches for neural decoding across architectures and recording modalities. Brief Bioinform. https://doi.org/10.1093/bib/bbaa355 (2020).

    Article  Google Scholar 

  126. Ramirez, S., Tonegawa, S. & Liu, X. Identification and optogenetic manipulation of memory engrams in the hippocampus. Front. Behav. Neurosci. 7, 226 (2013).

    PubMed  Google Scholar 

  127. de Lavilleon, G., Lacroix, M. M., Rondi-Reig, L. & Benchenane, K. Explicit memory creation during sleep demonstrates a causal role of place cells in navigation. Nat. Neurosci. 18, 493–495 (2015).

    PubMed  Google Scholar 

  128. Figee, M. & Mayberg, H. The future of personalized brain stimulation. Nat. Med. https://doi.org/10.1038/s41591-021-01243-7 (2021).

    Article  PubMed  Google Scholar 

  129. Scangos, K. W., Makhoul, G. S., Sugrue, L. P., Chang, E. F. & Krystal, A. D. State-dependent responses to intracranial brain stimulation in a patient with depression. Nat. Med. https://doi.org/10.1038/s41591-020-01175-8 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  130. Bina, R. W. & Langevin, J. P. Closed loop deep brain stimulation for PTSD, Addiction, and disorders of affective facial interpretation: review and discussion of potential biomarkers and stimulation paradigms. Front. Neurosci. 12, 300 (2018).

    PubMed  PubMed Central  Google Scholar 

  131. Grover, S., Nguyen, J. A., Viswanathan, V. & Reinhart, R. M. G. High-frequency neuromodulation improves obsessive–compulsive behavior. Nat. Med. https://doi.org/10.1038/s41591-020-01173-w (2021).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the the National Institute of Health (NIH) National Institute of Neurological Disorders and Stroke (NINDS: grants U01NS108930 and 1R01NS084017 to I.F.) and the National Science Foundation (NSF: grant 1756473 to I.F.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Itzhak Fried.

Ethics declarations

Competing interests

The author declares no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Fried, I. Neurons as will and representation. Nat Rev Neurosci 23, 104–114 (2022). https://doi.org/10.1038/s41583-021-00543-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41583-021-00543-8

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing