Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The self in context: brain systems linking mental and physical health

Abstract

Increasing evidence suggests that mental health and physical health are linked by neural systems that jointly regulate somatic physiology and high-level cognition. Key systems include the ventromedial prefrontal cortex and the related default-mode network. These systems help to construct models of the ‘self-in-context’, compressing information across time and sensory modalities into conceptions of the underlying causes of experience. Self-in-context models endow events with personal meaning and allow predictive control over behaviour and peripheral physiology, including autonomic, neuroendocrine and immune function. They guide learning from experience and the formation of narratives about the self and one’s world. Disorders of mental and physical health, especially those with high co-occurrence and convergent alterations in the functionality of the ventromedial prefrontal cortex and the default-mode network, could benefit from interventions focused on understanding and shaping mindsets and beliefs about the self, illness and treatment.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: A schematic of self-in-context models and their role in health and disease.
Fig. 2: Anatomy and functional connectivity of the ventromedial prefrontal cortex.
Fig. 3: Functional associations of ventromedial prefrontal cortex with connected brain networks.

Code availability

Instructions and the code to generate the visualizations of the term-based meta-analytic association maps in Fig. 3 are included in Supplementary information S3.

References

  1. Engel, G. L. The need for a new medical model: a challenge for biomedicine. Science 196, 129–136 (1977).

    CAS  PubMed  Article  Google Scholar 

  2. Suls, J. & Green, P. A. Multimorbidity in health psychology and behavioral medicine. Health Psychol. 38, 769–771 (2019).

    PubMed  Article  Google Scholar 

  3. Kapur, S., Phillips, A. G. & Insel, T. R. Why has it taken so long for biological psychiatry to develop clinical tests and what to do about it? Mol. Psychiatry 17, 1174 (2012).

    CAS  PubMed  Article  Google Scholar 

  4. Barrett, L. F. & Simmons, W. K. Interoceptive predictions in the brain. Nat. Rev. Neurosci. 16, 419–429 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  5. Kleckner, I. R. et al. Evidence for a large-scale brain system supporting allostasis and interoception in humans. Nat. Hum. Behav. 1, 0069 (2017).

    PubMed  PubMed Central  Article  Google Scholar 

  6. Behrens, T. E. J. et al. What is a cognitive map? Organizing knowledge for flexible behavior. Neuron 100, 490–509 (2018).

    CAS  PubMed  Article  Google Scholar 

  7. Schuck, N. W., Cai, M. B., Wilson, R. C. & Niv, Y. Human orbitofrontal cortex represents a cognitive map of state space. Neuron 91, 1402–1412 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  8. Seth, A. K. Interoceptive inference, emotion, and the embodied self. Trends Cogn. Sci. 17, 565–573 (2013).

    PubMed  Article  Google Scholar 

  9. Friston, K. The free-energy principle: a unified brain theory? Nat. Rev. Neurosci. 11, 127–138 (2010).

    CAS  PubMed  Article  Google Scholar 

  10. Stalnaker, T. A., Cooch, N. K. & Schoenbaum, G. What the orbitofrontal cortex does not do. Nat. Neurosci. 18, 620–627 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  11. Barrett, L. F. The theory of constructed emotion: an active inference account of interoception and categorization. Soc. Cogn. Affect. Neurosci. 12, 1833 (2017).

    PubMed  PubMed Central  Article  Google Scholar 

  12. Gershman, S. J., Norman, K. A. & Niv, Y. Discovering latent causes in reinforcement learning. Curr. Opin. Behav. Sci. 5, 43–50 (2015).

    Article  Google Scholar 

  13. Tolman, E. C. Cognitive maps in rats and men. Psychol. Rev. 55, 189–208 (1948).

    CAS  PubMed  Article  Google Scholar 

  14. Constantinescu, A. O., O’Reilly, J. X. & Behrens, T. E. J. Organizing conceptual knowledge in humans with a gridlike code. Science 352, 1464–1468 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  15. Buckner, R. L. & DiNicola, L. M. The brain’s default network: updated anatomy, physiology and evolving insights. Nat. Rev. Neurosci. 20, 593–608 (2019).

    CAS  PubMed  Article  Google Scholar 

  16. Raichle, M. E. The brain’s default mode network. Annu. Rev. Neurosci. 38, 433–447 (2015).

    CAS  PubMed  Article  Google Scholar 

  17. van den Heuvel, M. P. & Sporns, O. An anatomical substrate for integration among functional networks in human cortex. J. Neurosci. 33, 14489–14500 (2013).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  18. Dum, R. P., Levinthal, D. J. & Strick, P. L. Motor, cognitive, and affective areas of the cerebral cortex influence the adrenal medulla. Proc. Natl Acad. Sci. USA 113, 9922–9927 (2016).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  19. Ulrich-Lai, Y. M. & Herman, J. P. Neural regulation of endocrine and autonomic stress responses. Nat. Rev. Neurosci. 10, 397–409 (2009).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  20. Haber, S. N. & Knutson, B. The reward circuit: linking primate anatomy and human imaging. Neuropsychopharmacology 35, 4–26 (2010).

    PubMed  Article  Google Scholar 

  21. Alexander, L. et al. Over-activation of primate subgenual cingulate cortex enhances the cardiovascular, behavioral and neural responses to threat. Nat. Commun. 11, 5386 (2020).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  22. Öngür, D. & Price, J. L. The organization of networks within the orbital and medial prefrontal cortex of rats, monkeys and humans. Cereb. Cortex 10, 206–219 (2000).

    PubMed  Article  Google Scholar 

  23. Kraynak, T. E., Marsland, A. L., Wager, T. D. & Gianaros, P. J. Functional neuroanatomy of peripheral inflammatory physiology: a meta-analysis of human neuroimaging studies. Neurosci. Biobehav. Rev. 94, 76–92 (2018).

    PubMed  PubMed Central  Article  Google Scholar 

  24. Ben-Shaanan, T. L. et al. Modulation of anti-tumor immunity by the brain’s reward system. Nat. Commun. 9, 2723 (2018).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  25. Hiser, J. & Koenigs, M. The multifaceted role of the ventromedial prefrontal cortex in emotion, decision making, social cognition, and psychopathology. Biol. Psychiatry 83, 638–647 (2017).

    PubMed  PubMed Central  Article  Google Scholar 

  26. Volkow, N. D., Koob, G. F. & McLellan, A. T. Neurobiologic advances from the brain disease model of addiction. N. Engl. J. Med. 374, 363–371 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  27. Zhou, J. et al. Divergent network connectivity changes in behavioural variant frontotemporal dementia and Alzheimer’s disease. Brain 133, 1352–1367 (2010).

    PubMed  PubMed Central  Article  Google Scholar 

  28. Geha, P. Y. et al. The brain in chronic CRPS pain: abnormal gray-white matter interactions in emotional and autonomic regions. Neuron 60, 570–581 (2008).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  29. Kessler, R. C. et al. Development of lifetime comorbidity in the World Health Organization World Mental Health Surveys. Arch. Gen. Psychiatry 68, 90–100 (2011).

    PubMed  PubMed Central  Article  Google Scholar 

  30. Caspi, A. et al. The p factor: one general psychopathology factor in the structure of psychiatric disorders? Clin. Psychol. Sci. 2, 119–137 (2014).

    PubMed  PubMed Central  Article  Google Scholar 

  31. Lo, M.-T. et al. Genome-wide analyses for personality traits identify six genomic loci and show correlations with psychiatric disorders. Nat. Genet. 49, 152–156 (2017).

    CAS  PubMed  Article  Google Scholar 

  32. Brainstorm, C. et al. Analysis of shared heritability in common disorders of the brain. Science 360, eaap8757 (2018).

    Article  CAS  Google Scholar 

  33. Insel, T. R. & Cuthbert, B. N. Medicine. Brain disorders? Precisely. Science 348, 499–500 (2015).

    CAS  PubMed  Article  Google Scholar 

  34. Wang, I. M. et al. Systems analysis of eleven rodent disease models reveals an inflammatome signature and key drivers. Mol. Syst. Biol. 8, 594 (2012).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  35. Demyttenaere, K. et al. Prevalence, severity, and unmet need for treatment of mental disorders in the World Health Organization World Mental Health Surveys. JAMA 291, 2581–2590 (2004).

    PubMed  Article  Google Scholar 

  36. Tsang, A. et al. Common chronic pain conditions in developed and developing countries: gender and age differences and comorbidity with depression-anxiety disorders. J. Pain 9, 883–891 (2008).

    PubMed  Article  Google Scholar 

  37. Davidson, K. W., Alcántara, C. & Miller, G. E. Selected psychological comorbidities in coronary heart disease: challenges and grand opportunities. Am. Psychol. 73, 1019–1030 (2018).

    PubMed  PubMed Central  Article  Google Scholar 

  38. Ginty, A. T., Kraynak, T. E., Fisher, J. P. & Gianaros, P. J. Cardiovascular and autonomic reactivity to psychological stress: neurophysiological substrates and links to cardiovascular disease. Auton. Neurosci. 207, 2–9 (2017).

    PubMed  PubMed Central  Article  Google Scholar 

  39. Kraynak, T. E., Marsland, A. L. & Gianaros, P. J. Neural mechanisms linking emotion with cardiovascular disease. Curr. Cardiol. Rep. 20, 128 (2018).

    PubMed  PubMed Central  Article  Google Scholar 

  40. Kim, H.-G., Cheon, E.-J., Bai, D.-S., Lee, Y. H. & Koo, B.-H. Stress and heart rate variability: a meta-analysis and review of the literature. Psychiatry Investig. 15, 235–245 (2018).

    PubMed  PubMed Central  Article  Google Scholar 

  41. Thayer, J. F., Åhs, F., Fredrikson, M., Sollers, J. J. & Wager, T. D. A meta-analysis of heart rate variability and neuroimaging studies: implications for heart rate variability as a marker of stress and health. Neurosci. Biobehav. Rev. 36, 747–756 (2012).

    PubMed  Article  Google Scholar 

  42. Alvares, G. A., Quintana, D. S., Hickie, I. B. & Guastella, A. J. Autonomic nervous system dysfunction in psychiatric disorders and the impact of psychotropic medications: a systematic review and meta-analysis. J. Psychiatry Neurosci. 41, 89–104 (2016).

    Article  PubMed  Google Scholar 

  43. Chalmers, J. A., Quintana, D. S., Abbott, M. J. A. & Kemp, A. H. Anxiety disorders are associated with reduced heart rate variability: a meta-analysis. Front. Psychiatry 5, 80 (2014).

    PubMed  PubMed Central  Article  Google Scholar 

  44. Dantzer, R., O’Connor, J. C., Freund, G. G., Johnson, R. W. & Kelley, K. W. From inflammation to sickness and depression: when the immune system subjugates the brain. Nat. Rev. Neurosci. 9, 46–56 (2008).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  45. Valkanova, V., Ebmeier, K. P. & Allan, C. L. CRP, IL-6 and depression: a systematic review and meta-analysis of longitudinal studies. J. Affect. Disord. 150, 736–744 (2013).

    CAS  PubMed  Article  Google Scholar 

  46. Pradhan, A. D., Manson, J. E., Rifai, N., Buring, J. E. & Ridker, P. M. C-reactive protein, interleukin 6, and risk of developing type 2 diabetes mellitus. JAMA 286, 327–334 (2001).

    CAS  PubMed  Article  Google Scholar 

  47. Danesh, J. et al. Long-term interleukin-6 levels and subsequent risk of coronary heart disease: two new prospective studies and a systematic review. PLoS Med. 5, e78 (2008).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  48. Ji, R.-R., Chamessian, A. & Zhang, Y.-Q. Pain regulation by non-neuronal cells and inflammation. Science 354, 572–577 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  49. Kappelmann, N., Lewis, G., Dantzer, R., Jones, P. B. & Khandaker, G. M. Antidepressant activity of anti-cytokine treatment: a systematic review and meta-analysis of clinical trials of chronic inflammatory conditions. Mol. Psychiatry 23, 335–343 (2018).

    CAS  PubMed  Article  Google Scholar 

  50. Cole, S. W. et al. Loneliness, eudaimonia, and the human conserved transcriptional response to adversity. Psychoneuroendocrinology 62, 11–17 (2015).

    PubMed  PubMed Central  Article  Google Scholar 

  51. Cole, S. W. Human social genomics. PLoS Genet. 10, e1004601 (2014).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  52. Pariante, C. M. Why are depressed patients inflamed? A reflection on 20 years of research on depression, glucocorticoid resistance and inflammation. Eur. Neuropsychopharmacol. 27, 554–559 (2017).

    CAS  PubMed  Article  Google Scholar 

  53. Tracey, K. J. Reflex control of immunity. Nat. Rev. Immunol. 9, 418–428 (2009).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  54. Ben-Shaanan, T. L. et al. Activation of the reward system boosts innate and adaptive immunity. Nat. Med. 22, 940–944 (2016).

    CAS  PubMed  Article  Google Scholar 

  55. Kirschbaum, C., Pirke, K. M. & Hellhammer, D. H. The ‘Trier Social Stress Test’ — a tool for investigating psychobiological stress responses in a laboratory setting. Neuropsychobiology 28, 76–81 (1993).

    CAS  PubMed  Article  Google Scholar 

  56. Marsland, A. L., Walsh, C., Lockwood, K. & John-Henderson, N. A. The effects of acute psychological stress on circulating and stimulated inflammatory markers: a systematic review and meta-analysis. Brain Behav. Immun. 64, 208–219 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  57. Spicer, J. et al. Prevention of stress-provoked endothelial injury by values affirmation: A proof of principle study. Ann. Behav. Med. 50, 471–479 (2015).

    Article  Google Scholar 

  58. Rozanski, A. Behavioral cardiology: current advances and future directions. J. Am. Coll. Cardiol. 64, 100–110 (2014).

    PubMed  Article  Google Scholar 

  59. Jiang, W. et al. Mental stress — induced myocardial ischemia and cardiac events. JAMA 275, 1651–1656 (1996).

    CAS  PubMed  Article  Google Scholar 

  60. Cacioppo, J. T. et al. Loneliness and health: potential mechanisms. Psychosom. Med. 64, 407–417 (2002).

    PubMed  Article  Google Scholar 

  61. Wampold, B. E. How important are the common factors in psychotherapy? An update. World Psychiatry 14, 270–277 (2015).

    PubMed  PubMed Central  Article  Google Scholar 

  62. Benedetti, F. Placebo effects: from the neurobiological paradigm to translational implications. Neuron 84, 623–637 (2014).

    CAS  PubMed  Article  Google Scholar 

  63. Enck, P., Bingel, U., Schedlowski, M. & Rief, W. The placebo response in medicine: minimize, maximize or personalize? Nat. Rev. Drug Discov. 12, 191–204 (2013).

    CAS  PubMed  Article  Google Scholar 

  64. Ashar, Y. K., Chang, L. J. & Wager, T. D. Brain mechanisms of the placebo effect: an affective appraisal account. Annu. Rev. Clin. Psychol. 13, 73–98 (2017).

    PubMed  Article  Google Scholar 

  65. Wager, T. D., Scott, D. J. & Zubieta, J. K. Placebo effects on human μ-opioid activity during pain. Proc. Natl Acad. Sci. USA 104, 11056–11061 (2007).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  66. Kirsch, I. Placebo effect in the treatment of depression and anxiety. Front. Psychiatry 10, 407 (2019).

    PubMed  PubMed Central  Article  Google Scholar 

  67. Zahrt, O. H. & Crum, A. J. Perceived physical activity and mortality: evidence from three nationally representative U.S. samples. Health Psychol. 36, 1017–1025 (2017).

    PubMed  Article  Google Scholar 

  68. Schoenbaum, G., Roesch, M. R., Stalnaker, T. A. & Takahashi, Y. K. A new perspective on the role of the orbitofrontal cortex in adaptive behaviour. Nat. Rev. Neurosci. 10, 885–892 (2009).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  69. Crum, A. J., Leibowitz, K. A. & Verghese, A. Making mindset matter. BMJ 356, j674 (2017).

    PubMed  Article  Google Scholar 

  70. Lissek, S. et al. Neural substrates of classically conditioned fear-generalization in humans: a parametric fMRI study. Soc. Cogn. Affect. Neurosci. 9, 1134–1142 (2014).

    PubMed  Article  Google Scholar 

  71. Koban, L., Kusko, D. & Wager, T. D. Generalization of learned pain modulation depends on explicit learning. Acta Psychol. 184, 75–84 (2018).

    Article  Google Scholar 

  72. Wilson, R. C., Takahashi, Y. K., Schoenbaum, G. & Niv, Y. Orbitofrontal cortex as a cognitive map of task space. Neuron 81, 267–279 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  73. Hutchinson, J. B. & Barrett, L. F. The power of predictions: an emerging paradigm for psychological research. Curr. Dir. Psychol. Sci. 28, 280–291 (2019).

    PubMed  PubMed Central  Article  Google Scholar 

  74. Lazarus, R. S. & Folkman, S. Stress, Appraisal, and Coping (Springer Publishing Company, 1984).

  75. Summerfield, C. & de Lange, F. P. Expectation in perceptual decision making: neural and computational mechanisms. Nat. Rev. Neurosci. 15, 745–756 (2014).

    CAS  PubMed  Article  Google Scholar 

  76. Rao, R. P. & Ballard, D. H. Predictive coding in the visual cortex: a functional interpretation of some extra-classical receptive-field effects. Nat. Neurosci. 2, 79–87 (1999).

    CAS  PubMed  Article  Google Scholar 

  77. Barrett, L. F., Quigley, K. S. & Hamilton, P. An active inference theory of allostasis and interoception in depression. Philos. Trans. R. Soc. Lond. B Biol. Sci. 371, 20160011 (2016).

    PubMed  PubMed Central  Article  Google Scholar 

  78. Büchel, C., Geuter, S., Sprenger, C. & Eippert, F. Placebo analgesia: a predictive coding perspective. Neuron 81, 1223–1239 (2014).

    PubMed  Article  CAS  Google Scholar 

  79. Sterling, P. Allostasis: a model of predictive regulation. Physiol. Behav. 106, 5–15 (2012).

    CAS  PubMed  Article  Google Scholar 

  80. Tamir, D. I. & Thornton, M. A. Modeling the predictive social mind. Trends Cogn. Sci. 22, 201–212 (2018).

    PubMed  PubMed Central  Article  Google Scholar 

  81. Koban, L., Ramamoorthy, A. & Konvalinka, I. Why do we fall into sync with others? Interpersonal synchronization and the brain’s optimization principle. Soc. Neurosci. 14, 1–9 (2017).

    PubMed  Article  Google Scholar 

  82. van Heukelum, S. et al. Where is cingulate cortex? A cross-species view. Trends Neurosci. 43, 285–299 (2020).

    PubMed  Article  CAS  Google Scholar 

  83. Dum, R. P., Levinthal, D. J. & Strick, P. L. The mind–body problem: Circuits that link the cerebral cortex to the adrenal medulla. Proc. Natl Acad. Sci. USA 116, 26321–26328 (2019).

    CAS  Article  PubMed Central  Google Scholar 

  84. Price, J. L. Definition of the orbital cortex in relation to specific connections with limbic and visceral structures and other cortical regions. Ann. N. Y. Acad. Sci. 1121, 54–71 (2007).

    PubMed  Article  Google Scholar 

  85. Saper, C. B. The central autonomic nervous system: conscious visceral perception and autonomic pattern generation. Annu. Rev. Neurosci. 25, 433–469 (2002).

    CAS  PubMed  Article  Google Scholar 

  86. Yeo, B. T. T. et al. The organization of the human cerebral cortex estimated by intrinsic functional connectivity. J. Neurophysiol. 106, 1125–1165 (2011).

    PubMed  Article  Google Scholar 

  87. Eisenbarth, H., Chang, L. J. & Wager, T. D. Multivariate brain prediction of heart rate and skin conductance responses to social threat. J. Neurosci. 36, 11987–11998 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  88. Schaefer, A. et al. Local-global parcellation of the human cerebral cortex from intrinsic functional connectivity MRI. Cereb. Cortex 28, 3095–3114 (2018).

    PubMed  Article  Google Scholar 

  89. Andrews-Hanna, J. R., Reidler, J. S., Sepulcre, J., Poulin, R. & Buckner, R. L. Functional-anatomic fractionation of the brain’s default network. Neuron 65, 550–562 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  90. Christoff, K., Irving, Z. C., Fox, K. C. R., Spreng, R. N. & Andrews-Hanna, J. R. Mind-wandering as spontaneous thought: a dynamic framework. Nat. Rev. Neurosci. 17, 718–731 (2016).

    CAS  PubMed  Article  Google Scholar 

  91. Hunt, L. T. et al. Triple dissociation of attention and decision computations across prefrontal cortex. Nat. Neurosci. 21, 1471–1481 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  92. Barbas, H. General cortical and special prefrontal connections: principles from structure to function. Annu. Rev. Neurosci. 38, 269–289 (2015).

    CAS  PubMed  Article  Google Scholar 

  93. Margulies, D. S. et al. Situating the default-mode network along a principal gradient of macroscale cortical organization. Proc. Natl Acad. Sci. USA 113, 12574–12579 (2016).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  94. Raichle, M. E. et al. A default mode of brain function. Proc. Natl Acad. Sci. USA 98, 676–682 (2001).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  95. Fox, K. C. R., Spreng, R. N., Ellamil, M., Andrews-Hanna, J. R. & Christoff, K. The wandering brain: meta-analysis of functional neuroimaging studies of mind-wandering and related spontaneous thought processes. Neuroimage 111, 611–621 (2015).

    PubMed  Article  Google Scholar 

  96. Mason, M. F. et al. Wandering minds: the default network and stimulus-independent thought. Science 315, 393–395 (2007).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  97. Spreng, R. N., Mar, R. A. & Kim, A. S. N. The common neural basis of autobiographical memory, prospection, navigation, theory of mind, and the default mode: a quantitative meta-analysis. J. Cogn. Neurosci. 21, 489–510 (2009).

    PubMed  Article  Google Scholar 

  98. Cabeza, R. & St Jacques, P. Functional neuroimaging of autobiographical memory. Trends Cogn. Sci. 11, 219–227 (2007).

    PubMed  Article  Google Scholar 

  99. Binder, J. R., Desai, R. H., Graves, W. W. & Conant, L. L. Where is the semantic system? A critical review and meta-analysis of 120 functional neuroimaging studies. Cereb. Cortex 19, 2767–2796 (2009).

    PubMed  PubMed Central  Article  Google Scholar 

  100. Benoit, R. G., Szpunar, K. K. & Schacter, D. L. Ventromedial prefrontal cortex supports affective future simulation by integrating distributed knowledge. Proc. Natl Acad. Sci. USA 111, 16550–16555 (2014).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  101. Schacter, D. L., Addis, D. R. & Buckner, R. L. Remembering the past to imagine the future: the prospective brain. Nat. Rev. Neurosci. 8, 657–661 (2007).

    CAS  PubMed  Article  Google Scholar 

  102. Bertossi, E., Aleo, F., Braghittoni, D. & Ciaramelli, E. Stuck in the here and now: construction of fictitious and future experiences following ventromedial prefrontal damage. Neuropsychologia 81, 107–116 (2016).

    PubMed  Article  Google Scholar 

  103. Baldassano, C., Hasson, U. & Norman, K. A. Representation of real-world event schemas during narrative perception. J. Neurosci. 38, 9689–9699 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  104. Honey, C. J. et al. Slow cortical dynamics and the accumulation of information over long timescales. Neuron 76, 423–434 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  105. Jain, S. & Huth, A. in Advances in Neural Information Processing Systems 31 (eds Bengio, S. et al.) 6628–6637 (Curran Associates Inc., 2018).

  106. Milivojevic, B., Vicente-Grabovetsky, A. & Doeller, C. F. Insight reconfigures hippocampal-prefrontal memories. Curr. Biol. 25, 821–830 (2015).

    CAS  PubMed  Article  Google Scholar 

  107. Gabora, L., Rosch, E. & Aerts, D. Toward an ecological theory of concepts. Ecol. Psychol. 20, 84–116 (2008).

    Article  Google Scholar 

  108. Doeller, C. F., Barry, C. & Burgess, N. Evidence for grid cells in a human memory network. Nature 463, 657–661 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  109. Viganò, S. & Piazza, M. Distance and direction codes underlie navigation of a novel semantic space in the human brain. J. Neurosci. 40, 2727–2736 (2020).

    PubMed  PubMed Central  Article  Google Scholar 

  110. Tavares, R. M. et al. A map for social navigation in the human brain. Neuron 87, 231–243 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  111. Bradfield, L. A., Dezfouli, A., van Holstein, M., Chieng, B. & Balleine, B. W. Medial orbitofrontal cortex mediates outcome retrieval in partially observable task situations. Neuron 88, 1268–1280 (2015).

    CAS  PubMed  Article  Google Scholar 

  112. Burke, K. A., Franz, T. M., Miller, D. N. & Schoenbaum, G. The role of the orbitofrontal cortex in the pursuit of happiness and more specific rewards. Nature 454, 340–344 (2008).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  113. Coricelli, G. et al. Regret and its avoidance: a neuroimaging study of choice behavior. Nat. Neurosci. 8, 1255–1262 (2005).

    CAS  PubMed  Article  Google Scholar 

  114. Camille, N. et al. The involvement of the orbitofrontal cortex in the experience of regret. Science 304, 1167–1170 (2004).

    CAS  PubMed  Article  Google Scholar 

  115. Northoff, G. et al. Self-referential processing in our brain — a meta-analysis of imaging studies on the self. Neuroimage 31, 440–457 (2006).

    PubMed  Article  Google Scholar 

  116. Denny, B. T., Kober, H., Wager, T. D. & Ochsner, K. N. A meta-analysis of functional neuroimaging studies of self- and other judgments reveals a spatial gradient for mentalizing in medial prefrontal cortex. J. Cogn. Neurosci. 24, 1742–1752 (2012).

    PubMed  PubMed Central  Article  Google Scholar 

  117. Blanke, O. Multisensory brain mechanisms of bodily self-consciousness. Nat. Rev. Neurosci. 13, 556–571 (2012).

    CAS  PubMed  Article  Google Scholar 

  118. Ochsner, K. N. et al. Reflecting upon feelings: an fMRI study of neural systems supporting the attribution of emotion to self and other. J. Cogn. Neurosci. 16, 1746–1772 (2004).

    PubMed  Article  Google Scholar 

  119. Lockwood, P. L. et al. Neural mechanisms for learning self and other ownership. Nat. Commun. 9, 4747 (2018).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  120. Farb, N. A. S. et al. Attending to the present: mindfulness meditation reveals distinct neural modes of self-reference. Soc. Cogn. Affect. Neurosci. 2, 313–322 (2007).

    PubMed  PubMed Central  Article  Google Scholar 

  121. Chavez, R. S. & Heatherton, T. F. Multimodal frontostriatal connectivity underlies individual differences in self-esteem. Soc. Cogn. Affect. Neurosci. 10, 364–370 (2015).

    PubMed  Article  Google Scholar 

  122. Amodio, D. M. & Frith, C. D. Meeting of minds: the medial frontal cortex and social cognition. Nat. Rev. Neurosci. 7, 268–277 (2006).

    CAS  PubMed  Article  Google Scholar 

  123. Lombardo, M. V. et al. Shared neural circuits for mentalizing about the self and others. J. Cogn. Neurosci. 22, 1623–1635 (2009).

    Article  Google Scholar 

  124. Tamir, D. I. & Mitchell, J. P. Neural correlates of anchoring-and-adjustment during mentalizing. Proc. Natl Acad. Sci. USA 107, 10827–10832 (2010).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  125. Krienen, F. M., Tu, P.-C. & Buckner, R. L. Clan mentality: evidence that the medial prefrontal cortex responds to close others. J. Neurosci. 30, 13906–13915 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  126. Kable, J. W. & Glimcher, P. W. The neural correlates of subjective value during intertemporal choice. Nat. Neurosci. 10, 1625–1633 (2007).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  127. Nicolle, A. et al. An agent independent axis for executed and modeled choice in medial prefrontal cortex. Neuron 75, 1114–1121 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  128. Parkinson, C., Kleinbaum, A. M. & Wheatley, T. Spontaneous neural encoding of social network position. Nat. Hum. Behav. 1, 0072 (2017).

    Article  Google Scholar 

  129. Morelli, S. A., Leong, Y. C., Carlson, R. W., Kullar, M. & Zaki, J. Neural detection of socially valued community members. Proc. Natl Acad. Sci USA 115, 8149–8154 (2018).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  130. Ashar, Y. K., Andrews-Hanna, J. R., Dimidjian, S. & Wager, T. D. Empathic care and distress: predictive brain markers and dissociable brain systems. Neuron 94, 1263–1273 e1264 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  131. Shamay-Tsoory, S. G. & Aharon-Peretz, J. Dissociable prefrontal networks for cognitive and affective theory of mind: a lesion study. Neuropsychologia 45, 3054–3067 (2007).

    PubMed  Article  Google Scholar 

  132. Anderson, S. W., Barrash, J., Bechara, A. & Tranel, D. Impairments of emotion and real-world complex behavior following childhood- or adult-onset damage to ventromedial prefrontal cortex. J. Int. Neuropsychol. Soc. 12, 224–235 (2006).

    PubMed  Article  Google Scholar 

  133. Ermer, E., Cope, L. M., Nyalakanti, P. K., Calhoun, V. D. & Kiehl, K. A. Aberrant paralimbic gray matter in criminal psychopathy. J. Abnorm. Psychol. 121, 649–658 (2012).

    PubMed  Article  Google Scholar 

  134. Levy, D. J. & Glimcher, P. W. The root of all value: a neural common currency for choice. Curr. Opin. Neurobiol. 22, 1027–1038 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  135. Plassmann, H., O’Doherty, J., Shiv, B. & Rangel, A. Marketing actions can modulate neural representations of experienced pleasantness. Proc. Natl Acad. Sci. USA 105, 1050–1054 (2008).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  136. Hare, T. A., Camerer, C. F. & Rangel, A. Self-control in decision-making involves modulation of the vmPFC valuation system. Science 324, 646–648 (2009).

    CAS  PubMed  Article  Google Scholar 

  137. Hutcherson, C. A., Plassmann, H., Gross, J. J. & Rangel, A. Cognitive regulation during decision making shifts behavioral control between ventromedial and dorsolateral prefrontal value systems. J. Neurosci. 32, 13543–13554 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  138. Lindquist, K. A., Wager, T. D., Kober, H., Bliss-Moreau, E. & Barrett, L. F. The brain basis of emotion: a meta-analytic review. Behav. Brain Sci. 35, 121–143 (2012).

    PubMed  PubMed Central  Article  Google Scholar 

  139. Etkin, A., Egner, T. & Kalisch, R. Emotional processing in anterior cingulate and medial prefrontal cortex. Trends Cogn. Sci. 15, 85–93 (2011).

    PubMed  Article  Google Scholar 

  140. Satpute, A. B. & Lindquist, K. A. The default mode network’s role in discrete emotion. Trends Cogn. Sci. 23, 851–864 (2019).

    PubMed  PubMed Central  Article  Google Scholar 

  141. Kringelbach, M. L., O’Doherty, J., Rolls, E. T. & Andrews, C. Activation of the human orbitofrontal cortex to a liquid food stimulus is correlated with its subjective pleasantness. Cereb. Cortex 13, 1064–1071 (2003).

    CAS  PubMed  Article  Google Scholar 

  142. Hartley, C. A. & Phelps, E. A. Changing fear: the neurocircuitry of emotion regulation. Neuropsychopharmacology 35, 136–146 (2010).

    PubMed  Article  Google Scholar 

  143. Roy, M., Shohamy, D. & Wager, T. D. Ventromedial prefrontal-subcortical systems and the generation of affective meaning. Trends Cognit. Sci. 16, 147–156 (2012).

    Article  Google Scholar 

  144. Benoit, R. G., Paulus, P. C. & Schacter, D. L. Forming attitudes via neural activity supporting affective episodic simulations. Nat. Commun. 10, 2215 (2019).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  145. Stolier, R. M. & Freeman, J. B. Neural pattern similarity reveals the inherent intersection of social categories. Nat. Neurosci. 19, 795–797 (2016).

    CAS  PubMed  Article  Google Scholar 

  146. Losin, E. A. R. et al. Neural and sociocultural mediators of ethnic differences in pain. Nat. Hum. Behav. 4, 517–530 (2020).

    PubMed  PubMed Central  Article  Google Scholar 

  147. Eldar, E., Rutledge, R. B., Dolan, R. J. & Niv, Y. Mood as representation of momentum. Trends Cogn. Sci. 20, 15–24 (2016).

    PubMed  PubMed Central  Article  Google Scholar 

  148. Koban, L. et al. Social anxiety is characterized by biased learning about performance and the self. Emotion 17, 1144–1155 (2017).

    PubMed  PubMed Central  Article  Google Scholar 

  149. Morrison, S. E. & Salzman, C. D. The convergence of information about rewarding and aversive stimuli in single neurons. J. Neurosci. 29, 11471–11483 (2009).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  150. Milad, M. R. & Quirk, G. J. Neurons in medial prefrontal cortex signal memory for fear extinction. Nature 420, 70–74 (2002).

    CAS  PubMed  Article  Google Scholar 

  151. Amat, J. et al. Medial prefrontal cortex determines how stressor controllability affects behavior and dorsal raphe nucleus. Nat. Neurosci. 8, 365–371 (2005).

    CAS  PubMed  Article  Google Scholar 

  152. Murray, E. A. & Rudebeck, P. H. Specializations for reward-guided decision-making in the primate ventral prefrontal cortex. Nat. Rev. Neurosci. 19, 404–417 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  153. Kim, H. F. & Hikosaka, O. Distinct basal ganglia circuits controlling behaviors guided by flexible and stable values. Neuron 79, 1001–1010 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  154. Damasio, A. R., Tranel, D. & Damasio, H. Individuals with sociopathic behavior caused by frontal damage fail to respond autonomically to social stimuli. Behav. Brain Res. 41, 81–94 (1990).

    CAS  PubMed  Article  Google Scholar 

  155. Beer, J. S., John, O. P., Scabini, D. & Knight, R. T. Orbitofrontal cortex and social behavior: integrating self-monitoring and emotion-cognition interactions. J. Cogn. Neurosci. 18, 871–879 (2006).

    PubMed  Article  Google Scholar 

  156. Milad, M. R. et al. Recall of fear extinction in humans activates the ventromedial prefrontal cortex and hippocampus in concert. Biol. Psychiatry 62, 446–454 (2007).

    PubMed  Article  Google Scholar 

  157. Schiller, D., Levy, I., Niv, Y., LeDoux, J. E. & Phelps, E. A. From fear to safety and back: reversal of fear in the human brain. J. Neurosci. 28, 11517–11525 (2008).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  158. Tinnermann, A., Geuter, S., Sprenger, C., Finsterbusch, J. & Büchel, C. Interactions between brain and spinal cord mediate value effects in nocebo hyperalgesia. Science 358, 105–108 (2017).

    CAS  PubMed  Article  Google Scholar 

  159. Howard, J. D. & Kahnt, T. Identity-specific reward representations in orbitofrontal cortex are modulated by selective devaluation. J. Neurosci. 37, 2627–2638 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  160. Nook, E. C. & Zaki, J. Social norms shift behavioral and neural responses to foods. J. Cogn. Neurosci. 27, 1412–1426 (2015).

    PubMed  Article  Google Scholar 

  161. Zaki, J., Schirmer, J. & Mitchell, J. P. Social influence modulates the neural computation of value. Psychol. Sci. 22, 894–900 (2011).

    PubMed  Article  Google Scholar 

  162. Harris, L. T. & Fiske, S. T. Dehumanizing the lowest of the low: neuroimaging responses to extreme out-groups. Psychol. Sci. 17, 847–853 (2006).

    PubMed  Article  Google Scholar 

  163. Schmidt, L. et al. Neuroanatomy of the vmPFC and dlPFC predicts individual differences in cognitive regulation during dietary self-control across regulation strategies. J. Neurosci. 38, 3402–3417 (2018).

    Google Scholar 

  164. Maier, S. U., Makwana, A. B. & Hare, T. A. Acute stress impairs self-control in goal-directed choice by altering multiple functional connections within the brain’s decision circuits. Neuron 87, 621–631 (2015).

    CAS  PubMed  Article  Google Scholar 

  165. Kober, H. et al. Prefrontal-striatal pathway underlies cognitive regulation of craving. Proc. Natl Acad. Sci. USA 107, 14811–14816 (2010).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  166. Peters, J. & Büchel, C. Episodic future thinking reduces reward delay discounting through an enhancement of prefrontal-mediotemporal interactions. Neuron 66, 138–148 (2010).

    CAS  PubMed  Article  Google Scholar 

  167. Lempert, K. M., Speer, M. E., Delgado, M. R. & Phelps, E. A. Positive autobiographical memory retrieval reduces temporal discounting. Soc. Cogn. Affect. Neurosci. 12, 1584–1593 (2017).

    PubMed  PubMed Central  Article  Google Scholar 

  168. Woo, C. W., Roy, M., Buhle, J. T. & Wager, T. D. Distinct brain systems mediate the effects of nociceptive input and self-regulation on pain. PLoS Biol. 13, e1002036 (2015).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  169. Wager, T. D., Davidson, M. L., Hughes, B. L., Lindquist, M. A. & Ochsner, K. N. Prefrontal-subcortical pathways mediating successful emotion regulation. Neuron 59, 1037–1050 (2008).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  170. Falk, E. B. et al. Functional brain imaging predicts public health campaign success. Soc. Cogn. Affect. Neurosci. 11, 204–214 (2016).

    PubMed  Article  Google Scholar 

  171. Berkman, E. T. & Falk, E. B. Beyond brain mapping: using neural measures to predict real-world outcomes. Curr. Dir. Psychol. Sci. 22, 45–50 (2013).

    PubMed  PubMed Central  Article  Google Scholar 

  172. McEwen, B. S. et al. The role of adrenocorticoids as modulators of immune function in health and disease: neural, endocrine and immune interactions. Brain Res. Brain Res. Rev. 23, 79–133 (1997).

    CAS  PubMed  Article  Google Scholar 

  173. McEwen, B. S. & Gianaros, P. J. Central role of the brain in stress and adaptation: links to socioeconomic status, health, and disease. Ann. N. Y. Acad. Sci. 1186, 190–222 (2010).

    PubMed  PubMed Central  Article  Google Scholar 

  174. Crum, A. J., Salovey, P. & Achor, S. Rethinking stress: the role of mindsets in determining the stress response. J. Pers. Soc. Psychol. 104, 716–733 (2013).

    PubMed  Article  Google Scholar 

  175. Levy, B. R. & Myers, L. M. Preventive health behaviors influenced by self-perceptions of aging. Prev. Med. 39, 625–629 (2004).

    PubMed  Article  Google Scholar 

  176. Levy, B. R., Slade, M. D., Kunkel, S. R. & Kasl, S. V. Longevity increased by positive self-perceptions of aging. J. Pers. Soc. Psychol. 83, 261–270 (2002).

    PubMed  Article  Google Scholar 

  177. Hughes, K. et al. The effect of multiple adverse childhood experiences on health: a systematic review and meta-analysis. Lancet Public. Health 2, e356–e366 (2017).

    PubMed  Article  Google Scholar 

  178. Williams, D. R., Neighbors, H. W. & Jackson, J. S. Racial/ethnic discrimination and health: findings from community studies. Am. J. Public. Health 98, S29–37 (2008).

    PubMed  PubMed Central  Article  Google Scholar 

  179. Beissner, F., Meissner, K., Bär, K.-J. & Napadow, V. The autonomic brain: an activation likelihood estimation meta-analysis for central processing of autonomic function. J. Neurosci. 33, 10503–10511 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  180. Reichlin, S. Neuroendocrine-immune interactions. N. Engl. J. Med. 329, 1246–1253 (1993).

    CAS  PubMed  Article  Google Scholar 

  181. Gianaros, P. J. et al. A brain phenotype for stressor-evoked blood pressure reactivity. J. Am. Heart Assoc. 6, e006053 (2017).

    PubMed  PubMed Central  Article  Google Scholar 

  182. Bandler, R., Keay, K. A., Floyd, N. & Price, J. Central circuits mediating patterned autonomic activity during active vs. passive emotional coping. Brain Res. Bull. 53, 95–104 (2000).

    CAS  PubMed  Article  Google Scholar 

  183. Price, J. L. & Drevets, W. C. Neurocircuitry of mood disorders. Neuropsychopharmacology 35, 192–216 (2010).

    PubMed  Article  Google Scholar 

  184. Tracey, K. J. The inflammatory reflex. Nature 420, 853–859 (2002).

    CAS  Article  PubMed  Google Scholar 

  185. Sha, Z., Wager, T. D., Mechelli, A. & He, Y. Common dysfunction of large-scale neurocognitive networks across psychiatric disorders. Biol. Psychiatry 85, 379–388 (2019).

    PubMed  Article  Google Scholar 

  186. Goodkind, M. et al. Identification of a common neurobiological substrate for mental illness. JAMA Psychiatry 72, 305–315 (2015).

    PubMed  PubMed Central  Article  Google Scholar 

  187. Smallwood, R. F. et al. Structural brain anomalies and chronic pain: a quantitative meta-analysis of gray matter volume. J. Pain 14, 663–675 (2013).

    PubMed  PubMed Central  Article  Google Scholar 

  188. Thompson, J. M. & Neugebauer, V. Cortico-limbic pain mechanisms. Neurosci. Lett. 702, 15–23 (2019).

    CAS  PubMed  Article  Google Scholar 

  189. Turnwald, B. P. et al. Learning one’s genetic risk changes physiology independent of actual genetic risk. Nat. Hum. Behav. 3, 48–56 (2019).

    PubMed  Article  Google Scholar 

  190. Crum, A. J., Akinola, M., Martin, A. & Fath, S. The role of stress mindset in shaping cognitive, emotional, and physiological responses to challenging and threatening stress. Anxiety Stress. Coping 30, 379–395 (2017).

    PubMed  Article  Google Scholar 

  191. Keller, A. et al. Does the perception that stress affects health matter? The association with health and mortality. Health Psychol. 31, 677–684 (2012).

    PubMed  Article  Google Scholar 

  192. Bhanji, J. P. & Beer, J. S. Taking a different perspective: mindset influences neural regions that represent value and choice. Soc. Cogn. Affect. Neurosci. 7, 782–793 (2012).

    PubMed  Article  Google Scholar 

  193. Hege, M. A. et al. Eating less or more — mindset induced changes in neural correlates of pre-meal planning. Appetite 125, 492–501 (2018).

    PubMed  Article  Google Scholar 

  194. Koban, L., Jepma, M., López-Solà, M. & Wager, T. D. Different brain networks mediate the effects of social and conditioned expectations on pain. Nat. Commun. 10, 4096 (2019).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  195. Koban, L. & Wager, T. D. Beyond conformity: social influences on pain reports and physiology. Emotion 16, 24–32 (2016).

    PubMed  Article  Google Scholar 

  196. López-Solà, M., Geuter, S., Koban, L., Coan, J. A. & Wager, T. D. Brain mechanisms of social touch-induced analgesia in females. PAIN 160, 2072–2085 (2019).

    PubMed  Article  Google Scholar 

  197. López-Solà, M., Koban, L. & Wager, T. D. Transforming pain with prosocial meaning: a functional magnetic resonance imaging study. Psychosom. Med. 80, 814–825 (2018).

    PubMed  PubMed Central  Article  Google Scholar 

  198. Kober, H., Buhle, J., Weber, J., Ochsner, K. N. & Wager, T. D. Let it be: mindful-acceptance down-regulates pain and negative emotion. Soc. Cogn. Affect. Neurosci. 14, 1147–1158 (2020).

    PubMed Central  Article  Google Scholar 

  199. Zeidan, F. et al. Mindfulness meditation-based pain relief employs different neural mechanisms than placebo and sham mindfulness meditation-induced analgesia. J. Neurosci. 35, 15307–15325 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  200. Zunhammer, M. et al. Placebo effects on the neurologic pain signature: a meta-analysis of individual participant functional magnetic resonance imaging data. JAMA Neurol. 75, 1321–1330 (2018).

    PubMed  PubMed Central  Article  Google Scholar 

  201. Jepma, M., Koban, L., van Doorn, J., Jones, M. & Wager, T. D. Behavioural and neural evidence for self-reinforcing expectancy effects on pain. Nat. Hum. Behav. 2, 838–855 (2018).

    PubMed  PubMed Central  Article  Google Scholar 

  202. Barsaglini, A., Sartori, G., Benetti, S., Pettersson-Yeo, W. & Mechelli, A. The effects of psychotherapy on brain function: a systematic and critical review. Prog. Neurobiol. 114, 1–14 (2014).

    PubMed  Article  Google Scholar 

  203. Quidé, Y., Witteveen, A. B., El-Hage, W., Veltman, D. J. & Olff, M. Differences between effects of psychological versus pharmacological treatments on functional and morphological brain alterations in anxiety disorders and major depressive disorder: a systematic review. Neurosci. Biobehav. Rev. 36, 626–644 (2012).

    PubMed  Article  CAS  Google Scholar 

  204. Pollo, A., Carlino, E. & Benedetti, F. Placebo mechanisms across different conditions: from the clinical setting to physical performance. Philos. Trans. R. Soc. B 366, 1790–1798 (2011).

    Article  Google Scholar 

  205. Antoni, M. H. Psychosocial intervention effects on adaptation, disease course and biobehavioral processes in cancer. Brain Behav. Immun. 30 (Suppl), S88–S98 (2013).

    PubMed  Article  Google Scholar 

  206. Kroenke, C. H., Kubzansky, L. D., Schernhammer, E. S., Holmes, M. D. & Kawachi, I. Social networks, social support, and survival after breast cancer diagnosis. J. Clin. Oncol. 24, 1105–1111 (2006).

    PubMed  Article  Google Scholar 

  207. Mirosevic, S. et al. “Not just another meta-analysis”: sources of heterogeneity in psychosocial treatment effect on cancer survival. Cancer Med. 8, 363–373 (2019).

    PubMed  PubMed Central  Article  Google Scholar 

  208. Lutgendorf, S. K. & Sood, A. K. Biobehavioral factors and cancer progression: physiological pathways and mechanisms. Psychosom. Med. 73, 724–730 (2011).

    PubMed  PubMed Central  Article  Google Scholar 

  209. Fawzy, F. I., Canada, A. L. & Fawzy, N. W. Malignant melanoma: effects of a brief, structured psychiatric intervention on survival and recurrence at 10-year follow-up. Arch. Gen. Psychiatry 60, 100–103 (2003).

    PubMed  Article  Google Scholar 

  210. Andersen, B. L. et al. Biobehavioral, immune, and health benefits following recurrence for psychological intervention participants. Clin. Cancer Res. 16, 3270–3278 (2010).

    PubMed  PubMed Central  Article  Google Scholar 

  211. Chida, Y. & Steptoe, A. The association of anger and hostility with future coronary heart disease: a meta-analytic review of prospective evidence. J. Am. Coll. Cardiol. 53, 936–946 (2009).

    PubMed  Article  Google Scholar 

  212. Miller, T. Q., Smith, T. W., Turner, C. W., Guijarro, M. L. & Hallet, A. J. A meta-analytic review of research on hostility and physical health. Psychol. Bull. 119, 322–348 (1996).

    CAS  PubMed  Article  Google Scholar 

  213. Rozanski, A., Blumenthal, J. A. & Kaplan, J. Impact of psychological factors on the pathogenesis of cardiovascular disease and implications for therapy. Circulation 99, 2192–2217 (1999).

    CAS  PubMed  Article  Google Scholar 

  214. Suls, J. & Bunde, J. Anger, anxiety, and depression as risk factors for cardiovascular disease: the problems and implications of overlapping affective dispositions. Psychol. Bull. 131, 260–300 (2005).

    PubMed  Article  Google Scholar 

  215. Matthews, K. A. Psychological perspectives on the development of coronary heart disease. Am. Psychol. 60, 783–796 (2005).

    PubMed  Article  Google Scholar 

  216. Stetler, C. & Miller, G. E. Depression and hypothalamic-pituitary-adrenal activation: a quantitative summary of four decades of research. Psychosom. Med. 73, 114–126 (2011).

    PubMed  Article  Google Scholar 

  217. Rotella, F. & Mannucci, E. Depression as a risk factor for diabetes: a meta-analysis of longitudinal studies. J. Clin. Psychiatry 74, 31–37 (2013).

    PubMed  Article  Google Scholar 

  218. Nicholson, A., Kuper, H. & Hemingway, H. Depression as an aetiologic and prognostic factor in coronary heart disease: a meta-analysis of 6362 events among 146 538 participants in 54 observational studies. Eur. Heart J. 27, 2763–2774 (2006).

    PubMed  Article  Google Scholar 

  219. van Melle, J. P. et al. Prognostic association of depression following myocardial infarction with mortality and cardiovascular events: a meta-analysis. Psychosom. Med. 66, 814–822 (2004).

    PubMed  Article  Google Scholar 

  220. Everson-Rose, S. A. & Lewis, T. T. Psychosocial factors and cardiovascular diseases. Annu. Rev. Public Health 26, 469–500 (2005).

    PubMed  Article  Google Scholar 

  221. Kawachi, I. et al. Prospective study of phobic anxiety and risk of coronary heart disease in men. Circulation 89, 1992–1997 (1994).

    CAS  PubMed  Article  Google Scholar 

  222. Roest, A. M., Martens, E. J., de Jonge, P. & Denollet, J. Anxiety and risk of incident coronary heart disease: a meta-analysis. J. Am. Coll. Cardiol. 56, 38–46 (2010).

    PubMed  Article  Google Scholar 

  223. Thurston, R. C., Rewak, M. & Kubzansky, L. D. An anxious heart: anxiety and the onset of cardiovascular diseases. Prog. Cardiovasc. Dis. 55, 524–537 (2013).

    PubMed  Article  Google Scholar 

  224. Cohen, S. et al. Chronic stress, glucocorticoid receptor resistance, inflammation, and disease risk. Proc. Natl Acad. Sci. USA 109, 5995–5999 (2012).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  225. Segerstrom, S. C. & Miller, G. E. Psychological stress and the human immune system: a meta-analytic study of 30 years of inquiry. Psychol. Bull. 130, 601–630 (2004).

    PubMed  PubMed Central  Article  Google Scholar 

  226. Steptoe, A. & Kivimäki, M. Stress and cardiovascular disease: an update on current knowledge. Annu. Rev. Public. Health 34, 337–354 (2013).

    PubMed  Article  Google Scholar 

  227. Chida, Y. & Steptoe, A. Positive psychological well-being and mortality: a quantitative review of prospective observational studies. Psychosom. Med. 70, 741–756 (2008).

    PubMed  Article  Google Scholar 

  228. Ostir, G. V., Markides, K. S., Peek, M. K. & Goodwin, J. S. The association between emotional well-being and the incidence of stroke in older adults. Psychosom. Med. 63, 210–215 (2001).

    CAS  PubMed  Article  Google Scholar 

  229. Cohen, S., Alper, C. M., Doyle, W. J., Treanor, J. J. & Turner, R. B. Positive emotional style predicts resistance to illness after experimental exposure to rhinovirus or influenza a virus. Psychosom. Med. 68, 809–815 (2006).

    PubMed  Article  Google Scholar 

  230. Steptoe, A., Wardle, J. & Marmot, M. Positive affect and health-related neuroendocrine, cardiovascular, and inflammatory processes. Proc. Natl Acad. Sci. USA 102, 6508–6512 (2005).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  231. Holt-Lunstad, J., Smith, T. B. & Layton, J. B. Social relationships and mortality risk: a meta-analytic review. PLoS Med. 7, e1000316 (2010).

    PubMed  PubMed Central  Article  Google Scholar 

  232. Berkman, L. F., Leo-Summers, L. & Horwitz, R. I. Emotional support and survival after myocardial infarction. A prospective, population-based study of the elderly. Ann. Intern. Med. 117, 1003–1009 (1992).

    CAS  PubMed  Article  Google Scholar 

  233. Falagas, M. E. et al. The effect of psychosocial factors on breast cancer outcome: a systematic review. Breast Cancer Res. 9, R44 (2007).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  234. Cohen, S., Doyle, W. J., Skoner, D. P., Rabin, B. S. & Gwaltney, J. M. Jr. Social ties and susceptibility to the common cold. JAMA 277, 1940–1944 (1997).

    CAS  PubMed  Article  Google Scholar 

  235. Heffner, K. L., Waring, M. E., Roberts, M. B., Eaton, C. B. & Gramling, R. Social isolation, C-reactive protein, and coronary heart disease mortality among community-dwelling adults. Soc. Sci. Med. 72, 1482–1488 (2011).

    PubMed  PubMed Central  Article  Google Scholar 

  236. House, J. S., Robbins, C. & Metzner, H. L. The association of social relationships and activities with mortality: prospective evidence from the Tecumseh Community Health Study. Am. J. Epidemiol. 116, 123–140 (1982).

    CAS  PubMed  Article  Google Scholar 

  237. Beasley, J. M. et al. Social networks and survival after breast cancer diagnosis. J. Cancer Surviv. 4, 372–380 (2010).

    PubMed  PubMed Central  Article  Google Scholar 

  238. Fratiglioni, L., Paillard-Borg, S. & Winblad, B. An active and socially integrated lifestyle in late life might protect against dementia. Lancet Neurol. 3, 343–353 (2004).

    PubMed  Article  Google Scholar 

  239. Rutledge, T. et al. Social networks and incident stroke among women with suspected myocardial ischemia. Psychosom. Med. 70, 282–287 (2008).

    PubMed  Article  Google Scholar 

  240. Chida, Y. & Steptoe, A. Greater cardiovascular responses to laboratory mental stress are associated with poor subsequent cardiovascular risk status: a meta-analysis of prospective evidence. Hypertension 55, 1026–1032 (2010).

    CAS  PubMed  Article  Google Scholar 

  241. Sheps, D. S. et al. Mental stress-induced ischemia and all-cause mortality in patients with coronary artery disease: results from the psychophysiological investigations of myocardial ischemia study. Circulation 105, 1780–1784 (2002).

    PubMed  Article  Google Scholar 

  242. Hamer, M. & Steptoe, A. Cortisol responses to mental stress and incident hypertension in healthy men and women. J. Clin. Endocrinol. Metab. 97, E29–34 (2012).

    CAS  PubMed  Article  Google Scholar 

  243. Cacioppo, J. T. et al. Heterogeneity in neuroendocrine and immune responses to brief psychological stressors as a function of autonomic cardiac activation. Psychosom. Med. 57, 154–164 (1995).

    CAS  PubMed  Article  Google Scholar 

  244. Glasser, M. F. et al. A multi-modal parcellation of human cerebral cortex. Nature 536, 171–178 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  245. Iversen, S., Iversen, L. & Saper, C. B. The autonomic nervous system and the hypothalamus. Princ. Neural Sci. 4, 960–981 (2000).

    Google Scholar 

  246. Critchley, H. D. & Harrison, N. A. Visceral influences on brain and behavior. Neuron 77, 624–638 (2013).

    CAS  PubMed  Article  Google Scholar 

  247. Yarkoni, T., Poldrack, R. A., Nichols, T. E., Van Essen, D. C. & Wager, T. D. Large-scale automated synthesis of human functional neuroimaging data. Nat. Methods 8, 665–670 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  248. Koster-Hale, J. et al. Mentalizing regions represent distributed, continuous, and abstract dimensions of others’ beliefs. Neuroimage 161, 9–18 (2017).

    PubMed  Article  Google Scholar 

  249. Soutschek, A., Moisa, M., Ruff, C. C. & Tobler, P. N. The right temporoparietal junction enables delay of gratification by allowing decision makers to focus on future events. PLoS Biol. 18, e3000800 (2020).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  250. Seeley, W. W. The salience network: a neural system for perceiving and responding to homeostatic demands. J. Neurosci. 39, 9878–9882 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful for support from the US National Institutes of Health, including grants R01MH076136 and R01DA035484 (T.D.W.), R01DA043690 and R01DA042911 (H.K.) and NHLBI P01 040962 (P.J.G.), and for a Marie-Skłodowska-Curie/PRESTIGE fellowship (PRESTIGE-2018-2-0023) from Campus France (L.K.). The authors thank M. Meyer for helpful feedback, and L. Feldman Barrett and two anonymous reviewers for constructive peer-review comments on prior drafts of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

L.K. and T.D.W. conceptualized the article, wrote the first draft and created the figures. P.J.G. and H.K. contributed to the conceptual model, literature review, interpretation and writing.

Corresponding authors

Correspondence to Leonie Koban or Tor D. Wager.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Neuroscience thanks L. Feldman Barrett and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Neurosynth: https://www.neurosynth.org

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Koban, L., Gianaros, P.J., Kober, H. et al. The self in context: brain systems linking mental and physical health. Nat Rev Neurosci 22, 309–322 (2021). https://doi.org/10.1038/s41583-021-00446-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41583-021-00446-8

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing