Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The influence of subcortical shortcuts on disordered sensory and cognitive processing

Abstract

The very earliest stages of sensory processing have the potential to alter how we perceive and respond to our environment. These initial processing circuits can incorporate subcortical regions, such as the thalamus and brainstem nuclei, which mediate complex interactions with the brain’s cortical processing hierarchy. These subcortical pathways, many of which we share with other animals, are not merely vestigial but appear to function as ‘shortcuts’ that ensure processing efficiency and preservation of vital life-preserving functions, such as harm avoidance, adaptive social interactions and efficient decision-making. Here, we propose that functional interactions between these higher-order and lower-order brain areas contribute to atypical sensory and cognitive processing that characterizes numerous neuropsychiatric disorders.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Analogous neural networks for threat responses across species.
Fig. 2: Interactions between cortical and subcortical networks during attentional allocation.
Fig. 3: Updating of beliefs using sensory evidence and prior expectations.

References

  1. Kanai, R., Komura, Y., Shipp, S. & Friston, K. Cerebral hierarchies: predictive processing, precision and the pulvinar. Philos. Trans. R. Soc. B Biol. Sci. 370, 20140169 (2015). This theoretical paper provides a neurobiological account of how the brain coordinates first-order (that is, perceptual content) and second-order (that is, modulatory gain control by the pulvinar) neural populations to optimize hierarchical predictive inference.

    Google Scholar 

  2. Weierich, M. R. & Treat, T. A. Mechanisms of visual threat detection in specific phobia. Cogn. Emot. 29, 992–1006 (2015).

    PubMed  Google Scholar 

  3. Lake, A. J., Baskin-Sommers, A. R., Li, W., Curtin, J. J. & Newman, J. P. Evidence for unique threat-processing mechanisms in psychopathic and anxious individuals. Cogn. Affect. Behav. Neurosci. 11, 451–462 (2011).

    PubMed  PubMed Central  Google Scholar 

  4. Ledoux, E. & Reis, J. Subcortical efferent projections of the medial geniculate nucleus mediate emotional responses conditioned to acoustic stimuli. J. Neurosci. 4, 16 (1984).

    Google Scholar 

  5. Pessoa, L. & Adolphs, R. Emotion processing and the amygdala: from a ‘low road’ to ‘many roads’ of evaluating biological significance. Nat. Rev. Neurosci. 11, 773–783 (2010). This Review debates against the notion that the pulvinar mediates rapid transmission of threatening information to the amygdala, suggesting instead that the pulvinar’s role in affective processing is to coordinate cortical responses.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Pessoa, L. & Adolphs, R. Emotion and the brain: multiple roads are better than one. Nat. Rev. Neurosci. 12, 425 (2011).

    CAS  Google Scholar 

  7. Tamietto, M. & De Gelder, B. Neural bases of the non-conscious perception of emotional signals. Nat. Rev. Neurosci. 11, 697 (2010). This Review discusses evidence for non-conscious affective processing being facilitated by a pathway from the SC to the amygdala via the pulvinar, the notion of which sparked considerable debate in the literature.

    CAS  PubMed  Google Scholar 

  8. de Gelder, B., van Honk, J. & Tamietto, M. Emotion in the brain: of low roads, high roads and roads less travelled. Nat. Rev. Neurosci. 12, 425 (2011). Together with Pessoa and Adolphs (2010, 2011), this paper debates the notion presented by Tamietto and De Gelder (2010).

    PubMed  Google Scholar 

  9. McFadyen, J., Mattingley, J. B. & Garrido, M. I. An afferent white matter pathway from the pulvinar to the amygdala facilitates fear recognition. eLife 8, e40766 (2019).

    PubMed  PubMed Central  Google Scholar 

  10. Elorette, C., Forcelli, P. A., Saunders, R. C. & Malkova, L. Colocalization of tectal inputs with amygdala-projecting neurons in the macaque pulvinar. Front. Neural Circuits 12, 91 (2018). This study is the first to trace a continuous anatomical pathway from the SC to the amygdala, via the pulvinar, in the primate (macaque) brain.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Carr, J. A. I’ll take the low road: the evolutionary underpinnings of visually triggered fear. Front. Neurosci. 9, 414 (2015).

    PubMed  PubMed Central  Google Scholar 

  12. Yilmaz, M. & Meister, M. Rapid innate defensive responses of mice to looming visual stimuli. Curr. Biol. 23, 2011–2015 (2013).

    CAS  PubMed  Google Scholar 

  13. Vagnoni, E., Lourenco, S. F. & Longo, M. R. Threat modulates perception of looming visual stimuli. Curr. Biol. 22, R826–R827 (2012).

    CAS  PubMed  Google Scholar 

  14. Wei, P. et al. Processing of visually evoked innate fear by a non-canonical thalamic pathway. Nat. Commun. 6, 6756 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Shang, C. et al. A parvalbumin-positive excitatory visual pathway to trigger fear responses in mice. Science 348, 1472–1477 (2015). This study demonstrates that a pathway from the SC to the parabigeminal nucleus that responds to looming visual stimuli also evokes fearful, defensive behaviour in mice.

    CAS  PubMed  Google Scholar 

  16. Zhou, Z. et al. A VTA GABAergic neural circuit mediates visually evoked innate defensive responses. Neuron 103, 1472–1477 (2019).

    Google Scholar 

  17. Salay, L. D., Ishiko, N. & Huberman, A. D. A midline thalamic circuit determines reactions to visual threat. Nature 557, 183 (2018).

    CAS  PubMed  Google Scholar 

  18. Evans, D. A. et al. A synaptic threshold mechanism for computing escape decisions. Nature 558, 590 (2018). This study demonstrates that the magnitude of neural firing in the SC (in response to a looming visual stimulus) gradually ramps up until a certain threshold, at which a burst of activity in the periaqueductal grey is triggered and the mouse escapes.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Ellis, E. M., Gauvain, G., Sivyer, B. & Murphy, G. J. Shared and distinct retinal input to the mouse superior colliculus and dorsal lateral geniculate nucleus. J. Neurophysiol. 116, 602–610 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Perry, V. H. & Cowey, A. Retinal ganglion cells that project to the superior colliculus and pretectum in the macaque monkey. Neuroscience 12, 1125–1137 (1984).

    CAS  PubMed  Google Scholar 

  21. Rafal, R. D. et al. Connectivity between the superior colliculus and the amygdala in humans and macaque monkeys: virtual dissection with probabilistic DTI tractography. J. Neurophysiol. 114, 1947–1962 (2015).

    PubMed  PubMed Central  Google Scholar 

  22. Tamietto, M., Pullens, P., de Gelder, B., Weiskrantz, L. & Goebel, R. Subcortical connections to human amygdala and changes following destruction of the visual cortex. Curr. Biol. 22, 1449–1455 (2012).

    CAS  PubMed  Google Scholar 

  23. Hoy, J. L., Bishop, H. I. & Niell, C. M. Defined cell types in superior colliculus make distinct contributions to prey capture behavior in the mouse. Curr. Biol. 29, 4130–4138 (2019).

    CAS  PubMed  Google Scholar 

  24. Reinhard, K. et al. A projection specific logic to sampling visual inputs in mouse superior colliculus. eLife 8, e50697 (2019).

    PubMed  PubMed Central  Google Scholar 

  25. Shang, C. et al. Divergent midbrain circuits orchestrate escape and freezing responses to looming stimuli in mice. Nat. Commun. 9, 1232 (2018).

    PubMed  PubMed Central  Google Scholar 

  26. Vale, R., Evans, D. A. & Branco, T. Rapid spatial learning controls instinctive defensive behavior in mice. Curr. Biol. 27, 1342–1349 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Liden, W. H., Phillips, M. L. & Herberholz, J. Neural control of behavioural choice in juvenile crayfish. Proc. R. Soc. B Biol. Sci. 277, 3493–3500 (2010).

    Google Scholar 

  28. Evans, D. A., Stempel, A. V., Vale, R. & Branco, T. Cognitive control of escape behaviour. Trends Cogn. Sci. 23, 334–348 (2019).

    PubMed  PubMed Central  Google Scholar 

  29. Keller, G. B. & Mrsic-Flogel, T. D. Predictive processing: a canonical cortical computation. Neuron 100, 424–435 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. LeDoux, J. & Daw, N. D. Surviving threats: neural circuit and computational implications of a new taxonomy of defensive behaviour. Nat. Rev. Neurosci. 19, 269 (2018).

    CAS  PubMed  Google Scholar 

  31. Almada, R. C. et al. Stimulation of the nigrotectal pathway at the level of the superior colliculus reduces threat recognition and causes a shift from avoidance to approach behavior. Front. Neural Circuits 12, 36 (2018).

    PubMed  PubMed Central  Google Scholar 

  32. Comoli, E. et al. Segregated anatomical input to sub-regions of the rodent superior colliculus associated with approach and defense. Front. Neuroanat. 6, 9 (2012).

    PubMed  PubMed Central  Google Scholar 

  33. Liang, F. et al. Sensory cortical control of a visually induced arrest behavior via corticotectal projections. Neuron 86, 755–767 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Liu, X. et al. Gentle handling attenuates innate defensive responses to visual threats. Front. Behav. Neurosci. 12, 239 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. DesJardin, J. T. et al. Defense-like behaviors evoked by pharmacological disinhibition of the superior colliculus in the primate. J. Neurosci. 33, 150–155 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Forcelli, P. A. et al. Amygdala selectively modulates defensive responses evoked from the superior colliculus in non-human primates. Soc. Cogn. Affect. Neurosci. 11, 2009–2019 (2016).

    PubMed  PubMed Central  Google Scholar 

  37. Forcelli, P. A., Waguespack, H. F. & Malkova, L. Defensive vocalizations and motor asymmetry triggered by disinhibition of the periaqueductal gray in non-human primates. Front. Neurosci. 11, 163 (2017).

    PubMed  PubMed Central  Google Scholar 

  38. Gandhi, N. J. & Katnani, H. A. Motor functions of the superior colliculus. Annu. Rev. Neurosci. 34, 205–231 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Bridge, H., Leopold, D. A. & Bourne, J. A. Adaptive pulvinar circuitry supports visual cognition. Trends Cogn. Sci. 20, 146–157 (2016). This Review discusses evidence from developmental neuroscience for the pulvinar as a higher-order thalamic nucleus that has a fundamental role in coordinating and modulating broad cognitive functions across the brain.

    PubMed  Google Scholar 

  40. Le, Q. V. et al. Monkey pulvinar neurons fire differentially to snake postures. PLoS One 9, e114258 (2014).

    PubMed  PubMed Central  Google Scholar 

  41. Nguyen, M. N. et al. Neuronal responses to face-like and facial stimuli in the monkey superior colliculus. Front. Behav. Neurosci. 8, 85 (2014).

    PubMed  PubMed Central  Google Scholar 

  42. Maior, R. S., Hori, E., Tomaz, C., Ono, T. & Nishijo, H. The monkey pulvinar neurons differentially respond to emotional expressions of human faces. Behav. Brain Res. 215, 129–135 (2010).

    PubMed  Google Scholar 

  43. Krauzlis, R. J., Lovejoy, L. P. & Zénon, A. Superior colliculus and visual spatial attention. Annu. Rev. Neurosci. 36, 165–182 (2013).

    CAS  PubMed  Google Scholar 

  44. Saalmann, Y. B., Pinsk, M. A., Wang, L., Li, X. & Kastner, S. The pulvinar regulates information transmission between cortical areas based on attention demands. Science 337, 753–756 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Fischer, J. & Whitney, D. Attention gates visual coding in the human pulvinar. Nat. Commun. 3, 1051 (2012).

    PubMed  PubMed Central  Google Scholar 

  46. Wise, T., Michely, J., Dayan, P. & Dolan, R. J. A computational account of threat-related attentional bias. PLoS Comput. Biol. 15, e1007341 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Armstrong, T. & Olatunji, B. O. Eye tracking of attention in the affective disorders: a meta-analytic review and synthesis. Clin. Psychol. Rev. 32, 704–723 (2012).

    PubMed  PubMed Central  Google Scholar 

  48. Basanovic, J., Dean, L., Riskind, J. H. & MacLeod, C. High spider-fearful and low spider-fearful individuals differentially perceive the speed of approaching, but not receding, spider stimuli. Cogn. Ther. Res. 43, 514–521 (2019).

    Google Scholar 

  49. Shiban, Y. et al. Treatment effect on biases in size estimation in spider phobia. Biol. Psychol. 121, 146–152 (2016).

    PubMed  Google Scholar 

  50. Koller, K., Rafal, R. D., Platt, A. & Mitchell, N. D. Orienting toward threat: contributions of a subcortical pathway transmitting retinal afferents to the amygdala via the superior colliculus and pulvinar. Neuropsychologia 128, 78–86 (2019).

    PubMed  Google Scholar 

  51. Nakataki, M. et al. Glucocorticoid administration improves aberrant fear-processing networks in spider phobia. Neuropsychopharmacology 42, 485–494 (2017).

    CAS  PubMed  Google Scholar 

  52. Tadayonnejad, R., Klumpp, H., Ajilore, O., Leow, A. & Phan, K. L. Aberrant pulvinar effective connectivity in generalized social anxiety disorder. Medicine 95, e5358 (2016).

    PubMed  PubMed Central  Google Scholar 

  53. Steuwe, C. et al. Effect of direct eye contact in PTSD related to interpersonal trauma: an fMRI study of activation of an innate alarm system. Soc. Cogn. Affect. Neurosci. 9, 88–97 (2012).

    PubMed  PubMed Central  Google Scholar 

  54. Steuwe, C. et al. Effect of direct eye contact in women with PTSD related to interpersonal trauma: psychophysiological interaction analysis of connectivity of an innate alarm system. Psychiatry Res. 232, 162–167 (2015).

    PubMed  Google Scholar 

  55. Nguyen, M. N. et al. Neuronal responses to face-like stimuli in the monkey pulvinar. Eur. J. Neurosci. 37, 35–51 (2013).

    PubMed  Google Scholar 

  56. Sawyers, C. et al. The genetic and environmental structure of fear and anxiety in juvenile twins. Am. J. Med. Genet. B Neuropsychiatr. Genet. 180, 204–212 (2019).

    PubMed  PubMed Central  Google Scholar 

  57. Hormigo, S., Vega-Flores, G. & Castro-Alamancos, M. A. Basal ganglia output controls active avoidance behavior. J. Neurosci. 36, 10274–10284 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Cohen, J. D. & Castro-Alamancos, M. A. Neural correlates of active avoidance behavior in superior colliculus. J. Neurosci. 30, 8502–8511 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Jure, R. Autism pathogenesis: the superior colliculus. Front. Neurosci. 12, 1029 (2018). This Review proposes how the SC is likely a significant contributor towards the genesis and symptoms of autism spectrum disorder.

    PubMed  Google Scholar 

  60. Khalil, R., Tindle, R., Boraud, T., Moustafa, A. A. & Karim, A. A. Social decision making in autism: on the impact of mirror neurons, motor control, and imitative behaviors. CNS Neurosci. Ther. 24, 669–676 (2018).

    PubMed  PubMed Central  Google Scholar 

  61. Quattrocki, E. & Friston, K. Autism, oxytocin and interoception. Neurosci. Biobehav. Rev. 47, 410–430 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Kleinhans, N. M. et al. fMRI evidence of neural abnormalities in the subcortical face processing system in ASD. NeuroImage 54, 697–704 (2011).

    PubMed  Google Scholar 

  63. Zürcher, N. R. et al. Perception of social cues of danger in autism spectrum disorders. PLoS One 8, e81206 (2013).

    PubMed  PubMed Central  Google Scholar 

  64. Hadjikhani, N. et al. Look me in the eyes: constraining gaze in the eye-region provokes abnormally high subcortical activation in autism. Sci. Rep. 7, 3163 (2017).

    PubMed  PubMed Central  Google Scholar 

  65. Hu, Y. et al. A translational study on looming-evoked defensive response and the underlying subcortical pathway in autism. Sci. Rep. 7, 14755 (2017).

    PubMed  PubMed Central  Google Scholar 

  66. Guy, J., Mottron, L., Berthiaume, C. & Bertone, A. A developmental perspective of global and local visual perception in autism spectrum disorder. J. Autism Dev. Disord. 49, 2706–2720 (2019).

    PubMed  Google Scholar 

  67. Lomber, S. G. Learning to see the trees before the forest: reversible deactivation of the superior colliculus during learning of local and global visual features. Proc. Natl Acad. Sci. USA 99, 4049–4054 (2002).

    CAS  PubMed  Google Scholar 

  68. Feldman, J. I. et al. Audiovisual multisensory integration in individuals with autism spectrum disorder: a systematic review and meta-analysis. Neurosci. Biobehav. Rev. 95, 220–234 (2018).

    PubMed  PubMed Central  Google Scholar 

  69. Stein, B. E., Stanford, T. R. & Rowland, B. A. Development of multisensory integration from the perspective of the individual neuron. Nat. Rev. Neurosci. 15, 520–535 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Jones, W. & Klin, A. Attention to eyes is present but in decline in 2–6-month-old infants later diagnosed with autism. Nature 504, 427–431 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Overton, P. G. Collicular dysfunction in attention deficit hyperactivity disorder. Med. Hypotheses 70, 1121–1127 (2008).

    CAS  PubMed  Google Scholar 

  72. Panagiotidi, M., Overton, P. G. & Stafford, T. Attention-deficit hyperactivity disorder-like traits and distractibility in the visual periphery. Perception 46, 665–678 (2017).

    PubMed  Google Scholar 

  73. Munoz, D. P., Armstrong, I. T., Hampton, K. A. & Moore, K. D. Altered control of visual fixation and saccadic eye movements in attention-deficit hyperactivity disorder. J. Neurophysiol. 90, 503–514 (2003).

    PubMed  Google Scholar 

  74. Panagiotidi, M., Overton, P. & Stafford, T. Increased microsaccade rate in individuals with ADHD traits. J. Eye Mov. Res. https://doi.org/10.16910/10.1.6 (2017).

    Article  Google Scholar 

  75. Clements, K., Devonshire, I., Reynolds, J. & Overton, P. Enhanced visual responses in the superior colliculus in an animal model of attention-deficit hyperactivity disorder and their suppression by d-amphetamine. Neuroscience 274, 289–298 (2014).

    CAS  PubMed  Google Scholar 

  76. Gowan, J., Coizet, V., Devonshire, I. & Overton, P. d-Amphetamine depresses visual responses in the rat superior colliculus: a possible mechanism for amphetamine-induced decreases in distractibility. J. Neural Transm. 115, 377–387 (2008).

    CAS  PubMed  Google Scholar 

  77. Dommett, E. J., Overton, P. G. & Greenfield, S. A. Drug therapies for attentional disorders alter the signal-to-noise ratio in the superior colliculus. Neuroscience 164, 1369–1376 (2009).

    CAS  PubMed  Google Scholar 

  78. Gaymard, B., François, C., Ploner, C. J., Condy, C. & Rivaud-Péchoux, S. A direct prefrontotectal tract against distractibility in the human brain. Ann. Neurol. 53, 542–545 (2003).

    PubMed  Google Scholar 

  79. Kim, H. F., Amita, H. & Hikosaka, O. Indirect pathway of caudal basal ganglia for rejection of valueless visual objects. Neuron 94, 920–930.e3 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Hulst, B. M. van et al. Children with ADHD symptoms show decreased activity in ventral striatum during the anticipation of reward, irrespective of ADHD diagnosis. J. Child. Psychol. Psychiatry 58, 206–214 (2017).

    PubMed  Google Scholar 

  81. Day-Brown, J. D., Wei, H., Chomsung, R. D., Petry, H. M. & Bickford, M. E. Pulvinar projections to the striatum and amygdala in the tree shrew. Front. Neuroanat. 4, 143 (2010).

    PubMed  PubMed Central  Google Scholar 

  82. Ivanov, I. et al. Morphological abnormalities of the thalamus in youths with attention deficit hyperactivity disorder. Am. J. Psychiatry 167, 397–408 (2010).

    PubMed  PubMed Central  Google Scholar 

  83. Li, X. et al. Atypical pulvinar–cortical pathways during sustained attention performance in children with attention-deficit/hyperactivity disorder. J. Am. Acad. Child. Adolesc. Psychiatry 51, 1197–1207.e4 (2012).

    PubMed  PubMed Central  Google Scholar 

  84. Xia, S. et al. Thalamic shape and connectivity abnormalities in children with attention-deficit/hyperactivity disorder. Psychiatry Res. 204, 161–167 (2012).

    PubMed  PubMed Central  Google Scholar 

  85. Weiskrantz, L., Warrington, E. K., Sanders, M. & Marshall, J. Visual capacity in the hemianopic field following a restricted occipital ablation. Brain 97, 709–728 (1974).

    CAS  PubMed  Google Scholar 

  86. Pegna, A. J., Khateb, A., Lazeyras, F. & Seghier, M. L. Discriminating emotional faces without primary visual cortices involves the right amygdala. Nat. Neurosci. 8, 24 (2005).

    CAS  PubMed  Google Scholar 

  87. Tamietto, M. et al. Unseen facial and bodily expressions trigger fast emotional reactions. Proc. Natl Acad. Sci. USA 106, 17661–17666 (2009).

    CAS  PubMed  Google Scholar 

  88. Gelder, B. de et al. Intact navigation skills after bilateral loss of striate cortex. Curr. Biol. 18, R1128–R1129 (2008).

    PubMed  Google Scholar 

  89. Koch, C., Massimini, M., Boly, M. & Tononi, G. Neural correlates of consciousness: progress and problems. Nat. Rev. Neurosci. 17, 307 (2016).

    CAS  PubMed  Google Scholar 

  90. Mundinano, I.-C. et al. More than blindsight: case report of a child with extraordinary visual capacity following perinatal bilateral occipital lobe injury. Neuropsychologia 128, 178–186 (2019).

    PubMed  Google Scholar 

  91. Ahmadlou, M., Zweifel, L. S. & Heimel, J. A. Functional modulation of primary visual cortex by the superior colliculus in the mouse. Nat. Commun. 9, 3895 (2018).

    PubMed  PubMed Central  Google Scholar 

  92. Schmid, M. C. et al. Blindsight depends on the lateral geniculate nucleus. Nature 466, 373–377 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Yoshida, M. et al. Residual attention guidance in blindsight monkeys watching complex natural scenes. Curr. Biol. 22, 1429–1434 (2012).

    CAS  PubMed  Google Scholar 

  94. Corbetta, M. & Shulman, G. L. Spatial neglect and attention networks. Annu. Rev. Neurosci. 34, 569–599 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Vaessen, M. J., Saj, A., Lovblad, K.-O., Gschwind, M. & Vuilleumier, P. Structural white-matter connections mediating distinct behavioral components of spatial neglect in right brain-damaged patients. Cortex 77, 54–68 (2016).

    PubMed  Google Scholar 

  96. Driver, J. & Mattingley, J. B. Parietal neglect and visual awareness. Nat. Neurosci. 1, 17–22 (1998).

    CAS  PubMed  Google Scholar 

  97. Bertini, C., Cecere, R. & Làdavas, E. Unseen fearful faces facilitate visual discrimination in the intact field. Neuropsychologia 128, 58–64 (2019).

    PubMed  Google Scholar 

  98. De Gelder, B., Morris, J. S. & Dolan, R. J. Unconscious fear influences emotional awareness of faces and voices. Proc. Natl Acad. Sci. USA 102, 18682–18687 (2005).

    PubMed  Google Scholar 

  99. Bertini, C., Cecere, R. & Làdavas, E. I am blind, but I “see” fear. Cortex 49, 985–993 (2013).

    PubMed  Google Scholar 

  100. Zhan, M. & de Gelder, B. Unconscious fearful body perception enhances discrimination of conscious anger expressions under continuous flash suppression. Neuropsychologia 128, 325–331 (2019).

    PubMed  Google Scholar 

  101. Cecere, R., Bertini, C., Maier, M. E. & Làdavas, E. Unseen fearful faces influence face encoding: evidence from ERPs in hemianopic patients. J. Cogn. Neurosci. 26, 2564–2577 (2014).

    PubMed  Google Scholar 

  102. Vlassova, A., Donkin, C. & Pearson, J. Unconscious information changes decision accuracy but not confidence. Proc. Natl Acad. Sci. USA 111, 16214–16218 (2014).

    CAS  PubMed  Google Scholar 

  103. Barbosa, L. S., Vlassova, A. & Kouider, S. Prior expectations modulate unconscious evidence accumulation. Conscious. Cogn. 51, 236–242 (2017).

    PubMed  Google Scholar 

  104. Hedger, N., Gray, K. L., Garner, M. & Adams, W. J. Are visual threats prioritized without awareness? A critical review and meta-analysis involving 3 behavioral paradigms and 2696 observers. Psychol. Bull. 142, 934 (2016).

    PubMed  Google Scholar 

  105. Gayet, S., Paffen, C. L., Belopolsky, A. V., Theeuwes, J. & Van der Stigchel, S. Visual input signaling threat gains preferential access to awareness in a breaking continuous flash suppression paradigm. Cognition 149, 77–83 (2016).

    PubMed  Google Scholar 

  106. Etkin, A. et al. Individual differences in trait anxiety predict the response of the basolateral amygdala to unconsciously processed fearful faces. Neuron 44, 1043–1055 (2004).

    CAS  PubMed  Google Scholar 

  107. Lipka, J., Miltner, W. H. & Straube, T. Vigilance for threat interacts with amygdala responses to subliminal threat cues in specific phobia. Biol. Psychiatry 70, 472–478 (2011).

    PubMed  Google Scholar 

  108. Neumeister, P. et al. Specific amygdala response to masked fearful faces in post-traumatic stress relative to other anxiety disorders. Psychol. Med. 48, 1209–1217 (2018).

    CAS  PubMed  Google Scholar 

  109. Sato, W., Kochiyama, T., Uono, S., Yoshimura, S. & Toichi, M. Neural mechanisms underlying conscious and unconscious gaze-triggered attentional orienting in autism spectrum disorder. Front. Hum. Neurosci. 11, 339 (2017).

    PubMed  PubMed Central  Google Scholar 

  110. Madipakkam, A. R., Rothkirch, M., Dziobek, I. & Sterzer, P. Unconscious avoidance of eye contact in autism spectrum disorder. Sci. Rep. 7, 13378 (2017).

    PubMed  PubMed Central  Google Scholar 

  111. Akechi, H. et al. Absence of preferential unconscious processing of eye contact in adolescents with autism spectrum disorder. Autism Res. 7, 590–597 (2014).

    PubMed  Google Scholar 

  112. Hohwy, J. Attention and conscious perception in the hypothesis testing brain. Front. Psychol. 3, 96 (2012).

    PubMed  PubMed Central  Google Scholar 

  113. Aue, T. & Okon-Singer, H. Expectancy biases in fear and anxiety and their link to biases in attention. Clin. Psychol. Rev. 42, 83–95 (2015).

    PubMed  Google Scholar 

  114. Brown, H. & Friston, K. J. Free-energy and illusions: the cornsweet effect. Front. Psychol. 3, 43 (2012).

    PubMed  PubMed Central  Google Scholar 

  115. Pinto, Y., van Gaal, S., de Lange, F. P., Lamme, V. A. & Seth, A. K. Expectations accelerate entry of visual stimuli into awareness. J. Vis. 15, 13 (2015).

    PubMed  Google Scholar 

  116. de Lange, F. P., Heilbron, M. & Kok, P. How do expectations shape perception? Trends Cogn. Sci. 22, 764–779 (2018). This Review presents neuroscientific evidence of how prior expectations can influence (that is, suppress, enhance or bias) the content of our conscious experience.

    PubMed  Google Scholar 

  117. Komura, Y., Nikkuni, A., Hirashima, N., Uetake, T. & Miyamoto, A. Responses of pulvinar neurons reflect a subject’s confidence in visual categorization. Nat. Neurosci. 16, 749 (2013).

    CAS  PubMed  Google Scholar 

  118. Jiang, J., Summerfield, C. & Egner, T. Attention sharpens the distinction between expected and unexpected percepts in the visual brain. J. Neurosci. 33, 18438–18447 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Basso, M. A. & Wurtz, R. H. Modulation of neuronal activity in superior colliculus by changes in target probability. J. Neurosci. 18, 7519–7534 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Comoli, E. et al. A direct projection from superior colliculus to substantia nigra for detecting salient visual events. Nat. Neurosci. 6, 974 (2003).

    CAS  PubMed  Google Scholar 

  121. Takakuwa, N., Kato, R., Redgrave, P. & Isa, T. Emergence of visually-evoked reward expectation signals in dopamine neurons via the superior colliculus in V1 lesioned monkeys. eLife 6, e24459 (2017).

    PubMed  PubMed Central  Google Scholar 

  122. Takakuwa, N., Redgrave, P. & Isa, T. Cortical visual processing evokes short-latency reward-predicting cue responses in primate midbrain dopamine neurons. Sci. Rep. 8, 14984 (2018).

    PubMed  PubMed Central  Google Scholar 

  123. May, P. J. et al. Tectonigral projections in the primate: a pathway for pre-attentive sensory input to midbrain dopaminergic neurons. Eur. J. Neurosci. 29, 575–587 (2009).

    PubMed  PubMed Central  Google Scholar 

  124. Capitão, L. P. et al. Anxiety increases breakthrough of threat stimuli in continuous flash suppression. Emotion 14, 1027 (2014).

    PubMed  Google Scholar 

  125. Damjanovic, L., Meyer, M. & Sepulveda, F. Raising the alarm: individual differences in the perceptual awareness of masked facial expressions. Brain Cogn. 114, 1–10 (2017).

    PubMed  Google Scholar 

  126. Sussman, T. J., Weinberg, A., Szekely, A., Hajcak, G. & Mohanty, A. Here comes trouble: prestimulus brain activity predicts enhanced perception of threat. Cereb. Cortex 27, 2695–2707 (2016).

    Google Scholar 

  127. Sussman, T. J., Szekely, A., Hajcak, G. & Mohanty, A. It’s all in the anticipation: how perception of threat is enhanced in anxiety. Emotion 16, 320 (2016).

    PubMed  Google Scholar 

  128. Imbriano, G., Sussman, T. J., Jin, J. & Mohanty, A. The role of imagery in threat-related perceptual decision making. Emotion https://doi.org/10.1037/emo0000610 (2019).

    Article  PubMed  Google Scholar 

  129. Hirsch, C. R., Meeten, F., Krahé, C. & Reeder, C. Resolving ambiguity in emotional disorders: the nature and role of interpretation biases. Annu. Rev. Clin. Psychol. 12, 281–305 (2016).

    PubMed  Google Scholar 

  130. McHugh, S. B. et al. Aversive prediction error signals in the amygdala. J. Neurosci. 34, 9024–9033 (2014).

    PubMed  PubMed Central  Google Scholar 

  131. Roy, M. et al. Representation of aversive prediction errors in the human periaqueductal gray. Nat. Neurosci. 17, 1607 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Robinson, O. J., Overstreet, C., Charney, D. R., Vytal, K. & Grillon, C. Stress increases aversive prediction error signal in the ventral striatum. Proc. Natl Acad. Sci. USA 110, 4129–4133 (2013).

    CAS  PubMed  Google Scholar 

  133. Den Ouden, H. E., Kok, P. & De Lange, F. P. How prediction errors shape perception, attention, and motivation. Front. Psychol. 3, 548 (2012).

    Google Scholar 

  134. Kok, P., Failing, M. F. & de Lange, F. P. Prior expectations evoke stimulus templates in the primary visual cortex. J. Cogn. Neurosci. 26, 1546–1554 (2014).

    PubMed  Google Scholar 

  135. Kok, P., Mostert, P. & De Lange, F. P. Prior expectations induce prestimulus sensory templates. Proc. Natl Acad. Sci. USA 114, 10473–10478 (2017).

    CAS  PubMed  Google Scholar 

  136. Méndez-Bértolo, C. et al. A fast pathway for fear in human amygdala. Nat. Neurosci. 19, 1041 (2016).

    PubMed  Google Scholar 

  137. Burra, N., Hervais-Adelman, A., Celeghin, A., de Gelder, B. & Pegna, A. J. Affective blindsight relies on low spatial frequencies. Neuropsychologia 128, 44–49 (2019).

    PubMed  Google Scholar 

  138. McFadyen, J., Mermillod, M., Mattingley, J. B., Halász, V. & Garrido, M. I. A rapid subcortical amygdala route for faces irrespective of spatial frequency and emotion. J. Neurosci. 37, 3864–3874 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Van Le, Q. et al. Gamma oscillations in the superior colliculus and pulvinar in response to faces support discrimination performance in monkeys. Neuropsychologia 128, 87–95 (2019).

    Google Scholar 

  140. Homan, P. et al. Neural computations of threat in the aftermath of combat trauma. Nat. Neurosci. 22, 470 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Summerfield, C. & De Lange, F. P. Expectation in perceptual decision making: neural and computational mechanisms. Nat. Rev. Neurosci. 15, 745 (2014).

    CAS  PubMed  Google Scholar 

  142. Pezzulo, G. Why do you fear the bogeyman? An embodied predictive coding model of perceptual inference. Cogn. Affect. Behav. Neurosci. 14, 902–911 (2014).

    PubMed  Google Scholar 

  143. Critchley, H. D. & Garfinkel, S. N. Interoception and emotion. Curr. Opin. Psychol. 17, 7–14 (2017).

    PubMed  Google Scholar 

  144. Garfinkel, S. N. et al. Fear from the heart: sensitivity to fear stimuli depends on individual heartbeats. J. Neurosci. 34, 6573–6582 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Gray, M. A. et al. Emotional appraisal is influenced by cardiac afferent information. Emotion 12, 180 (2012).

    PubMed  Google Scholar 

  146. Celeghin, A., de Gelder, B. & Tamietto, M. From affective blindsight to emotional consciousness. Conscious. Cogn. 36, 414–425 (2015).

    PubMed  Google Scholar 

  147. Spreafico, R., Kirk, C., Franceschetti, S. & Avanzini, G. Brain stem projections to the pulvinar–lateralis posterior complex of the cat. Exp. Brain Res. 40, 209–220 (1980).

    CAS  PubMed  Google Scholar 

  148. Edwards, S. B., Ginsburgh, C. L., Henkel, C. K. & Stein, B. E. Sources of subcortical projections to the superior colliculus in the cat. J. Comp. Neurol. 184, 309–329 (1979).

    CAS  PubMed  Google Scholar 

  149. Stitt, I., Zhou, Z. C., Radtke-Schuller, S. & Fröhlich, F. Arousal dependent modulation of thalamo-cortical functional interaction. Nat. Commun. 9, 1–13 (2018).

    CAS  Google Scholar 

  150. Miller, M. & Clark, A. Happily entangled: prediction, emotion, and the embodied mind. Synthese 195, 2559–2575 (2018).

    Google Scholar 

  151. Horga, G. & Abi-Dargham, A. An integrative framework for perceptual disturbances in psychosis. Nat. Rev. Neurosci. 20, 763–778 (2019).

    CAS  PubMed  Google Scholar 

  152. Lanillos, P. et al. A review on neural network models of schizophrenia and autism spectrum disorder. Neural Netw. 122, 338–363 (2020).

    PubMed  Google Scholar 

  153. Martínez, A. et al. Differential patterns of visual sensory alteration underlying face emotion recognition impairment and motion perception deficits in schizophrenia and autism spectrum disorders. Biol. Psychiatry 86, 557–567 (2019).

    PubMed  Google Scholar 

  154. Cho, K. I. K. et al. Microstructural changes in higher-order nuclei of the thalamus in patients with first-episode psychosis. Biol. Psychiatry 85, 70–78 (2019).

    PubMed  Google Scholar 

  155. Dorph-Petersen, K.-A. & Lewis, D. A. Postmortem structural studies of the thalamus in schizophrenia. Schizophr. Res. 180, 28–35 (2017).

    PubMed  Google Scholar 

  156. Schuetze, M. et al. Morphological alterations in the thalamus, striatum, and pallidum in autism spectrum disorder. Neuropsychopharmacology 41, 2627 (2016).

    PubMed  PubMed Central  Google Scholar 

  157. Woodward, N. D., Giraldo-Chica, M., Rogers, B. & Cascio, C. J. Thalamocortical dysconnectivity in autism spectrum disorder: an analysis of the autism brain imaging data exchange. Biol. Psychiatry Cogn. Neurosci. Neuroimaging 2, 76–84 (2017).

    PubMed  PubMed Central  Google Scholar 

  158. Lecciso, F. & Colombo, B. Beyond the cortico-centric models of cognition: the role of subcortical functioning in neurodevelopmental disorders. Front. Psychol. 10, 2809 (2019).

    PubMed  PubMed Central  Google Scholar 

  159. Niv, Y. Learning task-state representations. Nat. Neurosci. 22, 1544–1553 (2019).

    CAS  PubMed  Google Scholar 

  160. Ahmadlou, M., Tafreshiha, A. & Heimel, J. A. Visual cortex limits pop-out in the superior colliculus of awake mice. Cereb. Cortex 27, 5772–5783 (2017).

    PubMed  PubMed Central  Google Scholar 

  161. Mandali, A., Weidacker, K., Kim, S.-G. & Voon, V. The ease and sureness of a decision: evidence accumulation of conflict and uncertainty. Brain 142, 1471–1482 (2019).

    PubMed  Google Scholar 

  162. Pepperdine, E., Lomax, C. & Freeston, M. H. Disentangling intolerance of uncertainty and threat appraisal in everyday situations. J. Anxiety Disord. 57, 31–38 (2018).

    CAS  PubMed  Google Scholar 

  163. Garvert, M. M., Friston, K. J., Dolan, R. J. & Garrido, M. I. Subcortical amygdala pathways enable rapid face processing. NeuroImage 102, 309–316 (2014).

    PubMed  PubMed Central  Google Scholar 

  164. Boto, E. et al. A new generation of magnetoencephalography: room temperature measurements using optically-pumped magnetometers. NeuroImage 149, 404–414 (2017).

    PubMed  PubMed Central  Google Scholar 

  165. Yu, H.-H., Atapour, N., Chaplin, T. A., Worthy, K. H. & Rosa, M. G. P. Robust visual responses and normal retinotopy in primate lateral geniculate nucleus following long-term lesions of striate cortex. J. Neurosci. 38, 3955–3970 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  166. Cerkevich, C. M., Lyon, D. C., Balaram, P. & Kaas, J. H. Distribution of cortical neurons projecting to the superior colliculus in macaque monkeys. Eye Brain 6, 121–137 (2014).

    PubMed Central  Google Scholar 

  167. Berman, R. A., Joiner, W. M., Cavanaugh, J. & Wurtz, R. H. Modulation of presaccadic activity in the frontal eye field by the superior colliculus. J. Neurophysiol. 101, 2934–2942 (2009).

    PubMed  PubMed Central  Google Scholar 

  168. Doubell, T. P., Skaliora, I., Baron, J. & King, A. J. Functional connectivity between the superficial and deeper layers of the superior colliculus: an anatomical substrate for sensorimotor integration. J. Neurosci. 23, 6596–6607 (2003).

    PubMed  PubMed Central  Google Scholar 

  169. White, B. J., Kan, J. Y., Levy, R., Itti, L. & Munoz, D. P. Superior colliculus encodes visual saliency before the primary visual cortex. Proc. Natl Acad. Sci. USA 114, 9451–9456 (2017). This study demonstrates, using simultaneous recordings of the SC and V1 in Rhesus monkeys, that differential responses to saliency occurred in the SC before V1.

    CAS  PubMed  Google Scholar 

  170. Bisley, J. W. & Mirpour, K. The neural instantiation of a priority map. Curr. Opin. Psychol. 29, 108–112 (2019).

    PubMed  Google Scholar 

  171. Peters, A., McEwen, B. S. & Friston, K. Uncertainty and stress: why it causes diseases and how it is mastered by the brain. Prog. Neurobiol. 156, 164–188 (2017).

    PubMed  Google Scholar 

  172. Grupe, D. W. & Nitschke, J. B. Uncertainty and anticipation in anxiety: an integrated neurobiological and psychological perspective. Nat. Rev. Neurosci. 14, 488–501 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  173. Maunsell, J. H. & Gibson, J. R. Visual response latencies in striate cortex of the macaque monkey. J. Neurophysiol. 68, 1332–1344 (1992).

    CAS  PubMed  Google Scholar 

  174. Yan, Y., Zhaoping, L. & Li, W. Bottom-up saliency and top-down learning in the primary visual cortex of monkeys. Proc. Natl Acad. Sci. USA 115, 10499–10504 (2018).

    CAS  PubMed  Google Scholar 

  175. Schmolesky, M. T. et al. Signal timing across the macaque visual system. J. Neurophysiol. 79, 3272–3278 (1998).

    CAS  PubMed  Google Scholar 

  176. Bell, A. H., Meredith, M. A., Van Opstal, A. J. & Munoz, D. P. Stimulus intensity modifies saccadic reaction time and visual response latency in the superior colliculus. Exp. Brain Res. 174, 53–59 (2006).

    CAS  PubMed  Google Scholar 

  177. Silverstein, D. N. & Ingvar, M. A multi-pathway hypothesis for human visual fear signaling. Front. Syst. Neurosci. 9, 101 (2015).

    PubMed  PubMed Central  Google Scholar 

  178. Zeki, S. Area V5 — a microcosm of the visual brain. Front. Integr. Neurosci. 9, 21 (2015).

    PubMed  PubMed Central  Google Scholar 

  179. Celeghin, A., Bagnis, A., Diano, M. & Méndez, C. A. Functional neuroanatomy of blindsight revealed by activation likelihood estimation meta-analysis. Neuropsychologia 128, 109–118 (2019).

    PubMed  Google Scholar 

  180. Ajina, S. & Bridge, H. Subcortical pathways to extrastriate visual cortex underlie residual vision following bilateral damage to V1. Neuropsychologia 128, 140–149 (2019).

    PubMed  PubMed Central  Google Scholar 

  181. Ajina, S. & Bridge, H. Blindsight relies on a functional connection between hMT+ and the lateral geniculate nucleus, not the pulvinar. PLoS Biol. 16, e2005769 (2018).

    PubMed  PubMed Central  Google Scholar 

  182. Tran, A. et al. Neuronal mechanisms of motion detection underlying blindsight assessed by functional magnetic resonance imaging (fMRI). Neuropsychologia 128, 187–197 (2019).

    PubMed  Google Scholar 

  183. Barleben, M. et al. Neural correlates of visual motion processing without awareness in patients with striate cortex and pulvinar lesions. Hum. Brain Mapp. 36, 1585–1594 (2015).

    PubMed  Google Scholar 

  184. Kinoshita, M. et al. Dissecting the circuit for blindsight to reveal the critical role of pulvinar and superior colliculus. Nat. Commun. 10, 135 (2019).

    PubMed  PubMed Central  Google Scholar 

  185. Tamietto, M. & Morrone, M. C. Visual plasticity: blindsight bridges anatomy and function in the visual system. Curr. Biol. 26, R70–R73 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  186. Saulnier, K. G., Allan, N. P., Raines, A. M. & Schmidt, N. B. Depression and intolerance of uncertainty: relations between uncertainty subfactors and depression dimensions. Psychiatry 82, 72–79 (2018).

    Google Scholar 

  187. Malivoire, B. L. et al. Look before you leap: the role of negative urgency in appraisals of ambiguous and unambiguous scenarios in individuals high in generalized anxiety disorder symptoms. Cogn. Behav. Ther. 48, 217–240 (2018).

    PubMed  Google Scholar 

  188. Brown, M. et al. Intolerance of uncertainty in eating disorders: a systematic review and meta-analysis. Eur. Eat. Disord. Rev. 25, 329–343 (2017).

    PubMed  Google Scholar 

  189. Hodgson, A. R., Freeston, M. H., Honey, E. & Rodgers, J. Facing the unknown: intolerance of uncertainty in children with autism spectrum disorder. J. Appl. Res. Intellect. Disabil. 30, 336–344 (2017).

    PubMed  Google Scholar 

  190. Paulus, M. P. & Yu, A. J. Emotion and decision-making: affect-driven belief systems in anxiety and depression. Trends Cogn. Sci. 16, 476–483 (2012).

    PubMed  PubMed Central  Google Scholar 

  191. Ranney, R. M., Behar, E. & Bartoszek, G. Individuals intolerant of uncertainty: the maintenance of worry and distress despite reduced uncertainty. Behav. Ther. 50, 489–503 (2019).

    PubMed  Google Scholar 

  192. Hakamata, Y. et al. The functional activity and effective connectivity of pulvinar are modulated by individual differences in threat-related attentional bias. Sci. Rep. 6, 34777 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  193. Ipser, J. C., Singh, L. & Stein, D. J. Meta-analysis of functional brain imaging in specific phobia. Psychiatry Clin. Neurosci. 67, 311–322 (2013).

    PubMed  Google Scholar 

  194. Kraus, C. et al. The pulvinar nucleus and antidepressant treatment: dynamic modeling of antidepressant response and remission with ultra-high field functional MRI. Mol. Psychiatry 24, 746–756 (2019).

    PubMed  Google Scholar 

  195. Szpunar, K. K., Jing, H. G., Benoit, R. G., Schacter, D. L. & Watanabe, K. Repetition-related reductions in neural activity during emotional simulations of future events. PLoS One 10, e0138354 (2015).

    PubMed  PubMed Central  Google Scholar 

  196. Taschereau-Dumouchel, V., Liu, K.-Y. & Lau, H. Unconscious psychological treatments for physiological survival circuits. Curr. Opin. Behav. Sci. 24, 62–68 (2018).

    PubMed  PubMed Central  Google Scholar 

  197. Taschereau-Dumouchel, V. et al. Towards an unconscious neural reinforcement intervention for common fears. Proc. Natl Acad. Sci. USA 115, 3470–3475 (2018).

    CAS  PubMed  Google Scholar 

  198. Adams, R. A., Huys, Q. J. M. & Roiser, J. P. Computational psychiatry: towards a mathematically informed understanding of mental illness. J. Neurol. Neurosurg. Psychiatry 87, 53–63 (2016).

    PubMed  Google Scholar 

Download references

Acknowledgements

R.J.D. and J.M. were supported by the Wellcome Trust (098362/A/12/Z and 091593/Z/10/Z) and M.I.G. by the University of Queensland (2016000071). The authors thank the reviewers for their insightful comments on the manuscript, J. B. Mattingley for his helpful discussions and all of the researchers who conducted the experiments discussed in this Review. Finally, they especially thank the late patient T.N., whose generosity and willingness to help has made a significant and lasting impact on our understanding of blindsight in the human brain.

Author information

Authors and Affiliations

Authors

Contributions

J.M. researched data for article and made a substantial contribution to the discussion of content, writing and review/editing of the manuscript before submission. R.J.D and M.I.G made substantial contributions to the discussion of content and review/editing of the manuscript before submission.

Corresponding author

Correspondence to Jessica McFadyen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Neuroscience thanks M. Tamietto, J. Lin and the other anonymous reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Neuroanatomical tracing

An invasive neuroimaging technique that involves injecting dye into either the cell body of a neuron (that is, anterograde tracing) or a neural synapse (that is, retrograde tracing) to visualize anatomical projections.

Diffusion imaging

A variant of MRI that measures the diffusion of water molecules that, in the brain, is restricted by the structure of biological tissue (for example, white matter tracts).

GABAergic

A description of neurons that use the neurotransmitter GABA (that is, γ-aminobutryic acid, which reduces neuronal excitability).

Fractional anisotropy

A measure derived from diffusion-weighted images that describes how restricted the diffusion process was, from 0 (isotropic, unrestricted in all directions) to 1 (anisotropic, restricted to one axis).

Tectopulvinar

Anatomical features pertaining to the tectum (that is, uppermost part of the midbrain, including the superior colliculus) and the pulvinar.

Geniculostriate

Anatomical features pertaining to the lateral geniculate nucleus and the striate cortex (that is, the primary visual cortex (V1)).

Saliency maps

Topographically organized maps of the degree to which a stimulus differs in its sensory properties from its surroundings.

Gabor patches

Striped circular stimuli that have a particular spatial frequency and orientation, created by convolving a Gaussian kernel with a sinusoidal wave.

Electroencephalography

A non-invasive functional neuroimaging method that uses scalp electrodes to measure electric activity.

Magnetoencephalography

A non-invasive functional neuroimaging method that uses sensitive external sensors to measure the magnetic fields emitted by electrical currents within the brain.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

McFadyen, J., Dolan, R.J. & Garrido, M.I. The influence of subcortical shortcuts on disordered sensory and cognitive processing. Nat Rev Neurosci 21, 264–276 (2020). https://doi.org/10.1038/s41583-020-0287-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41583-020-0287-1

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing