Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

How the epigenome integrates information and reshapes the synapse

Abstract

In the past few decades, the field of neuroepigenetics has investigated how the brain encodes information to form long-lasting memories that lead to stable changes in behaviour. Activity-dependent molecular mechanisms, including, but not limited to, histone modification, DNA methylation and nucleosome remodelling, dynamically regulate the gene expression required for memory formation. Recently, the field has begun to examine how a learning experience is integrated at the level of both chromatin structure and synaptic physiology. Here, we provide an overview of key established epigenetic mechanisms that are important for memory formation. We explore how epigenetic mechanisms give rise to stable alterations in neuronal function by modifying synaptic structure and function, and highlight studies that demonstrate how manipulating epigenetic mechanisms may push the boundaries of memory.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Regulation of synaptic plasticity-related gene expression through epigenetic mechanisms.
Fig. 2: Synaptic plasticity and interactions between the epigenome and synapse.

Similar content being viewed by others

References

  1. Kandel, E. R., Dudai, Y. & Mayford, M. R. The molecular and systems biology of memory. Cell 157, 163–186 (2014).

    CAS  PubMed  Google Scholar 

  2. Johansen, J. P., Cain, C. K., Ostroff, L. E. & LeDoux, J. E. Molecular mechanisms of fear learning and memory. Cell 147, 509–524 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Alberini, C. M. Transcription factors in long-term memory and synaptic plasticity. Physiol. Rev. 89, 121–145 (2009).

    CAS  PubMed  Google Scholar 

  4. Hernandez, P. J. & Abel, T. The role of protein synthesis in memory consolidation: progress amid decades of debate. Neurobiol. Learn. Mem. 89, 293–311 (2008).

    CAS  PubMed  Google Scholar 

  5. Day, J. J. & Sweatt, J. D. Epigenetic mechanisms in cognition. Neuron 70, 813–829 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Goldberg, A. D., Allis, C. D. & Bernstein, E. Epigenetics: a landscape takes shape. Cell 128, 635–638 (2007).

    CAS  PubMed  Google Scholar 

  7. Kouzarides, T. Chromatin modifications and their function. Cell 128, 693–705 (2007).

    CAS  PubMed  Google Scholar 

  8. Reik, W. Stability and flexibility of epigenetic gene regulation in mammalian development. Nature 447, 425–432 (2007).

    CAS  PubMed  Google Scholar 

  9. Swank, M. W. & Sweatt, J. D. Increased histone acetyltransferase and lysine acetyltransferase activity and biphasic activation of the ERK/RSK cascade in insular cortex during novel taste learning. J. Neurosci. 21, 3383–3391 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Levenson, J. M. & Sweatt, J. D. Epigenetic mechanisms in memory formation. Nat. Rev. Neurosci. 6, 108–118 (2005).

    CAS  PubMed  Google Scholar 

  11. Guan, Z. et al. Integration of long-term-memory-related synaptic plasticity involves bidirectional regulation of gene expression and chromatin structure. Cell 111, 483–493 (2002).

    CAS  PubMed  Google Scholar 

  12. Barrett, R. M. & Wood, M. A. Beyond transcription factors: the role of chromatin modifying enzymes in regulating transcription required for memory. Learn. Mem. 15, 460–467 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Frankland, P. W. & Josselyn, S. A. Neuroscience: in search of the memory molecule. Nature 535, 41–42 (2016).

    CAS  PubMed  Google Scholar 

  14. Josselyn, S. A. & Frankland, P. W. Memory allocation: mechanisms and function. Annu. Rev. Neurosci. 41, 389–413 (2018).

    CAS  PubMed  Google Scholar 

  15. Penzes, P. & Rafalovich, I. Regulation of the actin cytoskeleton in dendritic spines. Adv. Exp. Med. Biol. 970, 81–95 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Lynch, G., Kramár, E. A. & Gall, C. M. Protein synthesis and consolidation of memory-related synaptic changes. Brain Res. 1621, 62–72 (2015).

    CAS  PubMed  Google Scholar 

  17. Malenka, R. C. Synaptic plasticity in the hippocampus: LTP and LTD. Cell 78, 535–538 (1994).

    CAS  PubMed  Google Scholar 

  18. Südhof, T. C. Neuroligins and neurexins link synaptic function to cognitive disease. Nature 455, 903–911 (2008).

    PubMed  PubMed Central  Google Scholar 

  19. Carroll, R. C., Beattie, E. C., von Zastrow, M. & Malenka, R. C. Role of AMPA receptor endocytosis in synaptic plasticity. Nat. Rev. Neurosci. 2, 315–324 (2001).

    CAS  PubMed  Google Scholar 

  20. Malinow, R. & Malenka, R. C. AMPA receptor trafficking and synaptic plasticity. Annu. Rev. Neurosci. 25, 103–126 (2002).

    CAS  PubMed  Google Scholar 

  21. Riehl, R. et al. Cadherin function is required for axon outgrowth in retinal ganglion cells in vivo. Neuron 17, 837–848 (1996).

    CAS  PubMed  Google Scholar 

  22. Park, Y. K. & Goda, Y. Integrins in synapse regulation. Nat. Rev. Neurosci. 17, 745–756 (2016).

    CAS  PubMed  Google Scholar 

  23. Konietzny, A., Bär, J. & Mikhaylova, M. Dendritic actin cytoskeleton: structure, functions, and regulations. Front. Cell. Neurosci. 11, 147 (2017).

    PubMed  PubMed Central  Google Scholar 

  24. Lynch, G., Rex, C. S. & Gall, C. M. LTP consolidation: substrates, explanatory power, and functional significance. Neuropharmacology 52, 12–23 (2007).

    CAS  PubMed  Google Scholar 

  25. Bastle, R. M. & Maze, I. S. Chromatin regulation in complex brain disorders. Curr. Opin. Behav. Sci. 25, 57–65 (2019).

    Google Scholar 

  26. López, A. J. & Wood, M. A. Role of nucleosome remodeling in neurodevelopmental and intellectual disability disorders. Front. Behav. Neurosci. 9, 100 (2015).

    PubMed  PubMed Central  Google Scholar 

  27. Kwapis, J. L. & Wood, M. A. Epigenetic mechanisms in fear conditioning: implications for treating post-traumatic stress disorder. Trends Neurosci. 37, 706–720 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. White, A. O. & Wood, M. A. Does stress remove the HDAC brakes for the formation and persistence of long-term memory? Neurobiol. Learn. Mem. 112, 61–67 (2014).

    CAS  PubMed  Google Scholar 

  29. Walker, D. M. & Nestler, E. J. Neuroepigenetics and addiction. Handb. Clin. Neurol. 148, 747–765 (2018).

    PubMed  PubMed Central  Google Scholar 

  30. Zovkic, I. B., Paulukaitis, B. S., Day, J. J., Etikala, D. M. & Sweatt, J. D. Histone H2A.Z subunit exchange controls consolidation of recent and remote memory. Nature 515, 582–586 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Stefanelli, G. et al. Learning and age-related changes in genome-wide H2A.Z binding in the mouse hippocampus. Cell Rep. 22, 1124–1131 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Maze, I. et al. Critical role of histone turnover in neuronal transcription and plasticity. Neuron 87, 77–94 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Bharadwaj, R. et al. Conserved higher-order chromatin regulates NMDA receptor gene expression and cognition. Neuron 84, 997–1008 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Watson, L. A. & Tsai, L.-H. In the loop: how chromatin topology links genome structure to function in mechanisms underlying learning and memory. Curr. Opin. Neurobiol. 43, 48–55 (2017).

    CAS  PubMed  Google Scholar 

  35. Widagdo, J. et al. Experience-dependent accumulation of N 6-methyladenosine in the prefrontal cortex is associated with memory processes in mice. J. Neurosci. 36, 6771–6777 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Bero, A. W. et al. Early remodeling of the neocortex upon episodic memory encoding. Proc. Natl Acad. Sci. USA 111, 11852–11857 (2014).

    CAS  PubMed  Google Scholar 

  37. Savell, K. E. et al. Extra-coding RNAs regulate neuronal DNA methylation dynamics. Nat. Commun. 7, 12091 (2016).

    PubMed  PubMed Central  Google Scholar 

  38. Lin, Q. et al. MicroRNA-mediated disruption of dendritogenesis during a critical period of development influences cognitive capacity later in life. Proc. Natl Acad. Sci. USA 114, 9188–9193 (2017).

    CAS  PubMed  Google Scholar 

  39. Sim, S.-E. et al. The brain-enriched microRNA miR-9-3p regulates synaptic plasticity and memory. J. Neurosci. 36, 8641–8652 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Heyer, M. P. & Kenny, P. J. Corticostriatal microRNAs in addiction. Brain Res. 1628, 2–16 (2015).

    CAS  PubMed  Google Scholar 

  41. Lee, K. et al. An activity-regulated microRNA, miR-188, controls dendritic plasticity and synaptic transmission by downregulating neuropilin-2. J. Neurosci. 32, 5678–5687 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Woldemichael, B. T. et al. The microRNA cluster miR-183/96/182 contributes to long-term memory in a protein phosphatase 1-dependent manner. Nat. Commun. 7, 12594 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Qureshi, I. A. & Mehler, M. F. Emerging roles of non-coding RNAs in brain evolution, development, plasticity and disease. Nat. Rev. Neurosci. 13, 528–541 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Agranoff, B. W., Davis, R. E., Casola, L. & Lim, R. Actinomycin D blocks formation of memory of shock-avoidance in goldfish. Science 158, 1600–1601 (1967).

    CAS  PubMed  Google Scholar 

  45. Silva, A. J., Kogan, J. H., Frankland, P. W. & Kida, S. CREB and memory. Annu. Rev. Neurosci. 21, 127–148 (1998).

    CAS  PubMed  Google Scholar 

  46. Yin, J. C. & Tully, T. CREB and the formation of long-term memory. Curr. Opin. Neurobiol. 6, 264–268 (1996).

    CAS  PubMed  Google Scholar 

  47. Chrivia, J. C. et al. Phosphorylated CREB binds specifically to the nuclear protein CBP. Nature 365, 855–859 (1993).

    CAS  PubMed  Google Scholar 

  48. Bourtchouladze, R. et al. A mouse model of Rubinstein-Taybi syndrome: defective long-term memory is ameliorated by inhibitors of phosphodiesterase 4. Proc. Natl Acad. Sci. USA 100, 10518–10522 (2003).

    CAS  PubMed  Google Scholar 

  49. Oike, Y. et al. Truncated CBP protein leads to classical Rubinstein-Taybi syndrome phenotypes in mice: implications for a dominant-negative mechanism. Hum. Mol. Genet. 8, 387–396 (1999).

    CAS  PubMed  Google Scholar 

  50. Alarcon, J. et al. Chromatin acetylation, memory, and LTP are impaired in CBP+/– mice: a model for the cognitive deficit in Rubinstein–Taybi syndrome and its amelioration. Neuron 42, 947–959 (2004).

    CAS  PubMed  Google Scholar 

  51. Korzus, E. Rubinstein-Taybi syndrome and epigenetic alterations. Adv. Exp. Med. Biol. 978, 39–62 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Korzus, E., Rosenfeld, M. G. & Mayford, M. CBP histone acetyltransferase activity is a critical component of memory consolidation. Neuron 42, 961–972 (2004). This paper demonstrates the importance of histone acetylation in memory formation: transgenic mice with deficient CBP HAT activity exhibit impaired long-term memory, which was rescued by administration of an HDAC inhibitor.

    CAS  PubMed  Google Scholar 

  53. Wood, M. A., Attner, M. A., Oliveira, A. M. M., Brindle, P. K. & Abel, T. A transcription factor-binding domain of the coactivator CBP is essential for long-term memory and the expression of specific target genes. Learn. Mem. 13, 609–617 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Wood, M. A. et al. Transgenic mice expressing a truncated form of CREB-binding protein (CBP) exhibit deficits in hippocampal synaptic plasticity and memory storage. Learn. Mem. 12, 111–119 (2005).

    PubMed  PubMed Central  Google Scholar 

  55. Barrett, R. M. et al. Hippocampal focal knockout of CBP affects specific histone modifications, long-term potentiation, and long-term memory. Neuropsychopharmacology 36, 1545–1556 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Malvaez, M., Mhillaj, E., Matheos, D. P., Palmery, M. & Wood, M. A. CBP in the nucleus accumbens regulates cocaine-induced histone acetylation and is critical for cocaine-associated behaviors. J. Neurosci. 31, 16941–16948 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Maddox, S. A., Watts, C. S. & Schafe, G. E. p300/CBP histone acetyltransferase activity is required for newly acquired and reactivated fear memories in the lateral amygdala. Learn. Mem. 20, 109–119 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Sando, R. et al. HDAC4 governs a transcriptional program essential for synaptic plasticity and memory. Cell 151, 821–834 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Kwapis, J. L. et al. Context and auditory fear are differentially regulated by HDAC3 activity in the lateral and basal subnuclei of the amygdala. Neuropsychopharmacology 42, 1284–1294 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Gräff, J. & Tsai, L.-H. Histone acetylation: molecular mnemonics on the chromatin. Nat. Rev. Neurosci. 14, 97–111 (2013).

    PubMed  Google Scholar 

  61. Maddox, S. A. & Schafe, G. E. Epigenetic alterations in the lateral amygdala are required for reconsolidation of a Pavlovian fear memory. Learn. Mem. 18, 579–593 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Li, B., Carey, M. & Workman, J. L. The role of chromatin during transcription. Cell 128, 707–719 (2007).

    CAS  PubMed  Google Scholar 

  63. Zhang, T., Cooper, S. & Brockdorff, N. The interplay of histone modifications — writers that read. EMBO Rep. 16, 1467–1481 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Peixoto, L. & Abel, T. The role of histone acetylation in memory formation and cognitive impairments. Neuropsychopharmacology 38, 62–76 (2013).

    CAS  PubMed  Google Scholar 

  65. Morris, M. J., Mahgoub, M., Na, E. S., Pranav, H. & Monteggia, L. M. Loss of histone deacetylase 2 improves working memory and accelerates extinction learning. J. Neurosci. 33, 6401–6411 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Taniguchi, M. et al. HDAC5 and its target gene, Npas4, function in the nucleus accumbens to regulate cocaine-conditioned behaviors. Neuron 96, 130–144 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Lahm, A. et al. Unraveling the hidden catalytic activity of vertebrate class IIa histone deacetylases. Proc. Natl Acad. Sci. USA 104, 17335–17340 (2007).

    CAS  PubMed  Google Scholar 

  68. Gräff, J. et al. Epigenetic priming of memory updating during reconsolidation to attenuate remote fear memories. Cell 156, 261–276 (2014). Although a reconsolidation-updating paradigm fails to alter remote memories, administration of an HDAC2-targeting inhibitor during reconsolidation persistently attenuates remote memories.

    PubMed  PubMed Central  Google Scholar 

  69. Zocchi, L. & Sassone-Corsi, P. SIRT1-mediated deacetylation of MeCP2 contributes to BDNF expression. Epigenetics 7, 695–700 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Federman, N. et al. Nuclear factor κB-dependent histone acetylation is specifically involved in persistent forms of memory. J. Neurosci. 33, 7603–7614 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Lopez-Atalaya, J. P. & Barco, A. Can changes in histone acetylation contribute to memory formation? Trends Genet. 30, 529–539 (2014).

    CAS  PubMed  Google Scholar 

  72. Rashid, A. J., Cole, C. J. & Josselyn, S. A. Emerging roles for MEF2 transcription factors in memory. Genes Brain Behav. 13, 118–125 (2014).

    CAS  PubMed  Google Scholar 

  73. Sartor, G. C., Powell, S. K., Brothers, S. P. & Wahlestedt, C. Epigenetic readers of lysine acetylation regulate cocaine-induced plasticity. J. Neurosci. 35, 15062–15072 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Korb, E., Herre, M., Zucker-Scharff, I., Darnell, R. B. & Allis, C. D. BET protein Brd4 activates transcription in neurons and BET inhibitor Jq1 blocks memory in mice. Nat. Neurosci. 18, 1464–1473 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Fischer, A., Sananbenesi, F., Wang, X., Dobbin, M. & Tsai, L.-H. Recovery of learning and memory is associated with chromatin remodelling. Nature 447, 178–182 (2007).

    CAS  PubMed  Google Scholar 

  76. Schaefer, A. et al. Control of cognition and adaptive behavior by the GLP/G9a epigenetic suppressor complex. Neuron 64, 678–691 (2009). Knockdown of GLP–G9a leads to derepression of genes expressed in adult neurons and leads to deficits in learning.

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Gupta-Agarwal, S. et al. G9a/GLP histone lysine dimethyltransferase complex activity in the hippocampus and the entorhinal cortex is required for gene activation and silencing during memory consolidation. J. Neurosci. 32, 5440–5453 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Snigdha, S. et al. H3k9me3 inhibition improves memory, promotes spine formation, and increases BDNF levels in the aged hippocampus. J. Neurosci. 36, 3611–3622 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Jenuwein, T. & Allis, C. D. Translating the histone code. Science 293, 1074–1080 (2001).

    CAS  PubMed  Google Scholar 

  80. Zhang, Y. & Reinberg, D. Transcription regulation by histone methylation: interplay between different covalent modifications of the core histone tails. Genes Dev. 15, 2343–2360 (2001).

    CAS  PubMed  Google Scholar 

  81. Maze, I. et al. Essential role of the histone methyltransferase G9a in cocaine-induced plasticity. Science 327, 213–216 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Covington, H. E. et al. A role for repressive histone methylation in cocaine-induced vulnerability to stress. Neuron 71, 656–670 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Anderson, E. M. et al. Overexpression of the histone dimethyltransferase G9a in nucleus accumbens shell increases cocaine self-administration, stress-induced reinstatement, and anxiety. J. Neurosci. 38, 803–813 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Gupta, S. et al. Histone methylation regulates memory formation. J. Neurosci. 30, 3589–3599 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Kerimoglu, C. et al. KMT2A and KMT2B mediate memory function by affecting distinct genomic regions. Cell Rep. 20, 538–548 (2017).

    CAS  PubMed  Google Scholar 

  86. Kerimoglu, C. et al. Histone-methyltransferase MLL2 (KMT2B) is required for memory formation in mice. J. Neurosci. 33, 3452–3464 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Damez-Werno, D. M. et al. Histone arginine methylation in cocaine action in the nucleus accumbens. Proc. Natl Acad. Sci. USA 113, 9623–9628 (2016).

    CAS  PubMed  Google Scholar 

  88. Benevento, M. et al. Histone methylation by the Kleefstra syndrome protein EHMT1 mediates homeostatic synaptic scaling. Neuron 91, 341–355 (2016).

    CAS  PubMed  Google Scholar 

  89. Jakovcevski, M. et al. Neuronal Kmt2a/Mll1 histone methyltransferase is essential for prefrontal synaptic plasticity and working memory. J. Neurosci. 35, 5097–5108 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Jarome, T. J. & Lubin, F. D. Histone lysine methylation: critical regulator of memory and behavior. Rev. Neurosci. 24, 375–387 (2013).

    CAS  PubMed  Google Scholar 

  91. Levenson, J. M. et al. Evidence that DNA (cytosine-5) methyltransferase regulates synaptic plasticity in the hippocampus. J. Biol. Chem. 281, 15763–15773 (2006).

    CAS  PubMed  Google Scholar 

  92. Monsey, M. S., Ota, K. T., Akingbade, I. F., Hong, E. S. & Schafe, G. E. Epigenetic alterations are critical for fear memory consolidation and synaptic plasticity in the lateral amygdala. PLOS ONE 6, e19958 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Maddox, S. A., Watts, C. S. & Schafe, G. E. DNA methyltransferase activity is required for memory-related neural plasticity in the lateral amygdala. Neurobiol. Learn. Mem. 107, 93–100 (2014).

    CAS  PubMed  Google Scholar 

  94. Miller, C. A. et al. Cortical DNA methylation maintains remote memory. Nat. Neurosci. 13, 664–666 (2010). Associative learning induces gene-specific cortical hypermethylation in rats, and DNMT inhibition 1 month after learning disrupted remote memory.

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Lubin, F. D., Roth, T. L. & Sweatt, J. D. Epigenetic regulation of BDNF gene transcription in the consolidation of fear memory. J. Neurosci. 28, 10576–10586 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Biergans, S. D., Jones, J. C., Treiber, N., Galizia, C. G. & Szyszka, P. DNA methylation mediates the discriminatory power of associative long-term memory in honeybees. PLOS ONE 7, e39349 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Brueckner, B. et al. Epigenetic reactivation of tumor suppressor genes by a novel small-molecule inhibitor of human DNA methyltransferases. Cancer Res. 65, 6305–6311 (2005).

    CAS  PubMed  Google Scholar 

  98. Oliveira, A. M. M., Hemstedt, T. J. & Bading, H. Rescue of aging-associated decline in Dnmt3a2 expression restores cognitive abilities. Nat. Neurosci. 15, 1111–1113 (2012).

    CAS  PubMed  Google Scholar 

  99. Sultan, F. A., Wang, J., Tront, J., Liebermann, D. A. & Sweatt, J. D. Genetic deletion of Gadd45b, a regulator of active DNA demethylation, enhances long-term memory and synaptic plasticity. J. Neurosci. 32, 17059–17066 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Ma, D. K. et al. Neuronal activity-induced Gadd45b promotes epigenetic DNA demethylation and adult neurogenesis. Science 323, 1074–1077 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Leach, P. T. et al. Gadd45b knockout mice exhibit selective deficits in hippocampus-dependent long-term memory. Learn. Mem. 19, 319–324 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Gavin, D. P., Chase, K. A. & Sharma, R. P. Active DNA demethylation in post-mitotic neurons: a reason for optimism. Neuropharmacology 75, 233–245 (2013).

    CAS  PubMed  Google Scholar 

  103. Rudenko, A. et al. Tet1 is critical for neuronal activity-regulated gene expression and memory extinction. Neuron 79, 1109–1122 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Halder, R. et al. DNA methylation changes in plasticity genes accompany the formation and maintenance of memory. Nat. Neurosci. 19, 102–110 (2016). Rapid de novo DNA methylation and demethylation occur in the hippocampus in response to fear conditioning.

    CAS  PubMed  Google Scholar 

  105. Oliveira, A. M. M. DNA methylation: a permissive mark in memory formation and maintenance. Learn. Mem. 23, 587–593 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Miller, C. A. & Sweatt, J. D. Covalent modification of DNA regulates memory formation. Neuron 53, 857–869 (2007).

    CAS  PubMed  Google Scholar 

  107. Day, J. J. et al. DNA methylation regulates associative reward learning. Nat. Neurosci. 16, 1445–1452 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Webb, W. M. et al. Dynamic association of epigenetic H3K4me3 and DNA 5hmC marks in the dorsal hippocampus and anterior cingulate cortex following reactivation of a fear memory. Neurobiol. Learn. Mem. 142, 66–78 (2017).

    CAS  PubMed  Google Scholar 

  109. Hemstedt, T. J., Lattal, K. M. & Wood, M. A. Reconsolidation and extinction: Using epigenetic signatures to challenge conventional wisdom. Neurobiol. Learn. Mem. 142, 55–65 (2017).

    PubMed  PubMed Central  Google Scholar 

  110. Spruijt, C. G. & Vermeulen, M. DNA methylation: old dog, new tricks? Nat. Struct. Mol. Biol. 21, 949–954 (2014).

    Google Scholar 

  111. Hargreaves, D. C. & Crabtree, G. R. ATP-dependent chromatin remodeling: genetics, genomics and mechanisms. Cell Res. 21, 396–420 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Wu, J. I. et al. Regulation of dendritic development by neuron-specific chromatin remodeling complexes. Neuron 56, 94–108 (2007).

    CAS  PubMed  Google Scholar 

  113. Yoo, M. et al. BAF53b, a neuron-specific nucleosome remodeling factor, is induced after learning and facilitates long-term memory consolidation. J. Neurosci. 37, 3686–3697 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Vogel Ciernia, A. et al. Mutation of neuron-specific chromatin remodeling subunit BAF53b: rescue of plasticity and memory by manipulating actin remodeling. Learn. Mem. 24, 199–209 (2017).

    PubMed  PubMed Central  Google Scholar 

  115. Vogel-Ciernia, A. et al. The neuron-specific chromatin regulatory subunit BAF53b is necessary for synaptic plasticity and memory. Nat. Neurosci. 16, 552–561 (2013). Genetic manipulation of the nBAF nucleosome-remodelling subunit BAF53B alters hippocampal gene expression and leads to impairments in both long-term memory and long-lasting forms of synaptic plasticity.

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Borrelli, E., Nestler, E. J., Allis, C. D. & Sassone-Corsi, P. Decoding the epigenetic language of neuronal plasticity. Neuron 60, 961–974 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. McQuown, S. C. et al. HDAC3 is a critical negative regulator of long-term memory formation. J. Neurosci. 31, 764–774 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Guan, J.-S. et al. HDAC2 negatively regulates memory formation and synaptic plasticity. Nature 459, 55–60 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Feng, J. et al. Dnmt1 and Dnmt3a maintain DNA methylation and regulate synaptic function in adult forebrain neurons. Nat. Neurosci. 13, 423–430 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Levenson, J. M. et al. Regulation of histone acetylation during memory formation in the hippocampus. J. Biol. Chem. 279, 40545–40559 (2004).

    CAS  PubMed  Google Scholar 

  121. Peleg, S. et al. Altered histone acetylation is associated with age-dependent memory impairment in mice. Science 328, 753–756 (2010).

    CAS  PubMed  Google Scholar 

  122. Vecsey, C. G. et al. Histone deacetylase inhibitors enhance memory and synaptic plasticity via CREB:CBP-dependent transcriptional activation. J. Neurosci. 27, 6128–6140 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Stefanko, D. P., Barrett, R. M., Ly, A. R., Reolon, G. K. & Wood, M. A. Modulation of long-term memory for object recognition via HDAC inhibition. Proc. Natl Acad. Sci. USA 106, 9447–9452 (2009).

    CAS  PubMed  Google Scholar 

  124. Malvaez, M. et al. HDAC3-selective inhibitor enhances extinction of cocaine-seeking behavior in a persistent manner. Proc. Natl Acad. Sci. USA 110, 2647–2652 (2013).

    CAS  PubMed  Google Scholar 

  125. Rogge, G. A., Singh, H., Dang, R. & Wood, M. A. HDAC3 is a negative regulator of cocaine-context-associated memory formation. J. Neurosci. 33, 6623–6632 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Haettig, J. et al. HDAC inhibition modulates hippocampus-dependent long-term memory for object location in a CBP-dependent manner. Learn. Mem. 18, 71–79 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Bieszczad, K. M. & Weinberger, N. M. Representational gain in cortical area underlies increase of memory strength. Proc. Natl Acad. Sci. USA 107, 3793–3798 (2010).

    CAS  PubMed  Google Scholar 

  128. Bieszczad, K. M. et al. Histone deacetylase inhibition via RGFP966 releases the brakes on sensory cortical plasticity and the specificity of memory formation. J. Neurosci. 35, 13124–13132 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Bredy, T. W. et al. Histone modifications around individual BDNF gene promoters in prefrontal cortex are associated with extinction of conditioned fear. Learn. Mem. 14, 268–276 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Stafford, J. M., Raybuck, J. D., Ryabinin, A. E. & Lattal, K. M. Increasing histone acetylation in the hippocampus-infralimbic network enhances fear extinction. Biol. Psychiatry 72, 25–33 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Fujita, Y. et al. Vorinostat, a histone deacetylase inhibitor, facilitates fear extinction and enhances expression of the hippocampal NR2B-containing NMDA receptor gene. J. Psychiatr. Res. 46, 635–643 (2012).

    PubMed  Google Scholar 

  132. Bredy, T. W. & Barad, M. The histone deacetylase inhibitor valproic acid enhances acquisition, extinction, and reconsolidation of conditioned fear. Learn. Mem. 15, 39–45 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Itzhak, Y., Liddie, S. & Anderson, K. L. Sodium butyrate-induced histone acetylation strengthens the expression of cocaine-associated contextual memory. Neurobiol. Learn. Mem. 102, 34–42 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Lattal, M. K., Barrett, R. M. & Wood, M. A. Systemic or intrahippocampal delivery of histone deacetylase inhibitors facilitates fear extinction. Behav. Neurosci. 121, 1125–1131 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Lubin, F. D. & Sweatt, J. D. The IκB kinase regulates chromatin structure during reconsolidation of conditioned fear memories. Neuron 55, 942–957 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Blank, M. et al. TrkB blockade in the hippocampus after training or retrieval impairs memory: protection from consolidation impairment by histone deacetylase inhibition. J. Neural Transm. 123, 159–165 (2016).

    CAS  PubMed  Google Scholar 

  137. Malvaez, M. et al. Habits are negatively regulated by  histone deacetylase 3 in the dorsal striatum. Biol. Psychiatry 84, 383–392 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Penner, M. R., Roth, T. L., Barnes, C. A. & Sweatt, J. D. An epigenetic hypothesis of aging-related cognitive dysfunction. Front. Aging Neurosci. 2, 9 (2010).

    PubMed  PubMed Central  Google Scholar 

  139. Kwapis, J. L. et al. Epigenetic regulation of the circadian gene Per1 contributes to age-related changes in hippocampal memory. Nat. Commun. 9, 3323 (2018).

    PubMed  PubMed Central  Google Scholar 

  140. Spiegel, A. M., Sewal, A. S. & Rapp, P. R. Epigenetic contributions to cognitive aging: disentangling mindspan and lifespan. Learn. Mem. 21, 569–574 (2014).

    PubMed  PubMed Central  Google Scholar 

  141. Jarome, T. J., Perez, G. A., Hauser, R. M., Hatch, K. M. & Lubin, F. D. EZH2 methyltransferase activity controls Pten expression and mTOR signaling during fear memory reconsolidation. J. Neurosci. 38, 7635–7648 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Balemans, M. C. M. et al. Hippocampal dysfunction in the Euchromatin histone methyltransferase 1 heterozygous knockout mouse model for Kleefstra syndrome. Hum. Mol. Genet. 22, 852–866 (2013).

    CAS  PubMed  Google Scholar 

  143. Baker-Andresen, D. et al. Persistent variations in neuronal DNA methylation following cocaine self-administration and protracted abstinence in mice. Neuroepigenetics 4, 1–11 (2015).

    PubMed  PubMed Central  Google Scholar 

  144. Li, X. et al. Neocortical Tet3-mediated accumulation of 5-hydroxymethylcytosine promotes rapid behavioral adaptation. Proc. Natl Acad. Sci. USA 111, 7120–7125 (2014). Fear extinction induces a redistribution of 5hmC that is mediated by TET3 in the infralimbic prefrontal cortex.

    CAS  PubMed  Google Scholar 

  145. Oliveira, A. M. M., Hemstedt, T. J., Freitag, H. E. & Bading, H. Dnmt3a2: a hub for enhancing cognitive functions. Mol. Psychiatry 21, 1130–1136 (2016).

    CAS  PubMed  Google Scholar 

  146. Hawk, J. D. et al. NR4A nuclear receptors support memory enhancement by histone deacetylase inhibitors. J. Clin. Invest. 122, 3593–3602 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  147. Berry, K. P. & Nedivi, E. Spine dynamics: are they all the same? Neuron 96, 43–55 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  148. Meyer, D., Bonhoeffer, T. & Scheuss, V. Balance and stability of synaptic structures during synaptic plasticity. Neuron 82, 430–443 (2014).

    CAS  PubMed  Google Scholar 

  149. Caroni, P., Donato, F. & Muller, D. Structural plasticity upon learning: regulation and functions. Nat. Rev. Neurosci. 13, 478–490 (2012).

    CAS  PubMed  Google Scholar 

  150. Rex, C. S. et al. Myosin IIb regulates actin dynamics during synaptic plasticity and memory formation. Neuron 67, 603–617 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  151. Young, E. J. et al. Selective, retrieval-independent disruption of methamphetamine-associated memory by actin depolymerization. Biol. Psychiatry 75, 96–104 (2014).

    CAS  PubMed  Google Scholar 

  152. Babayan, A. H. et al. Integrin dynamics produce a delayed stage of long-term potentiation and memory consolidation. J. Neurosci. 32, 12854–12861 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  153. Tamura, K., Shan, W. S., Hendrickson, W. A., Colman, D. R. & Shapiro, L. Structure-function analysis of cell adhesion by neural (N-) cadherin. Neuron 20, 1153–1163 (1998).

    CAS  PubMed  Google Scholar 

  154. Bozdagi, O., Shan, W., Tanaka, H., Benson, D. L. & Huntley, G. W. Increasing numbers of synaptic puncta during late-phase LTP: N-cadherin is synthesized, recruited to synaptic sites, and required for potentiation. Neuron 28, 245–259 (2000).

    CAS  PubMed  Google Scholar 

  155. Huntley, G. W., Gil, O. & Bozdagi, O. The cadherin family of cell adhesion molecules: multiple roles in synaptic plasticity. Neuroscientist 8, 221–233 (2002).

    CAS  PubMed  Google Scholar 

  156. Südhof, T. C. Synaptic neurexin complexes: a molecular code for the logic of neural circuits. Cell 171, 745–769 (2017).

    PubMed  PubMed Central  Google Scholar 

  157. Brigidi, G. S. et al. Palmitoylation of δ-catenin by DHHC5 mediates activity-induced synapse plasticity. Nat. Neurosci. 17, 522–532 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  158. Paoletti, P., Bellone, C. & Zhou, Q. NMDA receptor subunit diversity: impact on receptor properties, synaptic plasticity and disease. Nat. Rev. Neurosci. 14, 383–400 (2013).

    CAS  PubMed  Google Scholar 

  159. Lee, S.-J. R., Escobedo-Lozoya, Y., Szatmari, E. M. & Yasuda, R. Activation of CaMKII in single dendritic spines during long-term potentiation. Nature 458, 299–304 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  160. Murakoshi, H., Wang, H. & Yasuda, R. Local, persistent activation of Rho GTPases during plasticity of single dendritic spines. Nature 472, 100–104 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  161. Rudy, J. W. Variation in the persistence of memory: an interplay between actin dynamics and AMPA receptors. Brain Res. 1621, 29–37 (2015).

    CAS  PubMed  Google Scholar 

  162. Ye, X. & Carew, T. J. Small G protein signaling in neuronal plasticity and memory formation: the specific role of ras family proteins. Neuron 68, 340–361 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  163. Cingolani, L. A. & Goda, Y. Actin in action: the interplay between the actin cytoskeleton and synaptic efficacy. Nat. Rev. Neurosci. 9, 344–356 (2008).

    CAS  PubMed  Google Scholar 

  164. DeMali, K. A., Wennerberg, K. & Burridge, K. Integrin signaling to the actin cytoskeleton. Curr. Opin. Cell Biol. 15, 572–582 (2003).

    CAS  PubMed  Google Scholar 

  165. Chen, L. Y., Rex, C. S., Casale, M. S., Gall, C. M. & Lynch, G. Changes in synaptic morphology accompany actin signaling during LTP. J. Neurosci. 27, 5363–5372 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  166. Kim, Y. et al. Phosphorylation of WAVE1 regulates actin polymerization and dendritic spine morphology. Nature 442, 814–817 (2006).

    CAS  PubMed  Google Scholar 

  167. Yang, E. J., Yoon, J.-H., Min, D. S. & Chung, K. C. LIM kinase 1 activates cAMP-responsive element-binding protein during the neuronal differentiation of immortalized hippocampal progenitor cells. J. Biol. Chem. 279, 8903–8910 (2004).

    CAS  PubMed  Google Scholar 

  168. Matsuzaki, M., Honkura, N., Ellis-Davies, G. C. R. & Kasai, H. Structural basis of long-term potentiation in single dendritic spines. Nature 429, 761–766 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  169. Harvey, C. D. & Svoboda, K. Locally dynamic synaptic learning rules in pyramidal neuron dendrites. Nature 450, 1195–1200 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  170. Rudy, J. W. Actin dynamics and the evolution of the memory trace. Brain Res. 1621, 17–28 (2015).

    CAS  PubMed  Google Scholar 

  171. Mirisis, A. A., Alexandrescu, A., Carew, T. J. & Kopec, A. M. The contribution of spatial and temporal molecular networks in the induction of long-term memory and its underlying synaptic plasticity. AIMS Neurosci. 3, 356–384 (2016).

    PubMed  PubMed Central  Google Scholar 

  172. Goelet, P., Castellucci, V. F., Schacher, S. & Kandel, E. R. The long and the short of long-term memory — a molecular framework. Nature 322, 419–422 (1986).

    CAS  PubMed  Google Scholar 

  173. Bailey, C. H., Bartsch, D. & Kandel, E. R. Toward a molecular definition of long-term memory storage. Proc. Natl Acad. Sci. USA 93, 13445–13452 (1996).

    CAS  PubMed  Google Scholar 

  174. Frey, U. & Morris, R. G. Synaptic tagging and long-term potentiation. Nature 385, 533–536 (1997).

    CAS  PubMed  Google Scholar 

  175. Martin, K. C. in Encyclopedia of Neuroscience (ed. Squire, L. R.) 719–723 (Academic Press, 2009).

  176. Martin, K. C. & Kosik, K. S. Synaptic tagging — who’s it? Nat. Rev. Neurosci. 3, 813–820 (2002).

    CAS  PubMed  Google Scholar 

  177. Wang, D. O. et al. Synapse- and stimulus-specific local translation during long-term neuronal plasticity. Science 324, 1536–1540 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  178. Martin, K. C. Synaptic tagging during synapse-specific long-term facilitation of Aplysia sensory-motor neurons. Neurobiol. Learn. Mem. 78, 489–497 (2002).

    PubMed  Google Scholar 

  179. Rogerson, T. et al. Synaptic tagging during memory allocation. Nat. Rev. Neurosci. 15, 157–169 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  180. Sharma, M., Shetty, M. S., Arumugam, T. V. & Sajikumar, S. Histone deacetylase 3 inhibition re-establishes synaptic tagging and capture in aging through the activation of nuclear factor kappa B. Sci. Rep. 5, 16616 (2015). This paper examines the role of histone acetylation in synaptic tag and capture and finds that inhibition of HDAC3 augments L-LTP and re-establishes synaptic tag and capture in the hippocampus of aged rats.

    CAS  PubMed  PubMed Central  Google Scholar 

  181. Merkurjev, D. et al. Synaptic N6-methyladenosine (m6A) epitranscriptome reveals functional partitioning of localized transcripts. Nat. Neurosci. 21, 1004–1014 (2018).

    CAS  PubMed  Google Scholar 

  182. Leighton, L. J. et al. Experience-dependent neural plasticity, learning, and memory in the era of epitranscriptomics. Genes Brain Behav. 17, e12426 (2018).

    CAS  PubMed  Google Scholar 

  183. Cajigas, I. J. et al. The local transcriptome in the synaptic neuropil revealed by deep sequencing and high-resolution imaging. Neuron 74, 453–466 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  184. Tang, S. & Yasuda, R. Imaging ERK and PKA activation in single dendritic spines during structural plasticity. Neuron 93, 1315–1324 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  185. Cohen, S. M. et al. Calmodulin shuttling mediates cytonuclear signaling to trigger experience-dependent transcription and memory. Nat. Commun. 9, 2451 (2018).

    PubMed  PubMed Central  Google Scholar 

  186. Cohen, S. & Greenberg, M. E. Communication between the synapse and the nucleus in neuronal development, plasticity, and disease. Annu. Rev. Cell Dev. Biol. 24, 183–209 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  187. Karpova, A. et al. Encoding and transducing the synaptic or extrasynaptic origin of NMDA receptor signals to the nucleus. Cell 152, 1119–1133 (2013).

    CAS  PubMed  Google Scholar 

  188. Harvey, C. D., Yasuda, R., Zhong, H. & Svoboda, K. The spread of Ras activity triggered by activation of a single dendritic spine. Science 321, 136–140 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  189. Zhai, S., Ark, E. D., Parra-Bueno, P. & Yasuda, R. Long-distance integration of nuclear ERK signaling triggered by activation of a few dendritic spines. Science 342, 1107–1111 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  190. Ch’ng, T. H. et al. Activity-dependent transport of the transcriptional coactivator CRTC1 from synapse to nucleus. Cell 150, 207–221 (2012).

    PubMed  PubMed Central  Google Scholar 

  191. Ch’ng, T. H. & Martin, K. C. Synapse-to-nucleus signaling. Curr. Opin. Neurobiol. 21, 345–352 (2011).

    PubMed  PubMed Central  Google Scholar 

  192. Jordan, B. A. & Kreutz, M. R. Nucleocytoplasmic protein shuttling: the direct route in synapse-to-nucleus signaling. Trends Neurosci. 32, 392–401 (2009).

    CAS  PubMed  Google Scholar 

  193. Uchida, S. et al. CRTC1 nuclear translocation following learning modulates memory strength via exchange of chromatin remodeling complexes on the Fgf1 gene. Cell Rep. 18, 352–366 (2017). A strong learning event leads to an exchange of CBP to HAT KAT5 on the Fgf1b promoter to induce persistent expression; these events are mediated by transcriptional activity of the synaptic protein CRTC1.

    CAS  PubMed  PubMed Central  Google Scholar 

  194. Maze, I., Noh, K.-M. & Allis, C. D. Histone regulation in the CNS: basic principles of epigenetic plasticity. Neuropsychopharmacology 38, 3–22 (2013).

    CAS  PubMed  Google Scholar 

  195. Kumar, A. et al. Chromatin remodeling is a key mechanism underlying cocaine-induced plasticity in striatum. Neuron 48, 303–314 (2005).

    CAS  PubMed  Google Scholar 

  196. VanLeeuwen, J.-E. et al. Coordinated nuclear and synaptic shuttling of afadin promotes spine plasticity and histone modifications. J. Biol. Chem. 289, 10831–10842 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  197. Kramár, E. A., Babayan, A. H., Gall, C. M. & Lynch, G. Estrogen promotes learning-related plasticity by modifying the synaptic cytoskeleton. Neuroscience 239, 3–16 (2013).

    PubMed  Google Scholar 

  198. Rex, C. S. et al. Brain-derived neurotrophic factor promotes long-term potentiation-related cytoskeletal changes in adult hippocampus. J. Neurosci. 27, 3017–3029 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  199. Wiggins, A., Smith, R. J., Shen, H.-W. & Kalivas, P. W. Integrins modulate relapse to cocaine-seeking. J. Neurosci. 31, 16177–16184 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  200. Kramár, E. A., Lin, B., Rex, C. S., Gall, C. M. & Lynch, G. Integrin-driven actin polymerization consolidates long-term potentiation. Proc. Natl Acad. Sci. USA 103, 5579–5584 (2006).

    PubMed  Google Scholar 

  201. Charrier, C. et al. A crosstalk between β1 and β3 integrins controls glycine receptor and gephyrin trafficking at synapses. Nat. Neurosci. 13, 1388–1395 (2010).

    CAS  PubMed  Google Scholar 

  202. Mitra, S. K. & Schlaepfer, D. D. Integrin-regulated FAK–Src signaling in normal and cancer cells. Curr. Opin. Cell Biol. 18, 516–523 (2006).

    CAS  PubMed  Google Scholar 

  203. Cingolani, L. A. et al. Activity-dependent regulation of synaptic AMPA receptor composition and abundance by β3 integrins. Neuron 58, 749–762 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  204. Rex, C. S. et al. Different Rho GTPase-dependent signaling pathways initiate sequential steps in the consolidation of long-term potentiation. J. Cell Biol. 186, 85–97 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  205. Briz, V. et al. Activity-dependent rapid local RhoA synthesis is required for hippocampal synaptic plasticity. J. Neurosci. 35, 2269–2282 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  206. Golden, S. A. et al. Epigenetic regulation of RAC1 induces synaptic remodeling in stress disorders and depression. Nat. Med. 19, 337–344 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  207. Wolf, M. E. & Tseng, K. Y. Calcium-permeable AMPA receptors in the VTA and nucleus accumbens after cocaine exposure: when, how, and why? Front. Mol. Neurosci. 5, 72 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  208. Ju, W. et al. Activity-dependent regulation of dendritic synthesis and trafficking of AMPA receptors. Nat. Neurosci. 7, 244–253 (2004).

    CAS  PubMed  Google Scholar 

  209. Nicoll, R. A. & Roche, K. W. Long-term potentiation: peeling the onion. Neuropharmacology 74, 18–22 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  210. Huganir, R. L. & Nicoll, R. A. AMPARs and synaptic plasticity: the last 25 years. Neuron 80, 704–717 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  211. Lin, J. W. et al. Distinct molecular mechanisms and divergent endocytotic pathways of AMPA receptor internalization. Nat. Neurosci. 3, 1282–1290 (2000).

    CAS  PubMed  Google Scholar 

  212. Rodenas-Ruano, A., Chávez, A. E., Cossio, M. J., Castillo, P. E. & Zukin, R. S. REST-dependent epigenetic remodeling promotes the developmental switch in synaptic NMDA receptors. Nat. Neurosci. 15, 1382–1390 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  213. Singh-Taylor, A. et al. NRSF-dependent epigenetic mechanisms contribute to programming of stress-sensitive neurons by neonatal experience, promoting resilience. Mol. Psychiatry 23, 648–657 (2018).

    CAS  PubMed  Google Scholar 

  214. Wei, J. et al. Histone modification of Nedd4 ubiquitin ligase controls the loss of AMPA receptors and cognitive impairment induced by repeated stress. J. Neurosci. 36, 2119–2130 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  215. Jayanthi, S. et al. Methamphetamine downregulates striatal glutamate receptors via diverse epigenetic mechanisms. Biol. Psychiatry 76, 47–56 (2014).

    CAS  PubMed  Google Scholar 

  216. Francis, T. C. et al. Molecular basis of dendritic atrophy and activity in stress susceptibility. Mol. Psychiatry 22, 1512–1519 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  217. Krugers, H. J., Hoogenraad, C. C. & Groc, L. Stress hormones and AMPA receptor trafficking in synaptic plasticity and memory. Nat. Rev. Neurosci. 11, 675–681 (2010).

    CAS  PubMed  Google Scholar 

  218. Chen, Y. et al. Impairment of synaptic plasticity by the stress mediator CRH involves selective destruction of thin dendritic spines via RhoA signaling. Mol. Psychiatry 18, 485–496 (2013).

    CAS  PubMed  Google Scholar 

  219. Andres, A. L. et al. NMDA receptor activation and calpain contribute to disruption of dendritic spines by the stress neuropeptide CRH. J. Neurosci. 33, 16945–16960 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  220. Aoto, J., Martinelli, D. C., Malenka, R. C., Tabuchi, K. & Südhof, T. C. Presynaptic neurexin-3 alternative splicing trans-synaptically controls postsynaptic AMPA receptor trafficking. Cell 154, 75–88 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  221. Luco, R. F., Allo, M., Schor, I. E., Kornblihtt, A. R. & Misteli, T. Epigenetics in alternative pre-mRNA splicing. Cell 144, 16–26 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  222. Hu, Q., Greene, C. & Heller, E. Specific histone modifications associate with alternative exon selection during mammalian development. Preprint at https://www.biorxiv.org/content/early/2018/07/18/361816 (2018).

  223. Ding, X. et al. Activity-induced histone modifications govern neurexin-1 mRNA splicing and memory preservation. Nat. Neurosci. 20, 690–699 (2017). This paper shows that stabilization of memories requires a shift in expression of the Nrxn1 splice isoform within the hippocampus, which occurs through accumulating a repressive histone marker, H3K9me3, at the splicing site.

    CAS  PubMed  Google Scholar 

  224. Ripoli, C. Engrampigenetics: Epigenetics of engram memory cells. Behav. Brain Res. 325, 297–302 (2017).

    PubMed  Google Scholar 

  225. Weber, C. M., Ramachandran, S. & Henikoff, S. Nucleosomes are context-specific, H2A.Z-modulated barriers to RNA polymerase. Mol. Cell 53, 819–830 (2014).

    CAS  PubMed  Google Scholar 

  226. Dunn, C. J. et al. Histone hypervariants H2A.Z.1 and H2A.Z.2 play independent and context-specific roles in neuronal activity-induced transcription of Arc/Arg3.1 and other immediate early genes. eNeuro 4, ENEURO.0040-17.2017 (2017).

  227. Henikoff, S. & Smith, M. M. Histone variants and epigenetics. Cold Spring Harb. Perspect. Biol. 7, a019364 (2015).

    PubMed  PubMed Central  Google Scholar 

  228. Dekker, J., Rippe, K., Dekker, M. & Kleckner, N. Capturing chromosome conformation. Science 295, 1306–1311 (2002).

    CAS  PubMed  Google Scholar 

  229. Li, Y., Hu, M. & Shen, Y. Gene regulation in the 3D genome. Hum. Mol. Genet. 27, R228–R233 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  230. Quinodoz, S. A. et al. Higher-order inter-chromosomal hubs shape 3D genome organization in the nucleus. Cell 174, 744–757 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  231. Mitchell, A. C. et al. Longitudinal assessment of neuronal 3D genomes in mouse prefrontal cortex. Nat. Commun. 7, 12743 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  232. Engmann, O. et al. Cocaine-induced chromatin modifications associate with increased expression and three-dimensional looping of Auts2. Biol. Psychiatry 82, 794–805 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  233. Wagner, F. F. et al. Kinetically selective inhibitors of histone deacetylase 2 (HDAC2) as cognition enhancers. Chem. Sci. 6, 804–815 (2015).

    CAS  PubMed  Google Scholar 

  234. McQuown, S. C. & Wood, M. A. HDAC3 and the molecular brake pad hypothesis. Neurobiol. Learn. Mem. 96, 27–34 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  235. Bowers, M. E., Xia, B., Carreiro, S. & Ressler, K. J. The Class I HDAC inhibitor RGFP963 enhances consolidation of cued fear extinction. Learn. Mem. 22, 225–231 (2015).

    PubMed  PubMed Central  Google Scholar 

  236. Rumbaugh, G. et al. Pharmacological selectivity within class I histone deacetylases predicts effects on synaptic function and memory rescue. Neuropsychopharmacology 40, 2307–2316 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  237. Gräff, J. et al. A dietary regimen of caloric restriction or pharmacological activation of SIRT1 to delay the onset of neurodegeneration. J. Neurosci. 33, 8951–8960 (2013).

    PubMed  PubMed Central  Google Scholar 

  238. Volmar, C.-H. & Wahlestedt, C. Histone deacetylases (HDACs) and brain function. Neuroepigenetics 1, 20–27 (2015).

    Google Scholar 

  239. Gräff, J. & Tsai, L.-H. The potential of HDAC inhibitors as cognitive enhancers. Annu. Rev. Pharmacol. Toxicol. 53, 311–330 (2013).

    PubMed  Google Scholar 

  240. Yu, H. et al. Tet3 regulates synaptic transmission and homeostatic plasticity via DNA oxidation and repair. Nat. Neurosci. 18, 836–843 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  241. Guzman-Karlsson, M. C., Meadows, J. P., Gavin, C. F., Hablitz, J. J. & Sweatt, J. D. Transcriptional and epigenetic regulation of Hebbian and non-Hebbian plasticity. Neuropharmacology 80, 3–17 (2014).

    CAS  PubMed  Google Scholar 

  242. Meadows, J. P. et al. DNA methylation regulates neuronal glutamatergic synaptic scaling. Sci. Signal. 8, ra61 (2015).

    PubMed  PubMed Central  Google Scholar 

  243. Blackman, M. P., Djukic, B., Nelson, S. B. & Turrigiano, G. G. A critical and cell-autonomous role for MeCP2 in synaptic scaling up. J. Neurosci. 32, 13529–13536 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  244. Nelson, E. D., Kavalali, E. T. & Monteggia, L. M. MeCP2-dependent transcriptional repression regulates excitatory neurotransmission. Curr. Biol. 16, 710–716 (2006).

    CAS  PubMed  Google Scholar 

  245. Qiu, Z. et al. The Rett syndrome protein MeCP2 regulates synaptic scaling. J. Neurosci. 32, 989–994 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  246. Bredy, T. W., Lin, Q., Wei, W., Baker-Andresen, D. & Mattick, J. S. MicroRNA regulation of neural plasticity and memory. Neurobiol. Learn. Mem. 96, 89–94 (2011).

    CAS  PubMed  Google Scholar 

  247. Wong, H. H.-W. et al. RNA docking and local translation regulate site-specific axon remodeling in vivo. Neuron 95, 852–868 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  248. Briz, V. et al. The non-coding RNA BC1 regulates experience-dependent structural plasticity and learning. Nat. Commun. 8, 293 (2017).

    PubMed  PubMed Central  Google Scholar 

  249. Walters, B. J. et al. The role of the RNA demethylase FTO (fat mass and obesity-associated) and mRNA methylation in hippocampal memory formation. Neuropsychopharmacology 42, 1502–1510 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  250. Bose, D. A. et al. RNA binding to CBP stimulates histone acetylation and transcription. Cell 168, 135–149 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  251. Shu, G. et al. Deleting HDAC3 rescues long-term memory impairments induced by disruption of the neuron-specific chromatin remodeling subunit BAF53b. Learn. Mem. 25, 109–114 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  252. Tang, F. et al. RNA-Seq analysis to capture the transcriptome landscape of a single cell. Nat. Protoc. 5, 516–535 (2010).

    CAS  PubMed  Google Scholar 

  253. Konermann, S. et al. Genome-scale transcriptional activation by an engineered CRISPR-Cas9 complex. Nature 517, 583–588 (2015).

    CAS  PubMed  Google Scholar 

  254. Heller, E. A. et al. Locus-specific epigenetic remodeling controls addiction- and depression-related behaviors. Nat. Neurosci. 17, 1720–1727 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  255. Zhou, H. et al. In vivo simultaneous transcriptional activation of multiple genes in the brain using CRISPR-dCas9-activator transgenic mice. Nat. Neurosci. 21, 440–446 (2018).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the US National Institutes of Health (National Institute on Aging grants AG051807, AG050787 and AG054349; National Institute of Mental Health grant MH101491; and National Institute on Drug Abuse grant DA025922). Initial illustrations were designed by P. Schiffmacher of Schiffmacher Illustration & Design. The authors thank A. López and T. Hemstedt for their intellectual contributions to this Review.

Reviewer information

Nature Reviews Neuroscience thanks S. Bonn and F. Lubin, and the other anonymous reviewer(s), for their contribution to the peer review of this work.

Author information

Authors and Affiliations

Authors

Contributions

R.R.C. and M.A.W. researched data for the article; contributed substantially to discussion of content; and wrote, reviewed and edited the manuscript before submission.

Corresponding author

Correspondence to Marcelo A. Wood.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Epigenome

The collective combination of chemical modifications and proteins that interact with the human genome. The epigenome is dynamically regulated, serves as a signal-integration platform and is unique to each individual.

Histone modification

A post-translational modification — such as acetylation, methylation or phosphorylation — of a histone, a protein that interacts with nuclear DNA and helps to condense genomic DNA into chromatin.

Histone variant exchange

Exchange of variants of the canonical histone proteins (namely, H2A, H2B, H3 and H4). Histone variants include H2AZ and H3.3 and can generate specialized chromatin domains and alter the DNA accessibility and thus gene expression.

Nucleotide modification

Epigenetic modification (mark) of nucleotide bases. For example, DNA methylation involves the attachment of a methyl group to the C5 position of cytosine (5mC). 5-Hydroxymethylcytosine (5hmC) seems to be more abundant in the brain.

Chromatin remodelling

In general, the rearrangement and regulation of chromatin (DNA and associated proteins) by various mechanisms, including modification (for example, histone modification) and nucleosome remodelling.

Epigenetic priming

Stable epigenetic changes (DNA modifications and exchange of transcriptional cofactors and histone variants) produced by exposure to salient stimuli that induce neuronal stimulation; these changes permit efficient transcription of memory-related genes upon re-exposure and reactivation.

Histone acetyltransferase

(HAT). An enzymes that catalyses the transfer of an acetyl group from acetyl-CoA to the ε-amino group of a histone lysine residue on a histone protein.

Rubinstein–Taybi syndrome

A condition characterized by moderate to severe intellectual disability, short stature, distinctive facial features and broad thumbs and first toes. It is often caused by CREBBP (also known as CBP) mutations.

Histone deacetylases

(HDACs). Enzymes that remove acetyl groups from lysine residues on DNA. Acetyl groups help to neutralize the positive charge of histones and/or serve as binding sites for bromodomain-containing proteins.

Long-term facilitation

(LTF). A form of long-term synaptic plasticity observed in Aplysia californica.

Ten-eleven translocation enzymes

(TETs). Enzymes that convert 5-methylcytosine (5mC) DNA marks to 5-hydroxymethylcytosine (5hmC), which is enriched within gene bodies, promoters and transcription-factor-binding regions and may influence gene expression.

Nucleosome-remodelling complexes

(NRCs). Large protein complexes that, through the activity of ATP-dependent enzymes, alter histone–DNA interactions, disassemble or assemble nucleosomes, exchange histone variants or slide or reposition nucleosomes.

Histone code hypothesis

A hypothesis that posits that specific patterns of epigenetic modifications regulate specific gene expression networks for defined cell functions.

Early-phase LTP

(E-LTP). In this context, a form of potentiation that is dependent on covalent protein modifications, yet independent of gene expression. It is transient and short-lived (generally on the order of tens of minutes in slices).

Late-phase LTP

(L-LTP). In this context, a form of potentiation that is dependent on transcription and translation. It is long-lasting (generally on the order of hours in slices and hours to days in vivo).

Extinction

Weakening of a conditioned response owing to long or repeated trials of memory retrieval in which the conditioned stimulus is removed. Extinction is hypothesized to result from the formation of new memories.

Reconsolidation

The re-encoding and re-stabilization of a memory after reactivation, during which time the memory is hypothesized to be labile and vulnerable to manipulation.

Remote memories

Here, memories that were encoded a long time previously and that have since become independent of the hippocampus and dependent on cortical regions of the brain (through a process sometimes termed systems consolidation).

Epigenetic hypothesis of age-related cognitive impairments

A hypothesis proposing that the repression of chromatin and alterations in the expression of synapse-related genes lead to cognitive impairment in ageing brains.

Extra-coding RNAs

A form of non-coding, sense-strand RNA that is non-polyadenylated, encoded by a portion of DNA that overlaps the boundaries of another gene.

Enhancer RNAs

A form of non-coding RNA transcribed from active enhancers. They can control mRNA transcription, challenging the idea that enhancers are merely sites of transcription factor assembly.

E3 ubiquitin ligase

A protein that facilitates the interaction of a target (or substrate) protein with an ubiquitin-conjugating E2 enzyme to enable the transfer of ubiquitin to the target protein.

Synaptophysin

A synaptic vesicle membrane protein that is ubiquitously expressed throughout the brain and has a role in synapse formation.

INTACT

(Isolation of nuclei tagged in specific cell types). A method to isolate nuclei tagged in specific cell types for further examination for specific proteins or RNAs or high-throughput sequencing.

TRAP

(Translating ribosome affinity purification). A ribosome-tagging method in which a fusion protein binds ribosomal proteins and immunoprecipitation purification processes isolate biologically relevant mRNA transcripts.

Assay for transposase-accessible chromatin using sequencing

(ATAC-seq). A method for mapping genome-wide chromatin accessibility. A transposase inserts sequencing adaptors into accessible regions of chromatin, before adaptor-ligated DNA fragments are sequenced.

Zinc-finger proteins

(ZFPs). A large family of transcription factors with finger-like DNA-sequence-specific domains. Fusion of a DNA-binding domain specific for an 18–20 bp genomic locus to a chromatin-modifying enzyme enables targeted epigenetic regulation.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Campbell, R.R., Wood, M.A. How the epigenome integrates information and reshapes the synapse. Nat Rev Neurosci 20, 133–147 (2019). https://doi.org/10.1038/s41583-019-0121-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41583-019-0121-9

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing