Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Biomarkers in amyotrophic lateral sclerosis: current status and future prospects

Abstract

Disease heterogeneity in amyotrophic lateral sclerosis poses a substantial challenge in drug development. Categorization based on clinical features alone can help us predict the disease course and survival, but quantitative measures are also needed that can enhance the sensitivity of the clinical categorization. In this Review, we describe the emerging landscape of diagnostic, categorical and pharmacodynamic biomarkers in amyotrophic lateral sclerosis and their place in the rapidly evolving landscape of new therapeutics. Fluid-based markers from cerebrospinal fluid, blood and urine are emerging as useful diagnostic, pharmacodynamic and predictive biomarkers. Combinations of imaging measures have the potential to provide important diagnostic and prognostic information, and neurophysiological methods, including various electromyography-based measures and quantitative EEG–magnetoencephalography-evoked responses and corticomuscular coherence, are generating useful diagnostic, categorical and prognostic markers. Although none of these biomarker technologies has been fully incorporated into clinical practice or clinical trials as a primary outcome measure, strong evidence is accumulating to support their clinical utility.

Key points

  • The heterogeneity in both the clinical presentation and underlying pathobiology of amyotrophic lateral sclerosis in humans has limited the translation from preclinical models to successful clinical trials.

  • Disease categorization might be improved using ancillary and companion measures. Such biomarkers can serve diagnostic, categorical and prognostic functions.

  • Biomarkers that are closest to use in the clinical domain include neurofilaments, which can be measured in serum and cerebrospinal fluid.

  • Promising emerging biomarkers include those derived from neurophysiological assessment such as quantitative EEG and transcranial magnetic stimulation.

  • No single biomarker modality will adequately cover all of the diagnostic, categorical prognostic and pharmacodynamic requirements to support the successful development of novel therapeutics.

  • The future landscape is likely to both integrate different biomarker modalities and use deep learning and artificial intelligence to fully address the complexity of amyotrophic lateral sclerosis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Biomarkers for ALS.
Fig. 2: Fluid biomarkers for amyotrophic lateral sclerosis.
Fig. 3: Protein modifications that can inform amyotrophic lateral sclerosis biomarker discovery.
Fig. 4: Neurophysiological biomarkers.
Fig. 5: Multimodal integration of biomarkers for amyotrophic lateral sclerosis.

Similar content being viewed by others

References

  1. Hardiman, O. et al. Amyotrophic lateral sclerosis. Nat. Rev. Dis. Prim. 3, 17071 (2017).

    PubMed  Google Scholar 

  2. Zarei, S. et al. A comprehensive review of amyotrophic lateral sclerosis. Surg. Neurol. Int. 6, 171 (2015).

    PubMed  PubMed Central  Google Scholar 

  3. Elamin, M. et al. Executive dysfunction is a negative prognostic indicator in patients with ALS without dementia. Neurology 76, 1263–1269 (2011).

    CAS  PubMed  Google Scholar 

  4. Rusina, R., Vandenberghe, R. & Bruffaerts, R. Cognitive and behavioral manifestations in ALS: beyond motor system involvement. Diagnostics 11, 624 (2021).

    PubMed  PubMed Central  Google Scholar 

  5. Ling, S.-C., Polymenidou, M. & Cleveland, D. W. Converging mechanisms in ALS and FTD: disrupted RNA and protein homeostasis. Neuron 79, 416–438 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Van Harten, A. C. M., Phatnani, H. & Przedborski, S. Non-cell-autonomous pathogenic mechanisms in amyotrophic lateral sclerosis. Trends Neurosci. 44, 658–668 (2021).

    PubMed  PubMed Central  Google Scholar 

  7. Ghasemi, M. & Brown, R. H. Genetics of amyotrophic lateral sclerosis. Cold Spring Harb. Perspect. Med. 8, a024125 (2018).

    PubMed  PubMed Central  Google Scholar 

  8. Rooney, J., Burke, T., Vajda, A., Heverin, M. & Hardiman, O. What does the ALSFRS-R really measure? A longitudinal and survival analysis of functional dimension subscores in amyotrophic lateral sclerosis. J. Neurol. Neurosurg. Psychiatry 88, 381–385 (2017).

    PubMed  Google Scholar 

  9. Delaby, C. et al. Differential levels of neurofilament light protein in cerebrospinal fluid in patients with a wide range of neurodegenerative disorders. Sci. Rep. 10, 9161 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Heckler, I. & Venkataraman, I. Phosphorylated neurofilament heavy chain: a potential diagnostic biomarker in amyotrophic lateral sclerosis. J. Neurophysiol. 127, 737–745 (2022).

    PubMed  Google Scholar 

  11. Bridel, C. et al. Diagnostic value of cerebrospinal fluid neurofilament light protein in neurology: a systematic review and meta-analysis. JAMA Neurol. 76, 1035–1048 (2019).

    PubMed  PubMed Central  Google Scholar 

  12. Zucchi, E. et al. A motor neuron strategy to save time and energy in neurodegeneration: adaptive protein stoichiometry. J. Neurochem. 146, 631–641 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Manouchehrinia, A. et al. Confounding effect of blood volume and body mass index on blood neurofilament light chain levels. Ann. Clin. Transl. Neurol. 7, 139–143 (2020).

    PubMed  PubMed Central  Google Scholar 

  14. Camu, W. et al. Repeated 5-day cycles of low dose aldesleukin in amyotrophic lateral sclerosis (IMODALS): a phase 2a randomised, double-blind, placebo-controlled trial. EBioMedicine 59, 102844 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Lu, C.-H. et al. Plasma neurofilament heavy chain levels and disease progression in amyotrophic lateral sclerosis: insights from a longitudinal study. J. Neurol. Neurosurg. Psychiatry 86, 565–573 (2015).

    PubMed  Google Scholar 

  16. Mullard, A. NfL makes regulatory debut as neurodegenerative disease biomarker. Nat. Rev. Drug Discov. 22, 431–434 (2023).

    CAS  PubMed  Google Scholar 

  17. Miller, T. M. et al. Trial of antisense oligonucleotide tofersen for SOD1 ALS. N. Engl. J. Med. 387, 1099–1110 (2022).

    CAS  PubMed  Google Scholar 

  18. Verde, F., Otto, M. & Silani, V. Neurofilament light chain as biomarker for amyotrophic lateral sclerosis and frontotemporal dementia. Front. Neurosci. 15, 679199 (2021).

    PubMed  PubMed Central  Google Scholar 

  19. Forgrave, L. M., Ma, M., Best, J. R. & DeMarco, M. L. The diagnostic performance of neurofilament light chain in CSF and blood for Alzheimer’s disease, frontotemporal dementia, and amyotrophic lateral sclerosis: a systematic review and meta-analysis. Alzheimers Dement. 11, 730–743 (2019).

    Google Scholar 

  20. Meyer, T. et al. Neurofilament light-chain response during therapy with antisense oligonucleotide tofersen in SOD1-related ALS: treatment experience in clinical practice. Muscle Nerve 67, 515–521 (2023).

    CAS  PubMed  Google Scholar 

  21. Paganoni, S. et al. Trial of sodium phenylbutyrate–taurursodiol for amyotrophic lateral sclerosis. N. Engl. J. Med. 383, 919–930 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. [No authors listed]. MIROCALS Consortium Announces Top-line Results of European Trial of Low Dose Interleukin 2 in Amyotrophic Lateral Sclerosis at 33rd International Symposium on ALS/MND https://www.mndassociation.org/sites/default/files/2022-12/Final-MIROCALS-press-release-08122022.pdf (2022).

  23. Brown, A.-L. et al. TDP-43 loss and ALS-risk SNPs drive mis-splicing and depletion of UNC13A. Nature 603, 131–137 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Akiyama, T., Koike, Y., Petrucelli, L. & Gitler, A. D. Cracking the cryptic code in amyotrophic lateral sclerosis and frontotemporal dementia: towards therapeutic targets and biomarkers. Clin. Transl. Med. 12, e818 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Mehta, P. R., Brown, A.-L., Ward, M. E. & Fratta, P. The era of cryptic exons: implications for ALS-FTD. Mol. Neurodegener. 18, 16 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Klim, J. R. et al. ALS-implicated protein TDP-43 sustains levels of STMN2, a mediator of motor neuron growth and repair. Nat. Neurosci. 22, 167–179 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Vu, L. et al. Cross-sectional and longitudinal measures of chitinase proteins in amyotrophic lateral sclerosis and expression of CHI3L1 in activated astrocytes. J. Neurol. Neurosurg. Psychiatry 91, 350–358 (2020).

    PubMed  Google Scholar 

  28. Shepheard, S. R. et al. Urinary neopterin: a novel biomarker of disease progression in amyotrophic lateral sclerosis. Eur. J. Neurol. 29, 990–999 (2022).

    PubMed  PubMed Central  Google Scholar 

  29. Yazdani, S. et al. T cell responses at diagnosis of amyotrophic lateral sclerosis predict disease progression. Nat. Commun. 13, 6733 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Liu, H. et al. Systematic review and meta-analysis on microRNAs in amyotrophic lateral sclerosis. Brain Res. Bull. 194, 82–89 (2023).

    CAS  PubMed  Google Scholar 

  31. Magen, I. et al. Circulating miR-181 is a prognostic biomarker for amyotrophic lateral sclerosis. Nat. Neurosci. 24, 1534–1541 (2021).

    CAS  PubMed  Google Scholar 

  32. Lange, D. J. et al. Pyrimethamine significantly lowers cerebrospinal fluid Cu/Zn superoxide dismutase in amyotrophic lateral sclerosis patients with SOD1 mutations. Ann. Neurol. 81, 837–848 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Schmitz, A., Pinheiro Marques, J., Oertig, I., Maharjan, N. & Saxena, S. Emerging perspectives on dipeptide repeat proteins in C9ORF72 ALS/FTD. Front. Cell Neurosci. 15, 637548 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Shi, Y. et al. Haploinsufficiency leads to neurodegeneration in C9ORF72 ALS/FTD human induced motor neurons. Nat. Med. 24, 313–325 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Sellier, C. et al. Loss of C9ORF72 impairs autophagy and synergizes with polyQ Ataxin‐2 to induce motor neuron dysfunction and cell death. EMBO J. 35, 1276–1297 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Fu, R.-H. et al. C9-ALS-associated proline-arginine dipeptide repeat protein induces activation of NLRP3 inflammasome of HMC3 microglia cells by binding of complement component 1 Q subcomponent-binding protein (C1QBP), and syringin prevents this effect. Cells 11, 3128 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Gendron, T. F. et al. Phosphorylated neurofilament heavy chain: a biomarker of survival for C9ORF72-associated amyotrophic lateral sclerosis. Ann. Neurol. 82, 139–146 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Sturmey, E. & Malaspina, A. Blood biomarkers in ALS: challenges, applications and novel frontiers. Acta Neurol. Scand. 146, 375–388 (2022).

    PubMed  PubMed Central  Google Scholar 

  39. Berrone, E. et al. SOMAscan proteomics identifies novel plasma proteins in amyotrophic lateral sclerosis patients. Int. J. Mol. Sci. 24, 1899 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Ta, D. et al. Severity of in vivo corticospinal tract degeneration is associated with survival in amyotrophic lateral sclerosis: a longitudinal, multicohort study. Eur. J. Neurol. 30, 1220–1231 (2023).

    PubMed  Google Scholar 

  41. Bharti, K. et al. Functional alterations in large-scale resting-state networks of amyotrophic lateral sclerosis: a multi-site study across Canada and the United States. PLoS One 17, e0269154 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Müller, H.-P. et al. A large-scale multicentre cerebral diffusion tensor imaging study in amyotrophic lateral sclerosis. J. Neurol. Neurosurg. Psychiatry 87, 570–579 (2016).

    PubMed  Google Scholar 

  43. Westeneng, H.-J. et al. Subcortical structures in amyotrophic lateral sclerosis. Neurobiol. Aging 36, 1075–1082 (2015).

    PubMed  Google Scholar 

  44. Tahedl, M. et al. Cortical progression patterns in individual ALS patients across multiple timepoints: a mosaic-based approach for clinical use. J. Neurol. 268, 1913–1926 (2021).

    PubMed  Google Scholar 

  45. Tahedl, M. et al. Brainstem-cortex disconnection in amyotrophic lateral sclerosis: bulbar impairment, genotype associations, asymptomatic changes and biomarker opportunities. J. Neurol. 270, 3511–3526 (2023).

    PubMed  PubMed Central  Google Scholar 

  46. Querin, G. et al. Multimodal spinal cord MRI offers accurate diagnostic classification in ALS. J. Neurol. Neurosurg. Psychiatry 89, 1220–1221 (2018).

    PubMed  Google Scholar 

  47. Querin, G. et al. Presymptomatic spinal cord pathology in c9orf72 mutation carriers: a longitudinal neuroimaging study. Ann. Neurol. 86, 158–167 (2019).

    CAS  PubMed  Google Scholar 

  48. El Mendili, M. M., Querin, G., Bede, P. & Pradat, P.-F. Spinal cord imaging in amyotrophic lateral sclerosis: historical concepts-novel techniques. Front. Neurol. 10, 350 (2019).

    PubMed  PubMed Central  Google Scholar 

  49. Barry, R. L. et al. Selective atrophy of the cervical enlargement in whole spinal cord MRI of amyotrophic lateral sclerosis. Neuroimage Clin. 36, 103199 (2022).

    PubMed  PubMed Central  Google Scholar 

  50. Rajagopalan, V. & Pioro, E. P. Graph theory network analysis provides brain MRI evidence of a partial continuum of neurodegeneration in patients with UMN-predominant ALS and ALS-FTD. NeuroImage Clin. 35, 103037 (2022).

    PubMed  PubMed Central  Google Scholar 

  51. Fortanier, E. et al. Structural connectivity alterations in amyotrophic lateral sclerosis: a graph theory based imaging study. Front. Neurosci. 13, 1044 (2019).

    PubMed  PubMed Central  Google Scholar 

  52. Smallwood Shoukry, R. F., Clark, M. G. & Floeter, M. K. Resting state functional connectivity is decreased globally across the C9orf72 mutation spectrum. Front. Neurol. 11, 598474 (2020).

    PubMed  PubMed Central  Google Scholar 

  53. Behler, A. et al. Multimodal in vivo staging in amyotrophic lateral sclerosis using artificial intelligence. Ann. Clin. Transl. Neurol. 9, 1069–1079 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Kassubek, J. et al. Diffusion tensor imaging analysis of sequential spreading of disease in amyotrophic lateral sclerosis confirms patterns of TDP-43 pathology. Brain 137, 1733–1740 (2014).

    PubMed  Google Scholar 

  55. Behler, A., Müller, H.-P., Ludolph, A. C., Lulé, D. & Kassubek, J. A multivariate Bayesian classification algorithm for cerebral stage prediction by diffusion tensor imaging in amyotrophic lateral sclerosis. Neuroimage Clin. 35, 103094 (2022).

    PubMed  PubMed Central  Google Scholar 

  56. Bede, P., Iyer, P. M., Finegan, E., Omer, T. & Hardiman, O. Virtual brain biopsies in amyotrophic lateral sclerosis: diagnostic classification based on in vivo pathological patterns. NeuroImage Clin. 15, 653–658 (2017).

    PubMed  PubMed Central  Google Scholar 

  57. Bede, P., Murad, A. & Hardiman, O. Pathological neural networks and artificial neural networks in ALS: diagnostic classification based on pathognomonic neuroimaging features. J. Neurol. 269, 2440–2452 (2022).

    PubMed  Google Scholar 

  58. Schuster, C., Hardiman, O. & Bede, P. Development of an automated MRI-based diagnostic protocol for amyotrophic lateral sclerosis using disease-specific pathognomonic features: a quantitative disease-state classification study. PLoS One 11, e0167331 (2016).

    PubMed  PubMed Central  Google Scholar 

  59. Tan, H. H. G. et al. MRI clustering reveals three ALS subtypes with unique neurodegeneration patterns. Ann. Neurol. 92, 1030–1045 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Bede, P., Murad, A., Lope, J., Hardiman, O. & Chang, K. M. Clusters of anatomical disease-burden patterns in ALS: a data-driven approach confirms radiological subtypes. J. Neurol. 269, 4404–4413 (2022).

    PubMed  PubMed Central  Google Scholar 

  61. De Vocht, J. et al. Use of multimodal imaging and clinical biomarkers in presymptomatic carriers of C9orf72 repeat expansion. JAMA Neurol. 77, 1008–1017 (2020).

    PubMed  Google Scholar 

  62. Chipika, R. H. et al. The presymptomatic phase of amyotrophic lateral sclerosis: are we merely scratching the surface? J. Neurol. 268, 4607–4629 (2021).

    PubMed  Google Scholar 

  63. Lulé, D. E. et al. Deficits in verbal fluency in presymptomatic C9orf72 mutation gene carriers — a developmental disorder. J. Neurol. Neurosurg. Psychiatry 91, 1195–1200 (2020).

    PubMed  Google Scholar 

  64. van Veenhuijzen, K. et al. Longitudinal effects of asymptomatic C9orf72 carriership on brain morphology. Ann. Neurol. 93, 668–680 (2023).

    PubMed  Google Scholar 

  65. Bede, P. et al. Presymptomatic grey matter alterations in ALS kindreds: a computational neuroimaging study of asymptomatic C9orf72 and SOD1 mutation carriers. J. Neurol. 270, 4235–4247 (2023).

    PubMed  PubMed Central  Google Scholar 

  66. Bede, P. et al. Phenotypic categorisation of individual subjects with motor neuron disease based on radiological disease burden patterns: a machine-learning approach. J. Neurol. Sci. 432, 120079 (2022).

    CAS  PubMed  Google Scholar 

  67. Finegan, E. et al. Widespread subcortical grey matter degeneration in primary lateral sclerosis: a multimodal imaging study with genetic profiling. Neuroimage Clin. 24, 102089 (2019).

    PubMed  PubMed Central  Google Scholar 

  68. Tahedl, M. et al. Not a benign motor neuron disease: longitudinal imaging captures relentless motor connectome disintegration in primary lateral sclerosis. Eur. J. Neurol. 30, 1232–1245 (2023).

    PubMed  Google Scholar 

  69. Finegan, E. et al. Extra-motor cerebral changes and manifestations in primary lateral sclerosis. Brain Imaging Behav. 15, 2283–2296 (2021).

    PubMed  Google Scholar 

  70. Pradat, P.-F. et al. The French national protocol for Kennedy’s disease (SBMA): consensus diagnostic and management recommendations. Orphanet J. Rare Dis. 15, 90 (2020).

    PubMed  PubMed Central  Google Scholar 

  71. Schuster, C., Hardiman, O. & Bede, P. Survival prediction in amyotrophic lateral sclerosis based on MRI measures and clinical characteristics. BMC Neurol. 17, 73 (2017).

    PubMed  PubMed Central  Google Scholar 

  72. Dieckmann, N. et al. Cortical and subcortical grey matter atrophy in amyotrophic lateral sclerosis correlates with measures of disease accumulation independent of disease aggressiveness. Neuroimage Clin. 36, 103162 (2022).

    PubMed  PubMed Central  Google Scholar 

  73. Pallebage-Gamarallage, M. et al. Dissecting the pathobiology of altered MRI signal in amyotrophic lateral sclerosis: a post mortem whole brain sampling strategy for the integration of ultra-high-field MRI and quantitative neuropathology. BMC Neurosci. 19, 11 (2018).

    PubMed  PubMed Central  Google Scholar 

  74. Wang, C. et al. Methods for quantitative susceptibility and R2* mapping in whole post-mortem brains at 7T applied to amyotrophic lateral sclerosis. Neuroimage 222, 117216 (2020).

    CAS  PubMed  Google Scholar 

  75. Zejlon, C. et al. Structural magnetic resonance imaging findings and histopathological correlations in motor neuron diseases — a systematic review and meta-analysis. Front. Neurol. 13, 947347 (2022).

    PubMed  PubMed Central  Google Scholar 

  76. Sennfält, S. et al. FDG-PET shows weak correlation between focal motor weakness and brain metabolic alterations in ALS. Amyotroph. Lateral Scler. Frontotemporal Degener. 24, 485–494 (2023).

    PubMed  Google Scholar 

  77. Bede, P. et al. Degenerative and regenerative processes in amyotrophic lateral sclerosis: motor reserve, adaptation and putative compensatory changes. Neural Regen. Res. 16, 1208–1209 (2021).

    PubMed  Google Scholar 

  78. Temp, A. G. M. et al. Cognitive reserve and regional brain volume in amyotrophic lateral sclerosis. Cortex 139, 240–248 (2021).

    PubMed  Google Scholar 

  79. Abidi, M. et al. Adaptive functional reorganization in amyotrophic lateral sclerosis: coexisting degenerative and compensatory changes. Eur. J. Neurol. 27, 121–128 (2020).

    CAS  PubMed  Google Scholar 

  80. Feron, M. et al. Extrapyramidal deficits in ALS: a combined biomechanical and neuroimaging study. J. Neurol. 265, 2125–2136 (2018).

    PubMed  Google Scholar 

  81. Chipika, R. H. et al. “Switchboard” malfunction in motor neuron diseases: selective pathology of thalamic nuclei in amyotrophic lateral sclerosis and primary lateral sclerosis. NeuroImage Clin. 27, 102300 (2020).

    PubMed  PubMed Central  Google Scholar 

  82. Chipika, R. H. et al. Amygdala pathology in amyotrophic lateral sclerosis and primary lateral sclerosis. J. Neurol. Sci. 417, 117039 (2020).

    CAS  PubMed  Google Scholar 

  83. Finegan, E., Chipika, R. H., Li Hi Shing, S., Hardiman, O. & Bede, P. Pathological crying and laughing in motor neuron disease: pathobiology, screening, intervention. Front. Neurol. 10, 260 (2019).

    PubMed  PubMed Central  Google Scholar 

  84. Trojsi, F. et al. Resting state fMRI analysis of pseudobulbar affect in amyotrophic lateral sclerosis (ALS): motor dysfunction of emotional expression. Brain Imaging Behav. 17, 77–89 (2023).

    PubMed  Google Scholar 

  85. Tahedl, M. et al. Radiological correlates of pseudobulbar affect: corticobulbar and cerebellar components in primary lateral sclerosis. J. Neurol. Sci. 451, 120726 (2023).

    PubMed  Google Scholar 

  86. Bede, P. et al. Genotype-associated cerebellar profiles in ALS: focal cerebellar pathology and cerebro-cerebellar connectivity alterations. J. Neurol. Neurosurg. Psychiatry 92, 1197–1205 (2021).

    PubMed  Google Scholar 

  87. Chipika, R. H. et al. Alterations in somatosensory, visual and auditory pathways in amyotrophic lateral sclerosis: an under-recognised facet of ALS. J. Integr. Neurosci. 21, 88 (2022).

    PubMed  Google Scholar 

  88. Christidi, F. et al. Neurometabolic alterations in motor neuron disease: insights from magnetic resonance spectroscopy. J. Integr. Neurosci. 21, 87 (2022).

    PubMed  Google Scholar 

  89. Stagg, C. J. et al. Whole-brain magnetic resonance spectroscopic imaging measures are related to disability in ALS. Neurology 80, 610–615 (2013).

    PubMed  PubMed Central  Google Scholar 

  90. Govind, V. et al. Comprehensive evaluation of corticospinal tract metabolites in amyotrophic lateral sclerosis using whole-brain 1H MR spectroscopy. PLoS One 7, e35607 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Christidi, F. et al. Hippocampal metabolic alterations in amyotrophic lateral sclerosis: a magnetic resonance spectroscopy study. Life 13, 571 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Grapperon, A.-M. et al. Quantitative brain sodium MRI depicts corticospinal impairment in amyotrophic lateral sclerosis. Radiology 292, 422–428 (2019).

    PubMed  Google Scholar 

  93. Mendili, M. M. E. et al. Alterations of microstructure and sodium homeostasis in fast amyotrophic lateral sclerosis progressors: a brain DTI and sodium MRI study. Am. J. Neuroradiol. 43, 984–990 (2022).

    PubMed  PubMed Central  Google Scholar 

  94. Müller, H.-P. et al. Relaxation-weighted 23Na magnetic resonance imaging maps regional patterns of abnormal sodium concentrations in amyotrophic lateral sclerosis. Ther. Adv. Chronic Dis. 13, 20406223221109480 (2022).

    PubMed  PubMed Central  Google Scholar 

  95. Proudfoot, M., Bede, P. & Turner, M. R. Imaging cerebral activity in amyotrophic lateral sclerosis. Front. Neurol. 9, 1148 (2019).

    PubMed  PubMed Central  Google Scholar 

  96. Abidi, M. et al. Motor imagery in amyotrophic lateral sclerosis: an fMRI study of postural control. Neuroimage Clin. 35, 103051 (2022).

    PubMed  PubMed Central  Google Scholar 

  97. Abidi, M. et al. Neural correlates of motor imagery of gait in amyotrophic lateral sclerosis. J. Magn. Reson. Imaging 53, 223–233 (2021).

    PubMed  Google Scholar 

  98. Münch, M., Müller, H.-P., Behler, A., Ludolph, A. C. & Kassubek, J. Segmental alterations of the corpus callosum in motor neuron disease: a DTI and texture analysis in 575 patients. Neuroimage Clin. 35, 103061 (2022).

    PubMed  PubMed Central  Google Scholar 

  99. Broad, R. J. et al. Neurite orientation and dispersion density imaging (NODDI) detects cortical and corticospinal tract degeneration in ALS. J. Neurol. Neurosurg. Psychiatry 90, 404–411 (2019).

    PubMed  Google Scholar 

  100. Wen, J. et al. Neurite density is reduced in the presymptomatic phase of C9orf72 disease. J. Neurol. Neurosurg. Psychiatry 90, 387–394 (2019).

    PubMed  Google Scholar 

  101. Van Weehaeghe, D. et al. Combined brain and spinal FDG PET allows differentiation between ALS and ALS mimics. Eur. J. Nucl. Med. Mol. Imaging 47, 2681–2690 (2020).

    PubMed  Google Scholar 

  102. Harada, R. et al. Imaging of reactive astrogliosis by positron emission tomography. Front. Neurosci. 16, 807435 (2022).

    PubMed  PubMed Central  Google Scholar 

  103. Raval, N. R., Wetherill, R. R., Wiers, C. E., Dubroff, J. G. & Hillmer, A. T. Positron emission tomography of neuroimmune responses in humans: insights and intricacies. Semin. Nucl. Med. 53, 213–229 (2023).

    PubMed  Google Scholar 

  104. Chew, S. & Atassi, N. Positron emission tomography molecular imaging biomarkers for amyotrophic lateral sclerosis. Front. Neurol. 10, 135 (2019).

    PubMed  PubMed Central  Google Scholar 

  105. Canosa, A. et al. Brain metabolic differences between pure bulbar and pure spinal ALS: a 2-[18F]FDG-PET study. J. Neurol. 270, 953–959 (2023).

    CAS  PubMed  Google Scholar 

  106. De Vocht, J. et al. Differences in cerebral glucose metabolism in ALS patients with and without C9orf72 and SOD1 mutations. Cells 12, 933 (2023).

    PubMed  PubMed Central  Google Scholar 

  107. Cistaro, A. et al. The metabolic signature of C9ORF72-related ALS: FDG PET comparison with nonmutated patients. Eur. J. Nucl. Med. Mol. Imaging 41, 844–852 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Marini, C. et al. A PET/CT approach to spinal cord metabolism in amyotrophic lateral sclerosis. Eur. J. Nucl. Med. Mol. Imaging 43, 2061–2071 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Juengling, F. D. et al. Simultaneous PET/MRI: the future gold standard for characterizing motor neuron disease — a clinico-radiological and neuroscientific perspective. Front. Neurol. 13, 890425 (2022).

    PubMed  PubMed Central  Google Scholar 

  110. Zanovello, M. et al. Brain stem glucose hypermetabolism in amyotrophic lateral sclerosis/frontotemporal dementia and shortened survival: an 18F-FDG PET/MRI study. J. Nucl. Med. 63, 777–784 (2022).

    CAS  PubMed  Google Scholar 

  111. Costagli, M. et al. Distribution indices of magnetic susceptibility values in the primary motor cortex enable to classify patients with amyotrophic lateral sclerosis. Brain Sci. 12, 942 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Dean, K. E. et al. A specific biomarker for amyotrophic lateral sclerosis: quantitative susceptibility mapping. Clin. Imaging 75, 125–130 (2021).

    PubMed  Google Scholar 

  113. Toh, C. et al. Analysis of brain and spinal MRI measures in a common domain to investigate directional neurodegeneration in motor neuron disease. J. Neurol. 270, 1682–1690 (2023).

    CAS  PubMed  Google Scholar 

  114. Kriss, A. & Jenkins, T. Muscle MRI in motor neuron diseases: a systematic review. Amyotroph. Lateral Scler. Frontotemporal Degener. 23, 161–175 (2022).

    CAS  PubMed  Google Scholar 

  115. Ma, J. et al. Fasciculation score: a sensitive biomarker in amyotrophic lateral sclerosis. Neurol. Sci. 42, 4657–4666 (2021).

    PubMed  Google Scholar 

  116. Rajula, R. R. et al. Muscle ultrasonography in detecting fasciculations: a noninvasive diagnostic tool for amyotrophic lateral sclerosis. J. Clin. Ultrasound 50, 286–291 (2022).

    PubMed  Google Scholar 

  117. Tahedl, M., Murad, A., Lope, J., Hardiman, O. & Bede, P. Evaluation and categorisation of individual patients based on white matter profiles: single-patient diffusion data interpretation in neurodegeneration. J. Neurol. Sci. 428, 117584 (2021).

    PubMed  Google Scholar 

  118. Dey, A. et al. Motor cortex functional connectivity is associated with underlying neurochemistry in ALS. J. Neurol. Neurosurg. Psychiatry 94, 193–200 (2023).

    PubMed  Google Scholar 

  119. Verstraete, E., Turner, M. R., Grosskreutz, J., Filippi, M. & Benatar, M. Mind the gap: the mismatch between clinical and imaging metrics in ALS. Amyotroph. Lateral Scler. Frontotemporal Degener. 16, 524–529 (2015).

    PubMed  Google Scholar 

  120. Prell, T. & Grosskreutz, J. The involvement of the cerebellum in amyotrophic lateral sclerosis. Amyotroph. Lateral Scler. Frontotemporal Degener. 14, 507–515 (2013).

    CAS  PubMed  Google Scholar 

  121. Segovia, F., Górriz, J. M., Ramírez, J., Martínez-Murcia, F. J. & Salas-Gonzalez, D. Preprocessing of 18F-DMFP-PET data based on hidden Markov random fields and the Gaussian distribution. Front. Aging Neurosci. 9, 326 (2017).

    PubMed  PubMed Central  Google Scholar 

  122. Rajagopalan, V., Chaitanya, K. G. & Pioro, E. P. Quantitative brain MRI metrics distinguish four different ALS phenotypes: a machine learning based study. Diagnostics 13, 1521 (2023).

    PubMed  PubMed Central  Google Scholar 

  123. Mazón, M., Vázquez Costa, J. F., Ten-Esteve, A. & Martí-Bonmatí, L. Imaging biomarkers for the diagnosis and prognosis of neurodegenerative diseases. the example of amyotrophic lateral sclerosis. Front. Neurosci. 12, 784 (2018).

    PubMed  PubMed Central  Google Scholar 

  124. Rizzo, G. et al. Diagnostic and prognostic value of conventional brain MRI in the clinical work-up of patients with amyotrophic lateral sclerosis. J. Clin. Med. 9, 2538 (2020).

    PubMed  PubMed Central  Google Scholar 

  125. Grollemund, V. et al. Machine learning in amyotrophic lateral sclerosis: achievements, pitfalls, and future directions. Front. Neurosci. 13, 135 (2019).

    PubMed  PubMed Central  Google Scholar 

  126. McMackin, R., Bede, P., Pender, N., Hardiman, O. & Nasseroleslami, B. Neurophysiological markers of network dysfunction in neurodegenerative diseases. NeuroImage Clin. 22, 101706 (2019).

    PubMed  PubMed Central  Google Scholar 

  127. McMackin, R. et al. Measuring network disruption in neurodegenerative diseases: new approaches using signal analysis. J. Neurol. Neurosurg. Psychiatry 90, 1011–1020 (2019).

    PubMed  Google Scholar 

  128. Wang, F.-C. & Delwaide, P. J. Number and relative size of thenar motor units estimated by an adapted multiple point stimulation method. Muscle Nerve 18, 969–979 (1995).

    CAS  PubMed  Google Scholar 

  129. McComas, A. J., Fawcett, P. R., Campbell, M. J. & Sica, R. E. Electrophysiological estimation of the number of motor units within a human muscle. J. Neurol. Neurosurg. Psychiatry 34, 121–131 (1971).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Kadrie, H. A., Yates, S. K., Milner-Brown, H. S. & Brown, W. F. Multiple point electrical stimulation of ulnar and median nerves. J. Neurol. Neurosurg. Psychiatry 39, 973–985 (1976).

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Jagtap, S. A. et al. Multipoint incremental motor unit number estimation versus amyotrophic lateral sclerosis functional rating scale and the medical research council sum score as an outcome measure in amyotrophic lateral sclerosis. Ann. Indian Acad. Neurol. 17, 336–339 (2014).

    PubMed  PubMed Central  Google Scholar 

  132. Shefner, J. M. Motor unit number estimation in human neurological diseases and animal models. Clin. Neurophysiol. 112, 955–964 (2001).

    CAS  PubMed  Google Scholar 

  133. de Carvalho, M., Barkhaus, P. E., Nandedkar, S. D. & Swash, M. Motor unit number estimation (MUNE): where are we now? Clin. Neurophysiol. 129, 1507–1516 (2018).

    PubMed  Google Scholar 

  134. Nandedkar, S. D., Nandedkar, D. S., Barkhaus, P. E. & Stalberg, E. V. Motor unit number index (MUNIX). IEEE Trans. Biomed. Eng. 51, 2209–2211 (2004).

    PubMed  Google Scholar 

  135. Fathi, D., Nafissi, S., Attarian, S., Neuwirth, C. & Fatehi, F. An overview of motor unit number index reproducibility in amyotrophic lateral sclerosis. Iran. J. Neurol. 18, 119–126 (2019).

    PubMed  PubMed Central  Google Scholar 

  136. Wirth, A. M. et al. Combinatory biomarker use of cortical thickness, MUNIX, and ALSFRS-R at baseline and in longitudinal courses of individual patients with amyotrophic lateral sclerosis. Front. Neurol. 9, 614 (2018).

    PubMed  PubMed Central  Google Scholar 

  137. Grimaldi, S. et al. Global motor unit number index sum score for assessing the loss of lower motor neurons in amyotrophic lateral sclerosis. Muscle Nerve 56, 202–206 (2017).

    PubMed  Google Scholar 

  138. Kaya, R. D., Hoffman, R. L. & Clark, B. C. Reliability of a modified motor unit number index (MUNIX) technique. J. Electromyogr. Kinesiol. 24, 18–24 (2014).

    PubMed  Google Scholar 

  139. Ebersbach, T. et al. Motor unit number index (MUNIX) in the D50 disease progression model reflects disease accumulation independently of disease aggressiveness in ALS. Sci. Rep. 12, 15997 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Neuwirth, C. & Weber, M. Motor Unit Number Index (MUNIX) Instructions & Qualification Process ENCALS https://www.encals.eu/wp-content/uploads/2017/12/MUNIX-Protocol_v1.0_Dec2017.pdf (2017).

  141. Bostock, H., Jacobsen, A. B. & Tankisi, H. Motor unit number index and compound muscle action potential amplitude. Clin. Neurophysiol. 130, 1734–1740 (2019).

    CAS  PubMed  Google Scholar 

  142. Zhang, S. et al. Application value of the motor unit number index in patients with Kennedy disease. Front. Neurol. 12, 705816 (2021).

    PubMed  PubMed Central  Google Scholar 

  143. Jacobsen, A. B. et al. Reproducibility, and sensitivity to motor unit loss in amyotrophic lateral sclerosis, of a novel MUNE method: MScanFit MUNE. Clin. Neurophysiol. 128, 1380–1388 (2017).

    CAS  PubMed  Google Scholar 

  144. Jacobsen, A. B., Bostock, H. & Tankisi, H. Following disease progression in motor neuron disorders with 3 motor unit number estimation methods. Muscle Nerve 59, 82–87 (2019).

    PubMed  Google Scholar 

  145. Kanai, K. et al. Altered axonal excitability properties in amyotrophic lateral sclerosis: impaired potassium channel function related to disease stage. Brain 129, 953–962 (2006).

    PubMed  Google Scholar 

  146. Iwai, Y. et al. Axonal dysfunction precedes motor neuronal death in amyotrophic lateral sclerosis. PLoS One 11, e0158596 (2016).

    PubMed  PubMed Central  Google Scholar 

  147. Lugg, A., Schindle, M., Sivak, A., Tankisi, H. & Jones, K. E. Nerve excitability as a biomarker for amyotrophic lateral sclerosis: a systematic review and meta-analysis. Preprint at medRxiv https://doi.org/10.1101/2022.02.11.22270866 (2022).

    Article  Google Scholar 

  148. Stikvoort García, D. J. L., Sleutjes, B. T. H. M., van Schelven, L. J., Goedee, H. S. & van den Berg, L. H. Diagnostic accuracy of nerve excitability and compound muscle action potential scan derived biomarkers in amyotrophic lateral sclerosis. Eur. J. Neurol. 30, 3068–3078 (2023).

    PubMed  Google Scholar 

  149. Kanai, K. et al. Motor axonal excitability properties are strong predictors for survival in amyotrophic lateral sclerosis. J. Neurol. Neurosurg. Psychiatry 83, 734–738 (2012).

    PubMed  Google Scholar 

  150. Wainger, B. J. et al. Effect of ezogabine on cortical and spinal motor neuron excitability in amyotrophic lateral sclerosis. JAMA Neurol. 78, 186–196 (2021).

    PubMed  Google Scholar 

  151. Cao, B. et al. Neurophysiological index is associated with the survival of patients with amyotrophic lateral sclerosis. Clin. Neurophysiol. 130, 1730–1733 (2019).

    PubMed  Google Scholar 

  152. Swash, M. & de Carvalho, M. The neurophysiological index in ALS. Amyotroph. Lateral Scler. Other Mot. Neuron Disord. 5, 108–110 (2004).

    Google Scholar 

  153. Alix, J. J. P. et al. Multi-dimensional electrical impedance myography of the tongue as a potential biomarker for amyotrophic lateral sclerosis. Clin. Neurophysiol. 131, 799–808 (2020).

    PubMed  Google Scholar 

  154. Schooling, C. N. et al. Tensor electrical impedance myography identifies bulbar disease progression in amyotrophic lateral sclerosis. Clin. Neurophysiol. 139, 69–75 (2022).

    PubMed  Google Scholar 

  155. Dukic, S. et al. Patterned functional network disruption in amyotrophic lateral sclerosis. Hum. Brain Mapp. 40, 4827–4842 (2019).

    PubMed  PubMed Central  Google Scholar 

  156. Fraschini, M. et al. Functional brain connectivity analysis in amyotrophic lateral sclerosis: an EEG source-space study. Biomed. Phys. Eng. Express 4, 037004 (2017).

    Google Scholar 

  157. Nasseroleslami, B. et al. Characteristic increases in EEG connectivity correlate with changes of structural MRI in amyotrophic lateral sclerosis. Cereb. Cortex 29, 27–41 (2019).

    PubMed  Google Scholar 

  158. Vinding, M. C. et al. Attenuated beta rebound to proprioceptive afferent feedback in Parkinson’s disease. Sci. Rep. 9, 2604 (2019).

    PubMed  PubMed Central  Google Scholar 

  159. Peter, J. et al. Movement-related beta ERD and ERS abnormalities in neuropsychiatric disorders. Front. Neurosci. 16, 1045715 (2022).

    PubMed  PubMed Central  Google Scholar 

  160. McMackin, R. et al. Sustained attention to response task-related beta oscillations relate to performance and provide a functional biomarker in ALS. J. Neural Eng. 18, 026006 (2021).

    Google Scholar 

  161. Proudfoot, M. et al. Altered cortical beta‐band oscillations reflect motor system degeneration in amyotrophic lateral sclerosis. Hum. Brain Mapp. 38, 237–254 (2017).

    PubMed  Google Scholar 

  162. Corp, D. T. et al. Large-scale analysis of interindividual variability in single and paired-pulse TMS data. Clin. Neurophysiol. 132, 2639–2653 (2021).

    PubMed  Google Scholar 

  163. Tankisi, H. et al. Early diagnosis of amyotrophic lateral sclerosis by threshold tracking and conventional transcranial magnetic stimulation. Eur. J. Neurol. 28, 3030–3039 (2021).

    PubMed  PubMed Central  Google Scholar 

  164. Tankisi, H. et al. Three different short-interval intracortical inhibition methods in early diagnosis of amyotrophic lateral sclerosis. Amyotroph. Lateral Scler. Frontotemporal Degener. 24, 139–147 (2023).

    CAS  PubMed  Google Scholar 

  165. Menon, P. et al. Sensitivity and specificity of threshold tracking transcranial magnetic stimulation for diagnosis of amyotrophic lateral sclerosis: a prospective study. Lancet Neurol. 14, 478–484 (2015).

    PubMed  Google Scholar 

  166. Proudfoot, M. et al. Increased cerebral functional connectivity in ALS: a resting-state magnetoencephalography study. Neurology 90, e1418–e1424 (2018).

    PubMed  PubMed Central  Google Scholar 

  167. McMackin, R. et al. Cognitive network hyperactivation and motor cortex decline correlate with ALS prognosis. Neurobiol. Aging 104, 57–70 (2021).

    PubMed  Google Scholar 

  168. Nguyen, C., Caga, J., Mahoney, C. J., Kiernan, M. C. & Huynh, W. Behavioural changes predict poorer survival in amyotrophic lateral sclerosis. Brain Cognition 150, 105710 (2021).

    PubMed  Google Scholar 

  169. Dang, J. S., Figueroa, I. J. & Helton, W. S. You are measuring the decision to be fast, not inattention: the sustained attention to response task does not measure sustained attention. Exp. Brain Res. 236, 2255–2262 (2018).

    PubMed  Google Scholar 

  170. Koenig, T., Smailovic, U. & Jelic, V. Past, present and future EEG in the clinical workup of dementias. Psychiatry Res. Neuroimaging 306, 111182 (2020).

    PubMed  Google Scholar 

  171. McMackin, R. et al. Localization of brain networks engaged by the sustained attention to response task provides quantitative markers of executive impairment in amyotrophic lateral sclerosis. Cereb. Cortex 30, 4834–4846 (2020).

    PubMed  PubMed Central  Google Scholar 

  172. Seer, C. et al. Executive dysfunctions and event-related brain potentials in patients with amyotrophic lateral sclerosis. Front. Aging Neurosci. 7, 225 (2015).

    PubMed  PubMed Central  Google Scholar 

  173. Lange, F. et al. Neural correlates of cognitive set shifting in amyotrophic lateral sclerosis. Clin. Neurophysiol. 127, 3537–3545 (2016).

    PubMed  Google Scholar 

  174. Iyer, P. M. et al. Mismatch negativity as an indicator of cognitive sub-domain dysfunction in amyotrophic lateral sclerosis. Front. Neurol. 8, 395 (2017).

    PubMed  PubMed Central  Google Scholar 

  175. Tao, L. et al. Eye tracking metrics to screen and assess cognitive impairment in patients with neurological disorders. Neurol. Sci. 41, 1697–1704 (2020).

    PubMed  Google Scholar 

  176. Girardi, A., MacPherson, S. E. & Abrahams, S. Deficits in emotional and social cognition in amyotrophic lateral sclerosis. Neuropsychology 25, 53–65 (2011).

    PubMed  Google Scholar 

  177. Proudfoot, M. et al. Eye-tracking in amyotrophic lateral sclerosis: a longitudinal study of saccadic and cognitive tasks. Amyotroph. Lateral Scler. Frontotemporal Degener. 17, 101–111 (2016).

    Google Scholar 

  178. Poletti, B. et al. An eye-tracker controlled cognitive battery: overcoming verbal-motor limitations in ALS. J. Neurol. 264, 1136–1145 (2017).

    PubMed  Google Scholar 

  179. Gorges, M. et al. Eye movement deficits are consistent with a staging model of pTDP-43 pathology in amyotrophic lateral sclerosis. PLoS One 10, e0142546 (2015).

    PubMed  PubMed Central  Google Scholar 

  180. Dukic, S. et al. Resting-state EEG reveals four subphenotypes of amyotrophic lateral sclerosis. Brain 145, 621–631 (2022).

    PubMed  Google Scholar 

  181. Vucic, S. et al. Study protocol of RESCUE-ALS: a phase 2, randomised, double-blind, placebo-controlled study in early symptomatic amyotrophic lateral sclerosis patients to assess bioenergetic catalysis with CNM-Au8 as a mechanism to slow disease progression. BMJ Open 11, e041479 (2021).

    PubMed  PubMed Central  Google Scholar 

  182. Meininger, V. et al. Safety, pharmacokinetic, and functional effects of the Nogo-A monoclonal antibody in amyotrophic lateral sclerosis: a randomized, first-in-human clinical trial. PLoS One 9, e97803 (2014).

    PubMed  PubMed Central  Google Scholar 

  183. Abramova, A. A., Broutian, A. G. & Zakharova, M. N. Motor unit number index (MUNIX): a biomarker for evaluation of lower motor neuron involvement in amyotrophic lateral sclerosis. Hum. Physiol. 46, 900–911 (2020).

    Google Scholar 

  184. Neuwirth, C. et al. Motor Unit Number Index (MUNIX): a novel neurophysiological marker for neuromuscular disorders; test-retest reliability in healthy volunteers. Clin. Neurophysiol. 122, 1867–1872 (2011).

    PubMed  Google Scholar 

  185. Vucic, S. RESCUE-ALS: a phase 2, randomized, double-blind, placebo-controlled study of CNM-Au8 to slow disease progression in ALS. MNDA Virtual Symposium, https://www.mdaconference.org/abstract-library/rescue-als-trial-results-a-phase-2-randomized-double-blind-placebo-controlled-study-of-cnm-au8-to-slow-disease-progression-in-als/ (2021).

  186. Scheltens, P. et al. Efficacy of Souvenaid in mild Alzheimer’s disease: results from a randomized, controlled trial. J. Alzheimers Dis. 31, 225–236 (2012).

    CAS  PubMed  Google Scholar 

  187. Scheltens, P. et al. Safety, tolerability and efficacy of the glutaminyl cyclase inhibitor PQ912 in Alzheimer’s disease: results of a randomized, double-blind, placebo-controlled phase 2a study. Alzheimers Res. Ther. 10, 107 (2018).

    PubMed  PubMed Central  Google Scholar 

  188. Yin, W. et al. Safety, pharmacokinetics and quantitative EEG modulation of TAK-071, a novel muscarinic M1 receptor positive allosteric modulator, in healthy subjects. Br. J. Clin. Pharmacol. 88, 600–612 (2022).

    CAS  PubMed  Google Scholar 

  189. Benatar, M. et al. Design of a randomized, placebo-controlled, phase 3 trial of tofersen initiated in clinically presymptomatic SOD1 variant carriers: the ATLAS study. Neurotherapeutics 19, 1248–1258 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  190. Bertrand, A. et al. Early cognitive, structural, and microstructural changes in presymptomatic C9orf72 carriers younger than 40 years. JAMA Neurol. 75, 236–245 (2018).

    PubMed  Google Scholar 

  191. Galvin, M. et al. The path to specialist multidisciplinary care in amyotrophic lateral sclerosis: a population-based study of consultations, interventions and costs. PLoS One 12, e0179796 (2017).

    PubMed  PubMed Central  Google Scholar 

  192. Vucic, S., Nicholson, G. A. & Kiernan, M. C. Cortical hyperexcitability may precede the onset of familial amyotrophic lateral sclerosis. Brain 131, 1540–1550 (2008).

    PubMed  Google Scholar 

  193. Bensimon, G. & Leigh, P. N. Modifying immune response and outcomes in ALS (MIROCALS): design and results of a phase 2b, double-blind randomized placebo-controlled trial of low dose interleukin-2 (ld IL2) in ALS. 33rd International Symposium on ALS/MND Abstract C03, https://doi.org/10.1080/21678421.2022.2082738 (2022).

  194. Giovannelli, I. et al. Amyotrophic lateral sclerosis transcriptomics reveals immunological effects of low-dose interleukin-2. Brain Commun. 3, fcab141 (2021).

    PubMed  PubMed Central  Google Scholar 

  195. Cudkowicz, M. E. et al. A randomized placebo‐controlled phase 3 study of mesenchymal stem cells induced to secrete high levels of neurotrophic factors in amyotrophic lateral sclerosis. Muscle Nerve 65, 291–302 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  196. Miller, R. G. et al. Phase 2B randomized controlled trial of NP001 in amyotrophic lateral sclerosis: pre‐specified and post hoc analyses. Muscle Nerve 66, 39–49 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Juliette Foucher, PhD student in the Department of Clinical Neuroscience, Karolinska Institute, for her contribution to the figures in this Review. This work was funded in part by Science Foundation Ireland grants SP20/SP/8953, 16/RC/3948 and 13/RC/2106_P2. R. McMackin is supported by the Motor Neurone Disease Association UK (McMackin/Oct20/972–799). P.B. is supported by the Health Research Board (HRB EIA-2017–019 & JPND-Cofund-2–2019–1), the Irish Institute of Clinical Neuroscience (IICN) and the EU Joint Programme – Neurodegenerative Disease Research (JPND).

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Orla Hardiman.

Ethics declarations

Competing interests

C.I. has consulted for Cytokinetics and Pfizer and is a data monitoring committee member for Appelis Pharmaceutical. A.M. has acted as an adviser for Roche and Accure Therapeutics and has given a Lecture to Pfizer. He has been part of biomarker data licencing to Biogen. R.M. has provided consultancy to The Science Behind. O.H. has consulted for the following companies: Biogen, Novartis, Denali and Cytokinetics. She is Chair of a Data Safety Monitoring Board for Accelsiors. She is Lead PrincipaI Investigator on an academic–industry collaboration funded by Science Foundation Ireland, in partnership with Biogen, Takeda, Novartis, IQVIA and Accenture. She is Editor-in-Chief of the journal Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration. P.B. declares no competing interests.

Peer review

Peer review information

Nature Reviews Neurology thanks H. Tankisi and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Accelerating Medicines Partnership: https://www.nih.gov/research-training/accelerating-medicines-partnership-amp

Precision ALS: https://www.precisionals.ie/

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

McMackin, R., Bede, P., Ingre, C. et al. Biomarkers in amyotrophic lateral sclerosis: current status and future prospects. Nat Rev Neurol 19, 754–768 (2023). https://doi.org/10.1038/s41582-023-00891-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41582-023-00891-2

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research