Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Linking the cerebellum to Parkinson disease: an update

Abstract

Parkinson disease (PD) is characterized by heterogeneous motor and non-motor symptoms, resulting from neurodegeneration involving various parts of the central nervous system. Although PD pathology predominantly involves the nigral–striatal system, growing evidence suggests that pathological changes extend beyond the basal ganglia into other parts of the brain, including the cerebellum. In addition to a primary involvement in motor control, the cerebellum is now known to also have an important role in cognitive, sleep and affective processes. Over the past decade, an accumulating body of research has provided clinical, pathological, neurophysiological, structural and functional neuroimaging findings that clearly establish a link between the cerebellum and PD. This Review presents an overview and update on the involvement of the cerebellum in the clinical features and pathogenesis of PD, which could provide a novel framework for a better understanding the heterogeneity of the disease.

Key points

  • Emerging evidence underscores the involvement of the cerebellum in the pathophysiology and pathogenesis of Parkinson disease (PD).

  • Anatomical investigations have revealed robust connectivity between the cerebellum and basal ganglia, encompassing dopaminergic projections that link the two regions.

  • Research spanning the past two decades has elucidated the presence of neurodegeneration and α-synuclein pathology in the cerebellum of people with PD.

  • Functional and connectivity analyses have highlighted distinct alterations in specific cerebellar areas that correlate with different clinical symptoms of PD.

  • Advances in physiological studies of the cerebellar circuitry in PD promise novel insights and provide a comprehensive framework for comprehending the heterogeneity of the disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Parkinson disease-related cerebellar circuitry.
Fig. 2: Distribution of cerebellar pathology in Parkinson disease.

Similar content being viewed by others

References

  1. Jankovic, J. & Tan, E. K. Parkinson’s disease: etiopathogenesis and treatment. J. Neurol. Neurosurg. Psychiatry 91, 795–808 (2020).

    Article  PubMed  Google Scholar 

  2. Schapira, A. H. V., Chaudhuri, K. R. & Jenner, P. Non-motor features of Parkinson disease. Nat. Rev. Neurosci. 18, 509 (2017).

    Article  CAS  PubMed  Google Scholar 

  3. Li, T. & Le, W. Biomarkers for Parkinson’s disease: how good are they? Neurosci. Bull. 36, 183–194 (2020).

    Article  CAS  PubMed  Google Scholar 

  4. Chen, T. X. et al. Impulsivity trait profiles in patients with cerebellar ataxia and Parkinson disease. Neurology 99, e176–e186 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Riou, A. et al. Functional role of the cerebellum in Parkinson disease: a PET study. Neurology 96, e2874–e2884 (2021).

    Article  PubMed  Google Scholar 

  6. Kawabata, K. et al. Cerebello-basal ganglia connectivity fingerprints related to motor/cognitive performance in Parkinson’s disease. Parkinsonism Relat. Disord. 80, 21–27 (2020).

    Article  PubMed  Google Scholar 

  7. Shen, B. et al. Altered putamen and cerebellum connectivity among different subtypes of Parkinson’s disease. CNS Neurosci. Ther. 26, 207–214 (2020).

    Article  PubMed  Google Scholar 

  8. Maiti, B. et al. Cognitive correlates of cerebellar resting-state functional connectivity in Parkinson disease. Neurology 94, e384–e396 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Braak, H. et al. Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol. Aging 24, 197–211 (2003).

    Article  PubMed  Google Scholar 

  10. Flace, P. et al. The cerebellar dopaminergic system. Front. Syst. Neurosci. 15, 650614 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Seidel, K. et al. Involvement of the cerebellum in Parkinson disease and dementia with Lewy bodies. Ann. Neurol. 81, 898–903 (2017).

    Article  CAS  PubMed  Google Scholar 

  12. Piao, Y. S. et al. α-Synuclein pathology affecting Bergmann glia of the cerebellum in patients with α-synucleinopathies. Acta Neuropathol. 105, 403–409 (2003).

    Article  PubMed  Google Scholar 

  13. Borghammer, P. et al. A deformation-based morphometry study of patients with early-stage Parkinson’s disease. Eur. J. Neurol. 17, 314–320 (2010).

    Article  CAS  PubMed  Google Scholar 

  14. Suo, X. et al. Topologically convergent and divergent morphological gray matter networks in early-stage Parkinson’s disease with and without mild cognitive impairment. Hum. Brain Mapp. 42, 5101–5112 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Khadrawy, Y. A., Mourad, I. M., Mohammed, H. S., Noor, N. A. & Aboul Ezz, H. S. Cerebellar neurochemical and histopathological changes in rat model of Parkinson’s disease induced by intrastriatal injection of rotenone. Gen. Physiol. Biophys. 36, 99–108 (2017).

    Article  CAS  PubMed  Google Scholar 

  16. Louis, E. D. et al. Torpedoes in Parkinson’s disease, Alzheimer’s disease, essential tremor, and control brains. Mov. Disord. 24, 1600–1605 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Tang, S. et al. Large-scale network dysfunction in α-synucleinopathy: a meta-analysis of resting-state functional connectivity. EBioMedicine 77, 103915 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. De Benedictis, A., Rossi-Espagnet, M. C., de Palma, L., Carai, A. & Marras, C. E. Networking of the human cerebellum: from anatomo-functional development to neurosurgical implications. Front. Neurol. 13, 806298 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Xue, A. et al. The detailed organization of the human cerebellum estimated by intrinsic functional connectivity within the individual. J. Neurophysiol. 125, 358–384 (2021).

    Article  PubMed  Google Scholar 

  20. Quartarone, A. et al. New insights into cortico-basal-cerebellar connectome: clinical and physiological considerations. Brain 143, 396–406 (2020).

    PubMed  Google Scholar 

  21. O’Callaghan, C. et al. Cerebellar atrophy in Parkinson’s disease and its implication for network connectivity. Brain 139, 845–855 (2016).

    Article  PubMed  Google Scholar 

  22. Metoki, A., Wang, Y. & Olson, I. R. The social cerebellum: a large-scale investigation of functional and structural specificity and connectivity. Cereb. Cortex 32, 987–1003 (2022).

    Article  PubMed  Google Scholar 

  23. Brissenden, J. A. & Somers, D. C. Cortico-cerebellar networks for visual attention and working memory. Curr. Opin. Psychol. 29, 239–247 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Bostan, A. C. & Strick, P. L. The basal ganglia and the cerebellum: nodes in an integrated network. Nat. Rev. Neurosci. 19, 338–350 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Milardi, D. et al. Extensive direct subcortical cerebellum-basal ganglia connections in human brain as revealed by constrained spherical deconvolution tractography. Front. Neuroanat. 10, 29 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Pan, P. et al. Aberrant regional homogeneity in Parkinson’s disease: a voxel-wise meta-analysis of resting-state functional magnetic resonance imaging studies. Neurosci. Biobehav. Rev. 72, 223–231 (2017).

    Article  PubMed  Google Scholar 

  27. Xu, S. et al. Cerebellar functional abnormalities in early stage drug-naive and medicated Parkinson’s disease. J. Neurol. 266, 1578–1587 (2019).

    Article  PubMed  Google Scholar 

  28. Simioni, A. C., Dagher, A. & Fellows, L. K. Compensatory striatal-cerebellar connectivity in mild-moderate Parkinson’s disease. Neuroimage Clin. 10, 54–62 (2016).

    Article  PubMed  Google Scholar 

  29. Sako, W. et al. Differences in the intra-cerebellar connections and graph theoretical measures between Parkinson’s disease and multiple system atrophy. J. Neurol. Sci. 400, 129–134 (2019).

    Article  PubMed  Google Scholar 

  30. Hacker, C. D., Perlmutter, J. S., Criswell, S. R., Ances, B. M. & Snyder, A. Z. Resting state functional connectivity of the striatum in Parkinson’s disease. Brain 135, 3699–3711 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Pelzer, E. A. et al. Axonal degeneration in Parkinson’s disease–basal ganglia circuitry and D2 receptor availability. Neuroimage Clin. 23, 101906 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Husarova, I. et al. Similar circuits but different connectivity patterns between the cerebellum, basal ganglia, and supplementary motor area in early Parkinson’s disease patients and controls during predictive motor timing. J. Neuroimaging 23, 452–462 (2013).

    Article  PubMed  Google Scholar 

  33. Burciu, R. G. et al. Distinct patterns of brain activity in progressive supranuclear palsy and Parkinson’s disease. Mov. Disord. 30, 1248–1258 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Bosch, T. J. et al. Altered cerebellar oscillations in Parkinson’s disease patients during cognitive and motor tasks. Neuroscience 475, 185–196 (2021).

    Article  CAS  PubMed  Google Scholar 

  35. Spokes, E. G. An analysis of factors influencing measurements of dopamine, noradrenaline, glutamate decarboxylase and choline acetylase in human post-mortem brain tissue. Brain 102, 333–346 (1979).

    Article  CAS  PubMed  Google Scholar 

  36. Locke, T. M. et al. Dopamine D1 receptor-positive neurons in the lateral nucleus of the cerebellum contribute to cognitive behavior. Biol. Psychiatry 84, 401–412 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Canton-Josh, J. E., Qin, J., Salvo, J. & Kozorovitskiy, Y. Dopaminergic regulation of vestibulo-cerebellar circuits through unipolar brush cells. Elife 11, e76921 (2022).

    Article  Google Scholar 

  38. Carta, I., Chen, C. H., Schott, A. L., Dorizan, S. & Khodakhah, K. Cerebellar modulation of the reward circuitry and social behavior. Science 363, eaav0581 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Low, A. Y. T. et al. Reverse-translational identification of a cerebellar satiation network. Nature 600, 269–273 (2021).

    Article  CAS  PubMed  Google Scholar 

  40. Holloway, Z. R. et al. Cerebellar modulation of mesolimbic dopamine transmission is functionally asymmetrical. Cerebellum 18, 922–931 (2019).

    Article  CAS  PubMed  Google Scholar 

  41. Caligiore, D., Arbib, M. A., Miall, R. C. & Baldassarre, G. The super-learning hypothesis: integrating learning processes across cortex, cerebellum and basal ganglia. Neurosci. Biobehav. Rev. 100, 19–34 (2019).

    Article  PubMed  Google Scholar 

  42. Hurley, M. J., Mash, D. C. & Jenner, P. Markers for dopaminergic neurotransmission in the cerebellum in normal individuals and patients with Parkinson’s disease examined by RT-PCR. Eur. J. Neurosci. 18, 2668–2672 (2003).

    Article  PubMed  Google Scholar 

  43. Oh, S. W., Shin, N. Y., Yoon, U., Sin, I. & Lee, S. K. Shared functional neural substrates in Parkinson’s disease and drug-induced parkinsonism: association with dopaminergic depletion. Sci. Rep. 10, 11617 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Kolasiewicz, W. et al. 6-OHDA injections into A8-A9 dopaminergic neurons modelling early stages of Parkinson’s disease increase the harmaline-induced tremor in rats. Brain Res. 1477, 59–73 (2012).

    Article  CAS  PubMed  Google Scholar 

  45. Heman, P. et al. Nigral degeneration correlates with persistent activation of cerebellar Purkinje cells in MPTP-treated monkeys. Histol. Histopathol. 27, 89–94 (2012).

    CAS  PubMed  Google Scholar 

  46. Rolland, A. S. et al. Metabolic activity of cerebellar and basal ganglia-thalamic neurons is reduced in parkinsonism. Brain 130, 265–275 (2007).

    Article  PubMed  Google Scholar 

  47. Herrera-Meza, G. et al. Beyond the basal ganglia: cFOS expression in the cerebellum in response to acute and chronic dopaminergic alterations. Neuroscience 267, 219–231 (2014).

    Article  CAS  PubMed  Google Scholar 

  48. Menardy, F., Varani, A. P., Combes, A., Lena, C. & Popa, D. Functional alteration of cerebello-cerebral coupling in an experimental mouse model of Parkinson’s disease. Cereb. Cortex 29, 1752–1766 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Kish, S. J., Shannak, K. S., Rajput, A. H., Gilbert, J. J. & Hornykiewicz, O. Cerebellar norepinephrine in patients with Parkinson’s disease and control subjects. Arch. Neurol. 41, 612–614 (1984).

    Article  CAS  PubMed  Google Scholar 

  50. Hirano, S., Sugiyama, A. & Arai, K. Noradrenergic pathway to the cerebellum: the study must go on. Cerebellum, https://doi.org/10.1007/s12311-022-01479-0 (2022).

    Article  PubMed  Google Scholar 

  51. Gellersen, H. M. et al. Cerebellar atrophy in neurodegeneration – a meta-analysis. J. Neurol. Neurosurg. Psychiatry 88, 780–788 (2017).

    Article  PubMed  Google Scholar 

  52. Erro, R. et al. Subcortical atrophy and perfusion patterns in Parkinson disease and multiple system atrophy. Parkinsonism Relat. Disord. 72, 49–55 (2020).

    Article  PubMed  Google Scholar 

  53. Piccinin, C. C. et al. Differential pattern of cerebellar atrophy in tremor-predominant and akinetic/rigidity-predominant Parkinson’s disease. Cerebellum 16, 623–628 (2017).

    Article  PubMed  Google Scholar 

  54. Zeng, L. L. et al. Differentiating patients with Parkinson’s disease from normal controls using gray matter in the cerebellum. Cerebellum 16, 151–157 (2017).

    Article  PubMed  Google Scholar 

  55. Takada, M., Sugimoto, T. & Hattori, T. MPTP neurotoxicity to cerebellar Purkinje cells in mice. Neurosci. Lett. 150, 49–52 (1993).

    Article  CAS  PubMed  Google Scholar 

  56. Fikry, H., Saleh, L. A. & Abdel Gawad, S. Neuroprotective effects of curcumin on the cerebellum in a rotenone-induced Parkinson’s disease model. CNS Neurosci. Ther. 28, 732–748 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Mori, F. et al. α-Synuclein accumulates in Purkinje cells in Lewy body disease but not in multiple system atrophy. J. Neuropathol. Exp. Neurol. 62, 812–819 (2003).

    Article  CAS  PubMed  Google Scholar 

  58. Wu, T. & Hallett, M. The cerebellum in Parkinson’s disease. Brain 136, 696–709 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Kuo, S. H. et al. Climbing fiber-Purkinje cell synaptic pathology in tremor and cerebellar degenerative diseases. Acta Neuropathol. 133, 121–138 (2017).

    Article  PubMed  Google Scholar 

  60. Vollstedt, E. J. et al. Embracing monogenic Parkinson’s disease: the MJFF global genetic PD cohort. Mov. Disord. 38, 286–303 (2023).

    Article  CAS  PubMed  Google Scholar 

  61. Schindlbeck, K. A. et al. LRRK2 and GBA variants exert distinct influences on Parkinson’s disease-specific metabolic networks. Cereb. Cortex 30, 2867–2878 (2020).

    Article  PubMed  Google Scholar 

  62. Jia, E. et al. Transcriptomic profiling of differentially expressed genes and related pathways in different brain regions in Parkinson’s disease. Neurosci. Lett. 732, 135074 (2020).

    Article  CAS  PubMed  Google Scholar 

  63. Zhong, J. et al. Single-cell brain atlas of Parkinson’s disease mouse model. J. Genet. Genomics 48, 277–288 (2021).

    Article  CAS  PubMed  Google Scholar 

  64. Thenganatt, M. A. & Jankovic, J. Parkinson disease subtypes. JAMA Neurol. 71, 499–504 (2014).

    Article  PubMed  Google Scholar 

  65. Benninger, D. H., Thees, S., Kollias, S. S., Bassetti, C. L. & Waldvogel, D. Morphological differences in Parkinson’s disease with and without rest tremor. J. Neurol. 256, 256–263 (2009).

    Article  PubMed  Google Scholar 

  66. Rosano, C. et al. Patterns of focal gray matter atrophy are associated with bradykinesia and gait disturbances in older adults. J. Gerontol. A Biol. Sci. Med. Sci. 67, 957–962 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Schilder, J. C., Overmars, S. S., Marinus, J., van Hilten, J. J. & Koehler, P. J. The terminology of akinesia, bradykinesia and hypokinesia: past, present and future. Parkinsonism Relat. Disord. 37, 27–35 (2017).

    Article  PubMed  Google Scholar 

  68. Bologna, M. & Paparella, G. Pathophysiology of rigidity in Parkinson’s disease: another step forward. Clin. Neurophysiol. 131, 1971–1972 (2020).

    Article  PubMed  Google Scholar 

  69. Hess, C. W. & Hallett, M. The phenomenology of Parkinson’s disease. Semin. Neurol. 37, 109–117 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Fasano, A., Laganiere, S. E., Lam, S. & Fox, M. D. Lesions causing freezing of gait localize to a cerebellar functional network. Ann. Neurol. 81, 129–141 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  71. Carrillo, F. et al. Study of cerebello-thalamocortical pathway by transcranial magnetic stimulation in Parkinson’s disease. Brain Stimul. 6, 582–589 (2013).

    Article  PubMed  Google Scholar 

  72. Guan, X. et al. Disrupted functional connectivity of basal ganglia across tremor-dominant and akinetic/rigid-dominant Parkinson’s disease. Front. Aging Neurosci. 9, 360 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Franca, C. et al. Effects of cerebellar neuromodulation in movement disorders: a systematic review. Brain Stimul. 11, 249–260 (2018).

    Article  PubMed  Google Scholar 

  74. Baggio, H. C. et al. Cerebellar resting-state functional connectivity in Parkinson’s disease and multiple system atrophy: characterization of abnormalities and potential for differential diagnosis at the single-patient level. NeuroImage: Clin. 22, 101720 (2019).

    Article  PubMed  Google Scholar 

  75. Jankovic, J. et al. Principles and Practice of Movement Disorders 3rd edn (Elsevier, 2021).

  76. Louis, E. D. et al. Histopathology of the cerebellar cortex in essential tremor and other neurodegenerative motor disorders: comparative analysis of 320 brains. Acta Neuropathol. 145, 265–283 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  77. Beylergil, S. B., Gupta, P., ElKasaby, M., Kilbane, C. & Shaikh, A. G. Does visuospatial motion perception correlate with coexisting movement disorders in Parkinson’s disease? J. Neurol. 269, 2179–2192 (2022).

    Article  PubMed  Google Scholar 

  78. Basaia, S. et al. Cerebro-cerebellar motor networks in clinical subtypes of Parkinson’s disease. NPJ Parkinsons Dis. 8, 113 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  79. Bharti, K. et al. Abnormal cerebellar connectivity patterns in patients with Parkinson’s disease and freezing of gait. Cerebellum 18, 298–308 (2019).

    Article  PubMed  Google Scholar 

  80. Jung, J. H. et al. Motor cerebellar connectivity and future development of freezing of gait in de novo Parkinson’s disease. Mov. Disord. 35, 2240–2249 (2020).

    Article  PubMed  Google Scholar 

  81. Benamer, H. T. et al. Prospective study of presynaptic dopaminergic imaging in patients with mild parkinsonism and tremor disorders: part 1. Baseline and 3-month observations. Mov. Disord. 18, 977–984 (2003).

    Article  PubMed  Google Scholar 

  82. Dirkx, M. F. et al. The cerebral network of Parkinson’s tremor: an effective connectivity fMRI study. J. Neurosci. 36, 5362–5372 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. van den Berg, K. R. E. & Helmich, R. C. The role of the cerebellum in tremor–evidence from neuroimaging. Tremor Other Hyperkinet Mov. 11, 49 (2021).

    Article  Google Scholar 

  84. Jankovic, J. How do I examine for re-emergent tremor? Mov. Disord. Clin. Pract. 3, 216–217 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  85. Helmich, R. C. et al. Cerebello-cortical control of tremor rhythm and amplitude in Parkinson’s disease. Mov. Disord. 36, 1727–1729 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  86. Buijink, A. W. G., van Rootselaar, A. F. & Helmich, R. C. Connecting tremors–a circuits perspective. Curr. Opin. Neurol. 35, 518–524 (2022).

    Article  PubMed  Google Scholar 

  87. Helmich, R. C. The cerebral basis of parkinsonian tremor: a network perspective. Mov. Disord. 33, 219–231 (2018).

    Article  PubMed  Google Scholar 

  88. Timmermann, L. et al. The cerebral oscillatory network of parkinsonian resting tremor. Brain 126, 199–212 (2003).

    Article  PubMed  Google Scholar 

  89. Luo, C. et al. White matter microstructure damage in tremor-dominant Parkinson’s disease patients. Neuroradiology 59, 691–698 (2017).

    Article  PubMed  Google Scholar 

  90. Hu, X. et al. Altered functional connectivity density in subtypes of Parkinson’s disease. Front. Hum. Neurosci. 11, 458 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  91. Mure, H. et al. Parkinson’s disease tremor-related metabolic network: characterization, progression, and treatment effects. Neuroimage 54, 1244–1253 (2011).

    Article  PubMed  Google Scholar 

  92. Dirkx, M. F. et al. Cerebral differences between dopamine-resistant and dopamine-responsive Parkinson’s tremor. Brain 142, 3144–3157 (2019).

    Article  PubMed  Google Scholar 

  93. Ramirez-Zamora, A. & Okun, M. S. Deep brain stimulation for the treatment of uncommon tremor syndromes. Expert. Rev. Neurother. 16, 983–997 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Zhong, Y. et al. A review on pathology, mechanism, and therapy for cerebellum and tremor in Parkinson’s disease. NPJ Parkinsons Dis. 8, 82 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Ma, H. et al. Resting-state functional connectivity of dentate nucleus is associated with tremor in Parkinson’s disease. J. Neurol. 262, 2247–2256 (2015).

    Article  PubMed  Google Scholar 

  96. He, N. et al. Dentate nucleus iron deposition is a potential biomarker for tremor-dominant Parkinson’s disease. NMR Biomed. 30, 3554 (2017).

    Article  Google Scholar 

  97. Welton, T. et al. Essential tremor. Nat. Rev. Dis. Prim. 7, 83 (2021).

    Article  PubMed  Google Scholar 

  98. Lenka, A. & Jankovic, J. Tremor syndromes: an updated review. Front. Neurol. 12, 684835 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  99. Bellows, S. T. & Jankovic, J. Phenotypic features of isolated essential tremor, essential tremor plus, and essential tremor-Parkinson’s disease in a movement disorders clinic. Tremor Other Hyperkinet Mov. 11, 12 (2021).

    Article  Google Scholar 

  100. Tarakad, A. & Jankovic, J. Essential tremor and Parkinson’s disease: exploring the relationship. Tremor Other Hyperkinet Mov. 8, 589 (2018).

    Article  Google Scholar 

  101. Hett, K. et al. Anatomical texture patterns identify cerebellar distinctions between essential tremor and Parkinson’s disease. Hum. Brain Mapp. 42, 2322–2331 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  102. Lopez, A. M. et al. Structural correlates of the sensorimotor cerebellum in Parkinson’s disease and essential tremor. Mov. Disord. 35, 1181–1188 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  103. Rajan, R., Popa, T., Quartarone, A., Ghilardi, M. F. & Kishore, A. Cortical plasticity and levodopa-induced dyskinesias in Parkinson’s disease: connecting the dots in a multicomponent network. Clin. Neurophysiol. 128, 992–999 (2017).

    Article  PubMed  Google Scholar 

  104. Ferrucci, R. et al. Cerebellar and motor cortical transcranial stimulation decrease levodopa-induced dyskinesias in Parkinson’s disease. Cerebellum 15, 43–47 (2016).

    Article  CAS  PubMed  Google Scholar 

  105. Yoo, H. S. et al. Cerebellar connectivity in Parkinson’s disease with levodopa-induced dyskinesia. Ann. Clin. Transl. Neurol. 6, 2251–2260 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Fenoy, A. J. & Schiess, M. C. Deep brain stimulation of the dentato-rubro-thalamic tract: outcomes of direct targeting for tremor. Neuromodulation 20, 429–436 (2017).

    Article  PubMed  Google Scholar 

  107. Cajigas, I., Morrison, M. A., San Luciano, M. & Starr, P. Cerebellar deep brain stimulation in cerebral palsy: promising early results and a look forward to a larger clinical trial. World Neurosurg. 174, 223–224 (2023).

    Article  PubMed  Google Scholar 

  108. Devita, M. et al. Novel insights into the relationship between cerebellum and dementia: a narrative review as a toolkit for clinicians. Ageing Res. Rev. 70, 101389 (2021).

    Article  PubMed  Google Scholar 

  109. Jacobs, H. I. L. et al. The cerebellum in Alzheimer’s disease: evaluating its role in cognitive decline. Brain 141, 37–47 (2018).

    Article  PubMed  Google Scholar 

  110. Yu, H. et al. The electrophysiological and neuropathological profiles of cerebellum in APPswe/PS1ΔE9 mice: a hypothesis on the role of cerebellum in Alzheimer’s disease. Alzheimers Dement. 19, 2365–2375 (2023).

    Article  CAS  PubMed  Google Scholar 

  111. Benarroch, E. What is the involvement of the cerebellum during sleep? Neurology 100, 572–577 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  112. Diedrichsen, J., King, M., Hernandez-Castillo, C., Sereno, M. & Ivry, R. B. Universal transform or multiple functionality? Understanding the contribution of the human cerebellum across task domains. Neuron 102, 918–928 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Liang, K. J. & Carlson, E. S. Resistance, vulnerability and resilience: a review of the cognitive cerebellum in aging and neurodegenerative diseases. Neurobiol. Learn. Mem. 170, 106981 (2020).

    Article  PubMed  Google Scholar 

  114. Locke, T. M. et al. Purkinje cell-specific knockout of tyrosine hydroxylase impairs cognitive behaviors. Front. Cell Neurosci. 14, 228 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Blum, D. et al. Hypermetabolism in the cerebellum and brainstem and cortical hypometabolism are independently associated with cognitive impairment in Parkinson’s disease. Eur. J. Nucl. Med. Mol. Imaging 45, 2387–2395 (2018).

    Article  CAS  PubMed  Google Scholar 

  116. Yang, J. et al. Neural correlates of attentional deficits in Parkinson’s disease patients with mild cognitive impairment. Parkinsonism Relat. Disord. 85, 17–22 (2021).

    Article  PubMed  Google Scholar 

  117. Hirano, S. Clinical implications for dopaminergic and functional neuroimage research in cognitive symptoms of Parkinson’s disease. Mol. Med. 27, 40 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Sako, W. et al. The cerebellum is a common key for visuospatial execution and attention in Parkinson’s disease. Diagnostics 11, 1042 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Yin, K. et al. Resting-state functional magnetic resonance imaging of the cerebellar vermis in patients with Parkinson’s disease and visuospatial disorder. Neurosci. Lett. 760, 136082 (2021).

    Article  CAS  PubMed  Google Scholar 

  120. Prenger, M. T. M., Madray, R., Van Hedger, K., Anello, M. & MacDonald, P. A. Social symptoms of Parkinson’s disease. Parkinsons Dis. 2020, 8846544 (2020).

    PubMed  PubMed Central  Google Scholar 

  121. Arioli, M., Cattaneo, Z., Rusconi, M. L., Blandini, F. & Tettamanti, M. Action and emotion perception in Parkinson’s disease: a neuroimaging meta-analysis. NeuroImage: Clin. 35, 10301 (2022).

    Google Scholar 

  122. Thomasson, M. et al. Crossed functional specialization between the basal ganglia and cerebellum during vocal emotion decoding: insights from stroke and Parkinson’s disease. Cogn. Affect. Behav. Neurosci. 22, 1030–1043 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  123. Li, T. et al. Peripheral clock system abnormalities in patients with Parkinson’s disease. Front. Aging Neurosci. 13, 736026 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Li, T., Jia, C. & Le, W. Hypocretin neuron hyperexcitability in the hypothalamus: a newly discovered culprit in aging-related sleep impairment. Signal. Transduct. Target. Ther. 7, 236 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  125. Wen, M. C. et al. Neural substrates of excessive daytime sleepiness in early drug naive Parkinson’s disease: a resting state functional MRI study. Parkinsonism Relat. Disord. 24, 63–68 (2016).

    Article  PubMed  Google Scholar 

  126. Kato, S. et al. Widespread cortical and subcortical brain atrophy in Parkinson’s disease with excessive daytime sleepiness. J. Neurol. 259, 318–326 (2012).

    Article  CAS  PubMed  Google Scholar 

  127. Jiang, X. et al. Abnormal gray matter volume and functional connectivity in Parkinson’s disease with rapid eye movement sleep behavior disorder. Parkinsons Dis. 2021, 8851027 (2021).

    PubMed  PubMed Central  Google Scholar 

  128. Liu, J. et al. Altered regional homogeneity and connectivity in cerebellum and visual-motor relevant cortex in Parkinson’s disease with rapid eye movement sleep behavior disorder. Sleep. Med. 82, 125–133 (2021).

    Article  PubMed  Google Scholar 

  129. Mendoza, J., Pevet, P., Felder-Schmittbuhl, M. P., Bailly, Y. & Challet, E. The cerebellum harbors a circadian oscillator involved in food anticipation. J. Neurosci. 30, 1894–1904 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Canto, C. B., Onuki, Y., Bruinsma, B., van der Werf, Y. D. & De Zeeuw, C. I. The sleeping cerebellum. Trends Neurosci. 40, 309–323 (2017).

    Article  CAS  PubMed  Google Scholar 

  131. Pierce, J. E. & Peron, J. The basal ganglia and the cerebellum in human emotion. Soc. Cogn. Affect. Neurosci. 15, 599–613 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  132. Lupo, M. et al. Development of a psychiatric disorder linked to cerebellar lesions. Cerebellum 17, 438–446 (2018).

    Article  PubMed  Google Scholar 

  133. Yin, W. et al. Abnormal cortical atrophy and functional connectivity are associated with depression in Parkinson’s disease. Front. Aging Neurosci. 14, 957997 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  134. Su, D. et al. Altered brain activity in depression of Parkinson’s disease: a meta-analysis and validation study. Front. Aging Neurosci. 14, 806054 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  135. Cao, X., Yang, F., Zheng, J., Wang, X. & Huang, Q. Aberrant structure MRI in Parkinson’s disease and comorbidity with depression based on multinomial tensor regression analysis. J. Pers. Med. 12, 89 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  136. Huang, M., de Koning, T. J., Tijssen, M. A. J. & Verbeek, D. S. Cross-disease analysis of depression, ataxia and dystonia highlights a role for synaptic plasticity and the cerebellum in the pathophysiology of these comorbid diseases. Biochim. Biophys. Acta Mol. Basis Dis. 1867, 165976 (2021).

    Article  CAS  PubMed  Google Scholar 

  137. Lawn, T. & Ffytche, D. Cerebellar correlates of visual hallucinations in Parkinson’s disease and Charles Bonnet syndrome. Cortex 135, 311–325 (2021).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This Review was not funded. W.L. received grant support from National Natural Science Foundation of China (NSFC 32220103006, 82271524). T.L. received grant support from the National Natural Science Foundation of China (NSFC 82001483).

Author information

Authors and Affiliations

Authors

Contributions

T.L. contributed to review of the literature and the original draft. W.L. and J.J. contributed to review of the literature, editing and critique.

Corresponding authors

Correspondence to Weidong Le or Joseph Jankovic.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Neurology thanks Rick Helmich, who co-reviewed with Kevin van den Berg; Tau Wu, who co-reviewed with Dongling Zhang; and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, T., Le, W. & Jankovic, J. Linking the cerebellum to Parkinson disease: an update. Nat Rev Neurol 19, 645–654 (2023). https://doi.org/10.1038/s41582-023-00874-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41582-023-00874-3

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing