Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Psychiatric sequelae of traumatic brain injury — future directions in research

Abstract

Despite growing appreciation that traumatic brain injury (TBI) is an important public health burden, our understanding of the psychiatric and behavioural consequences of TBI remains limited. These changes are particularly detrimental to a person’s sense of self, their relationships and their participation in the wider community, and they continue to have devastating individual and cumulative effects long after TBI. This Review relates specifically to TBIs that confer objective clinical or biomarker evidence of structural brain injury; symptomatic head injuries without such evidence are outside the scope of this article. Common psychiatric, affective and behavioural sequelae of TBI and their proposed underlying mechanisms are outlined, along with a brief overview of current treatments. Suggestions for how scientists and clinicians can work together in the future to address the chasms in clinical care and knowledge are discussed in depth.

Key points

  • Neuropsychiatric conditions after traumatic brain injury (TBI) are prevalent and varied, and have a major impact on functional outcome.

  • Common and important symptoms include mood disorders, anxiety, substance misuse, emotional lability and dysregulation, apathy, and suicide.

  • TBI may lead to neuropsychiatric conditions through disruption to brain networks and neurotransmitter systems. Complex intersectional relationships exist between TBI and neuropsychiatric conditions, which are also influenced by social and environmental factors.

  • Future research should prioritize understanding the mechanisms by which TBI leads to neuropsychiatric conditions.

  • Interventional studies need to account for the heterogeneity in populations with TBI, seeking to understand predictors of treatment response.

  • Datasets from existing large TBI cohorts as well as routinely collected data could be combined and leveraged to further these research aims.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Proposed future of research for post-TBI psychiatric symptoms.
Fig. 2: Bidirectional relationships and shared risk factors in TBI.
Fig. 3: Key resting-state networks implicated in post-TBI disturbances in cognitive and psychiatric function.

Similar content being viewed by others

References

  1. Maas, A. I. R. et al. Traumatic brain injury: progress and challenges in prevention, clinical care, and research. Lancet Neurol. 21, 1004–1060 (2022).

    Article  PubMed  Google Scholar 

  2. The US National Academies of Sciences, Engineering, and Medicine. Traumatic Brain Injury: A Roadmap for Accelerating Progress (eds. C. Matney, K. Bowman & D. Berwick) https://doi.org/10.17226/25394 (National Academies Press, 2022).

  3. Rao, V., Spiro, J., Vaishnavi, S. & Rastogi, P. Aggression after traumatic brain injury: prevalence & correlates. J. Neuropsychiatry Clin. Neurosci. 22, 381–386 (2008).

    Google Scholar 

  4. Morton, M. V. & Wehman, P. Psychosocial and emotional sequelae of individuals with traumatic brain injury: a literature review and recommendations. Brain Inj. 9, 81–92 (1995).

    Article  CAS  PubMed  Google Scholar 

  5. Anderson, M. I., Parmenter, T. R. & Mok, M. The relationship between neurobehavioural problems of severe traumatic brain injury (TBI), family functioning and the psychological well-being of the spouse/caregiver: path model analysis. Brain Inj. 16, 743–757 (2002).

    Article  PubMed  Google Scholar 

  6. Scholten, A. C. et al. Prevalence of and Risk factors for anxiety and depressive disorders after traumatic brain injury: a systematic review. J. Neurotrauma 33, 1969–1994 (2016).

    Article  PubMed  Google Scholar 

  7. Brett, B. L., Gardner, R. C., Godbout, J., Dams-O’Connor, K. & Keene, C. D. Traumatic brain injury and risk of neurodegenerative disorder. Biol. Psych. 91, 498–507 (2022).

    Article  CAS  Google Scholar 

  8. Smith, D. H., Johnson, V. E., Trojanowski, J. Q. & Stewart, W. Chronic traumatic encephalopathy — confusion and controversies. Nat. Rev. Neurol. 15, 179–183 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Ressler, K. J. et al. Post-traumatic stress disorder: clinical and translational neuroscience from cells to circuits. Nat. Rev. Neurol. 18, 273–288 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Parker, T. D. et al. Post-traumatic amnesia. Pract. Neurol. 22, 129–137 (2022).

    Article  PubMed  Google Scholar 

  11. Fordington, S. & Manford, M. A review of seizures and epilepsy following traumatic brain injury. J. Neurol. 267, 3105–3111 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Mallya, S., Sutherland, J., Pongracic, S., Mainland, B. & Ornstein, T. J. The manifestation of anxiety disorders after traumatic brain injury: a review. J. Neurotrauma 32, 411–421 (2015).

    Article  PubMed  Google Scholar 

  13. Izzy, S. et al. Association of traumatic brain injury with the risk of developing chronic cardiovascular, endocrine, neurological, and psychiatric disorders. JAMA Netw. Open 5, e229478 (2022). Recent large-scale epidemiological study highlighting the chronic and multi-system effects of TBI.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Malec, J. F. et al. The Mayo classification system for traumatic brain injury. J. Neurotrauma 1424, 1417–1424 (2007).

    Article  Google Scholar 

  15. Tenovuo, O. et al. Assessing the severity of traumatic brain injury — time for a change? J. Clin. Med. 10, 148 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Fann, J. R., Quinn, D. K. & Hart, T. Treatment of psychiatric problems after traumatic brain injury. Biol. Psychiatry 91, 508–521 (2022). Overview of treatment approaches to post-TBI psychiatric problems.

    Article  CAS  PubMed  Google Scholar 

  17. Fann, J. R. et al. Sertraline for major depression during the year following traumatic brain injury: a randomized controlled trial. J. Head Trauma Rehabil. 32, 332–342 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Ashman, T. A. et al. A randomized controlled trial of sertraline for the treatment of depression in persons with traumatic brain injury. Arch. Phys. Med. Rehabil. 90, 733–740 (2009).

    Article  PubMed  Google Scholar 

  19. Jorge, R. E., Acion, L., Burin, D. I. & Robinson, R. G. Sertraline for preventing mood disorders following traumatic brain injury a randomized clinical trial. JAMA Psychiatry 73, 1041–1047 (2016).

    Article  PubMed  Google Scholar 

  20. Reyes, N. G. D., Espiritu, A. I. & Anlacan, V. M. M. Efficacy of sertraline in post-traumatic brain injury (post-TBI) depression and quality of life: a systematic review and meta-analysis of randomized controlled trials. Clin. Neurol. Neurosurg. 181, 104–111 (2019).

    Article  PubMed  Google Scholar 

  21. Worthington, A. Decision making and mental capacity: resolving the frontal paradox. Neuropsychologist 7, 31–35 (2019).

    Article  Google Scholar 

  22. Lane-Brown, A. T. & Tate, R. L. Measuring apathy after traumatic brain injury: psychometric properties of the apathy evaluation scale and the frontal systems behavior scale. Brain Inj. 23, 999–1007 (2009).

    Article  CAS  PubMed  Google Scholar 

  23. Worthington, A. & Wood, R. L. Apathy following traumatic brain injury: a review. Neuropsychologia 118, 40–47 (2018).

    Article  PubMed  Google Scholar 

  24. Arnould, A., Rochat, L., Azouvi, P. & Van Der Linden, M. A multidimensional approach to apathy after traumatic brain injury. Neuropsychol. Rev. 23, 210–233 (2013).

    Article  PubMed  Google Scholar 

  25. Mele, B. et al. Diagnosis, treatment and management of apathy in Parkinson’s disease: a scoping review. BMJ Open 10, e037632 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Arciniegas, D. B. & Wortzel, H. S. Emotional and behavioral dyscontrol after traumatic brain injury. Psychiatr. Clin. North Am. 37, 31–53 (2014). Brief review on emotional lability and dyscontrol, a particular issue after TBI.

    Article  PubMed  Google Scholar 

  27. Wood, R. L. & Thomas, R. H. Impulsive and episodic disorders of aggressive behaviour following traumatic brain injury. Brain Inj. 27, 253–261 (2013).

    Article  PubMed  Google Scholar 

  28. Fleminger, S., Greenwood, R. R. & Oliver, D. L. Pharmacological management for agitation and aggression in people with acquired brain injury. Cochrane Database Syst. Rev. 4, CD003299 (2006).

    Google Scholar 

  29. Williamson, D. et al. Pharmacological interventions for agitated behaviours in patients with traumatic brain injury: a systematic review. BMJ Open 9, e029604 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Grados, M. A. Obsessive-compulsive disorder after traumatic brain injury. Int. Rev. Psychiatry 15, 350–358 (2003).

    Article  PubMed  Google Scholar 

  31. Batty, R. A., Rossell, S. L., Francis, A. J. P. & Ponsford, J. Psychosis following traumatic brain injury. Brain Impair 14, 21–41 (2013).

    Article  Google Scholar 

  32. Fujii, D. E. & Ahmed, I. Psychotic disorder caused by traumatic brain injury. Psychiatr. Clin. North Am. 37, 113–124 (2014).

    Article  PubMed  Google Scholar 

  33. Molloy, C., Conroy, R. M., Cotter, D. R. & Cannon, M. Is traumatic brain injury a risk factor for schizophrenia? A meta-analysis of case-controlled population-based studies. Schizophr. Bull. 37, 1104–1110 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Malaspina, D. et al. Traumatic brain injury and schizophrenia in members of schizophrenia and bipolar disorder pedigrees. Am. J. Psychiatry 158, 440–446 (2001).

    Article  CAS  PubMed  Google Scholar 

  35. Arciniegas, D. B., Harris, S. N. & Brousseau, K. M. Psychosis following traumatic brain injury. Int. Rev. Psychiatry 15, 328–340 (2003).

    Article  PubMed  Google Scholar 

  36. McAllister, T. W. & Ferrell, R. B. Evaluation and treatment of psychosis after traumatic brain injury. Neurorehabilitation 17, 357–368 (2002).

    Article  PubMed  Google Scholar 

  37. Stanislav, S. Cognitive effects of anti-psychotic agents in persons with traumatic brain injury. Brain Inj. 11, 335–341 (1997).

    Article  CAS  PubMed  Google Scholar 

  38. Feeney, D. M., Gonzalez, A. & Law, W. A. Amphetamine, haloperidol, and experience interact to affect rate of recovery after motor cortex injury. Science 217, 855–857 (1982).

    Article  CAS  PubMed  Google Scholar 

  39. Dreer, L. E. et al. Suicide and traumatic brain injury: a review by clinical researchers from the National Institute for Disability and Independent Living Rehabilitation Research (NIDILRR) and veterans health administration traumatic brain injury model systems. Curr. Opin. Psychol. 22, 73–78 (2018).

    Article  PubMed  Google Scholar 

  40. Teasdale, T. W. & Engberg, A. W. Suicide after traumatic brain injury: a population study. J. Neurol. Neurosurg. Psychiatry 71, 436–440 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Madsen, T. et al. Association between traumatic brain injury and risk of suicide. JAMA 320, 580–588 (2018). Large-scale epidemiological study examining the risk factors for suicide after TBI.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Lu, Y. C. et al. Association between suicide risk and traumatic brain injury in adults: a population based cohort study. Postgrad. Med. J. 96, 747–752 (2020).

    Article  CAS  PubMed  Google Scholar 

  43. Mainio, A. et al. Traumatic brain injury, psychiatric disorders and suicide: a population-based study of suicide victims during the years 1988–2004 in Northern Finland. Brain Inj. 21, 851–855 (2007).

    Article  PubMed  Google Scholar 

  44. Fann, J. R. et al. Psychiatric illness and subsequent traumatic brain injury: a case control study. J. Neurol. Neurosurg. Psychiatry 72, 615–620 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Campbell-Sills, L. et al. Risk factors for suicidal ideation following mild traumatic brain injury: a TRACK-TBI study. J. Head Trauma Rehabil. 36, E30–E39 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  46. León-Carrión, J. et al. Neurobehavioural and cognitive profile of traumatic brain injury patients at risk for depression and suicide. Brain Inj. 15, 175–181 (2001).

    Article  PubMed  Google Scholar 

  47. Weil, Z. M., Corrigan, J. D. & Karelina, K. Alcohol use disorder and traumatic brain injury. Alcohol Res. 39, 171–180 (2018).

    PubMed  PubMed Central  Google Scholar 

  48. Adams, R. S., Corrigan, J. D. & Dams-O’Connor, K. Opioid use among individuals with traumatic brain injury: a perfect storm? J. Neurotrauma 37, 211–216 (2020).

    Article  PubMed  Google Scholar 

  49. Bjork, J. M. & Grant, S. J. Does traumatic brain injury increase risk for substance abuse? J. Neurotrauma 26, 1077–1082 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Adams, R. S. et al. Association of lifetime history of traumatic brain injury with prescription opioid use and misuse among adults. J. Head Trauma Rehabil. 36, 328–337 (2021). Epidemiological study highlighting the risk factors for opioid misuse after TBI.

    Article  PubMed  Google Scholar 

  51. Dikmen, S. S., Machamer, J. E., Donovan, D. M., Winn, H. R. & Temkin, N. R. Alcohol use before and after traumatic head injury. Ann. Emerg. Med. 26, 167–176 (1995).

    Article  CAS  PubMed  Google Scholar 

  52. Bombardier, C. H., Temkin, N. R., Machamer, J. & Dikmen, S. S. The natural history of drinking and alcohol-related problems after traumatic brain injury. Arch. Phys. Med. Rehabil. 84, 185–191 (2003).

    Article  PubMed  Google Scholar 

  53. Sacks, A. L. et al. Co-morbidity of substance abuse and traumatic brain injury. J. Dual Diagn. 5, 404–417 (2009).

    Article  Google Scholar 

  54. Williams, W. H. et al. Traumatic brain injury: a potential cause of violent crime? Lancet Psychiatry 5, 836–844 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  55. McMillan, T. M., Graham, L., Pell, J. P., McConnachie, A. & Mackay, D. F. The lifetime prevalence of hospitalised head injury in Scottish prisons: a population study. PLoS One 14, e0210427 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. McMillan, T. M., Aslam, H., Crowe, E., Seddon, E. & Barry, S. J. E. Associations between significant head injury and persisting disability and violent crime in women in prison in Scotland, UK: a cross-sectional study. Lancet Psychiatry 8, 512–520 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Durand, E. et al. History of traumatic brain injury in prison populations: a systematic review. Ann. Phys. Rehabil. Med. 60, 95–101 (2017).

    Article  CAS  PubMed  Google Scholar 

  58. Fazel, S., Lichtenstein, P., Grann, M. & Långström, N. Risk of violent crime in individuals with epilepsy and traumatic brain injury: a 35-year Swedish population study. PLoS Med. 8, e1001150 (2011). Population-based study highlighting TBI as an independent risk factor for violent crime.

    Article  PubMed  PubMed Central  Google Scholar 

  59. House of Commons Justice Committee. In: The Treatment of Young Adults in the Criminal Justice System. Seventh Report of Session 2016–17, HC 169 https://publications.parliament.uk/pa/cm201617/cmselect/cmjust/169/16905.htm (2016).

  60. Zonfrillo, M. R. et al. Effect of parental education and household poverty on recovery after traumatic brain injury in school-aged children. Brain Inj. 35, 1371–1381 (2021).

    Article  PubMed  Google Scholar 

  61. Osberg, J. S. et al. Impact of childhood brain injury on work and family finances. Brain Inj. 11, 11–24 (1997).

    Article  CAS  PubMed  Google Scholar 

  62. Sariaslan, A., Sharp, D. J., D’Onofrio, B. M., Larsson, H. & Fazel, S. Long-term outcomes associated with traumatic brain injury in childhood and adolescence: a nationwide Swedish cohort study of a wide range of medical and social outcomes. PLoS Med. 13, e1002103 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Arango-Lasprilla, J. C. & Kreutzer, J. S. Racial and ethnic disparities in functional, psychosocial, and neurobehavioral outcomes after brain injury. J. Head Trauma Rehabil. 25, 128–136 (2010).

    Article  PubMed  Google Scholar 

  64. Maldonado, J., Huang, J. H., Childs, E. W. & Tharakan, B. Racial/ethnic differences in traumatic brain injury: pathophysiology, outcomes, and future directions. J. Neurotrauma 40, 502–513 (2023).

    Article  PubMed  Google Scholar 

  65. Liou-Johnson, V. et al. Exploring racial/ethnic disparities in rehabilitation outcomes after TBI: a veterans affairs model systems study. Neurorehabilitation 52, 451–462 (2023).

    Article  PubMed  Google Scholar 

  66. Lux, W. E. A neuropsychiatric perspective on traumatic brain injury. J. Rehabil. Res. Dev. 44, 951–962 (2007).

    Article  PubMed  Google Scholar 

  67. Stuss, D. T. Traumatic brain injury: relation to executive dysfunction and the frontal lobes. Curr. Opin. Neurol. 24, 584–589 (2011).

    Article  PubMed  Google Scholar 

  68. Kinnunen, K. M. et al. White matter damage and cognitive impairment after traumatic brain injury. Brain 134, 449–463 (2011).

    Article  PubMed  Google Scholar 

  69. Jolly, A. E. et al. Detecting axonal injury in individual patients after traumatic brain injury. Brain 144, 92–113 (2021).

    Article  PubMed  Google Scholar 

  70. Hill, C. S., Coleman, M. P. & Menon, D. K. Traumatic axonal injury: mechanisms and translational opportunities. Trends Neurosci. 39, 311–324 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Sporns, O. Structure and function of complex brain networks. Dialogues Clin. Neurosci. 15, 247–262 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Pessoa, L. Understanding brain networks and brain organization. Phys. Life Rev. 11, 400–435 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Bullmore, E. & Sporns, O. Complex brain networks: graph theoretical analysis of structural and functional systems. Nat. Rev. Neurosci. 10, 186–198 (2009).

    Article  CAS  PubMed  Google Scholar 

  74. Cole, D. M., Smith, S. M. & Beckmann, C. F. Advances and pitfalls in the analysis and interpretation of resting-state fMRI data. Front. Syst. Neurosci. 4, 8 (2010).

    PubMed  PubMed Central  Google Scholar 

  75. Friston, K. J. Functional and effective connectivity: a review. Brain Connect. 1, 13–36 (2011).

    Article  PubMed  Google Scholar 

  76. Smith, S. M. et al. Advances in functional and structural MR image analysis and implementation as FSL. Neuroimage 23, S208–S219 (2004).

    Article  PubMed  Google Scholar 

  77. Palomero-Gallagher, N. & Amunts, K. A short review on emotion processing: a lateralized network of neuronal networks. Brain Struct. Funct. 227, 673–684 (2022).

    Article  PubMed  Google Scholar 

  78. Sharp, D. J., Scott, G. & Leech, R. Network dysfunction after traumatic brain injury. Nat. Rev. Neurol. 10, 156–166 (2014). A review of brain network dysfunction after TBI.

    Article  PubMed  Google Scholar 

  79. Sharp, D. J. et al. Default mode network functional and structural connectivity after traumatic brain injury. Brain 134, 2233–2247 (2011).

    Article  PubMed  Google Scholar 

  80. Jilka, S. R. et al. Damage to the salience network and interactions with the default mode network. J. Neurosci. 34, 10798–10807 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Bonnelle, V. et al. Default mode network connectivity predicts sustained attention deficits after traumatic brain injury. J. Neurosci. 31, 13442–13451 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Li, L. M. et al. Traumatic axonal injury influences the cognitive effect of non-invasive brain stimulation. Brain 142, 3280–3293 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  83. Mallas, E. J. et al. Abnormal dorsal attention network activation in memory impairment after traumatic brain injury. Brain 144, 114–127 (2021).

    Article  PubMed  Google Scholar 

  84. Ham, T. E. et al. The neural basis of impaired self-awareness after traumatic brain injury. Brain 137, 586–597 (2014).

    Article  PubMed  Google Scholar 

  85. Leech, R. & Sharp, D. J. The role of the posterior cingulate cortex in cognition and disease. Brain 137, 12–32 (2014).

    Article  PubMed  Google Scholar 

  86. Rubinov, M. & Bullmore, E. Fledgling pathoconnectomics of psychiatric disorders. Trends Cogn. Sci. 17, 641–647 (2013).

    Article  PubMed  Google Scholar 

  87. Han, K., Chapman, S. B. & Krawczyk, D. C. Altered amygdala connectivity in individuals with chronic traumatic brain injury and comorbid depressive symptoms. Front. Neurol. 6, 231 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  88. Shan, H. et al. Precision functional MRI mapping reveals distinct connectivity patterns for depression associated with traumatic brain injury. Sci. Transl. Med. 15, eabn0441 (2023).

    Article  Google Scholar 

  89. Moreno-López, L., Sahakian, B. J., Manktelow, A., Menon, D. K. & Stamatakis, E. A. Depression following traumatic brain injury: a functional connectivity perspective. Brain Inj. 30, 1319–1328 (2016).

    Article  PubMed  Google Scholar 

  90. Joutsa, J. et al. Brain lesions disrupting addiction map to a common human brain circuit. Nat. Med. 28, 1249–1255 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Boes, A. D. et al. Network localization of neurological symptoms from focal brain lesions. Brain 138, 3061–3075 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  92. Padmanabhan, J. L. et al. A human depression circuit derived from focal brain lesions. Biol. Psychiatry 86, 749–758 (2019). This work showcases the importance of the location of a lesion in a given network for development of depression.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Jolly, A. E. et al. Dopamine D2/D3 receptor abnormalities after traumatic brain injury and their relationship to post-traumatic depression. Neuroimage Clin. 24, 101950 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  94. Le Heron, C., Holroyd, C. B., Salamone, J. & Husain, M. Brain mechanisms underlying apathy. J. Neurol. Neurosurg. Psychiatry 90, 302–312 (2019).

    Article  PubMed  Google Scholar 

  95. Jenkins, P. O., Mehta, M. A. & Sharp, D. J. Catecholamines and cognition after traumatic brain injury. Brain 139, 2345–2371 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  96. Jenkins, P. O. et al. Stratifying drug treatment of cognitive impairments after traumatic brain injury using neuroimaging. Brain 142, 2367–2379 (2019).

    Article  PubMed  Google Scholar 

  97. McGuire, J. L., Ngwenya, L. B. & McCullumsmith, R. E. Neurotransmitter changes after traumatic brain injury: an update for new treatment strategies. Mol. Psychiatry 24, 995–1012 (2019).

    Article  CAS  PubMed  Google Scholar 

  98. Östberg, A. et al. Brain cholinergic function and response to rivastigmine in patients with chronic sequels of traumatic brain injury: a PET study. J. Head Trauma Rehabil. 33, 25–32 (2018).

    Article  PubMed  Google Scholar 

  99. Murphy, P. R., O’Connell, R. G., O’Sullivan, M., Robertson, I. H. & Balsters, J. H. Pupil diameter covaries with BOLD activity in human locus coeruleus. Hum. Brain Mapp. 35, 4140–4154 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  100. Morse, A. M. & Garner, D. R. Traumatic brain injury, sleep disorders, and psychiatric disorders: an underrecognized relationship. Med. Sci. 6, 15 (2018).

    Google Scholar 

  101. Verma, A., Anand, V. & Verma, N. P. Sleep disorders in chronic traumatic brain injury. J. Clin. Sleep. Med. 3, 357–362 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  102. Nampiaparampil, D. E. Prevalence of chronic pain after traumatic brain injury: a systematic review. JAMA 300, 711–719 (2008).

    Article  CAS  PubMed  Google Scholar 

  103. Meltzer, K. J. & Juengst, S. B. Associations between frequent pain or headaches and neurobehavioral symptoms by gender and TBI severity. Brain Inj. 35, 41–47 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  104. Behan, L. A., Phillips, J., Thompson, C. J. & Agha, A. Neuroendocrine disorders after traumatic brain injury. J. Neurol. Neurosurg. Psychiatry 79, 753–759 (2008).

    Article  CAS  PubMed  Google Scholar 

  105. Kgosidialwa, O., Hakami, O., Zia-Ul-Hussnain, H. M. & Agha, A. Growth hormone deficiency following traumatic brain injury. Int. J. Mol. Sci. 20, 3323 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. De Simoni, S. et al. Disconnection between the default mode network and medial temporal lobes in post-traumatic amnesia. Brain 139, 3137–3150 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  107. Dalgleish, T., Black, M., Johnston, D. & Bevan, A. Transdiagnostic approaches to mental health problems: current status and future directions. J. Consult. Clin. Psychol. 88, 179–195 (2020). A review article discussing how transdiagnostic approaches have been used to understand primary psychiatric conditions.

    Article  PubMed  PubMed Central  Google Scholar 

  108. Lu, J., Gary, K. W., Neimeier, J. P., Ward, J. & Lapane, K. L. Randomized controlled trials in adult traumatic brain injury. Brain Inj. 26, 1523–1548 (2012).

    Article  PubMed  Google Scholar 

  109. Pugh, M. J. et al. Phenotyping the spectrum of traumatic brain injury: a review and pathway to standardization. J. Neurotrauma 38, 3222–3234 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  110. Husain, M. & Roiser, J. P. Neuroscience of apathy and anhedonia: a transdiagnostic approach. Nat. Rev. Neurosci. 19, 470–484 (2018). Review on mechanisms underlying apathy, a common post-TBI phenomenon, from a transdiagnostic approach.

    Article  CAS  PubMed  Google Scholar 

  111. Larson, M. J., Kelly, K. G., Stigge-Kaufman, D. A., Schmalfuss, I. M. & Perlstein, W. M. Reward context sensitivity impairment following severe TBI: an event-related potential investigation. J. Int. Neuropsychol. Soc. 13, 615–625 (2007).

    Article  PubMed  Google Scholar 

  112. Quang, H. et al. Contributions of intrinsic and extrinsic reward sensitivity to apathy: evidence from traumatic brain injury. Neuropsychology 36, 791–802 (2022).

    Article  PubMed  Google Scholar 

  113. Nestor, L. J. et al. Acute naltrexone does not remediate fronto-striatal disturbances in alcoholic and alcoholic polysubstance-dependent populations during a monetary incentive delay task. Addict. Biol. 22, 1576–1589 (2017).

    Article  CAS  PubMed  Google Scholar 

  114. Hayes, A. et al. The relationship between reward and impulsivity in substance dependence: an fMRI study (P38). Biol. Psychiatry 91, S103 (2022).

    Article  Google Scholar 

  115. Kontaris, I., East, B. S. & Wilson, D. A. Behavioral and neurobiological convergence of odor, mood and emotion: a review. Front. Behav. Neurosci. 14, 35 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  116. Singh, R. et al. The incidence of anosmia after traumatic brain injury: the SHEFBIT cohort. Brain Inj. 32, 1122–1128 (2018).

    Article  PubMed  Google Scholar 

  117. Zihl, J. & Almeida, O. F. X. Neuropsychology of neuroendocrine dysregulation after traumatic brain injury. J. Clin. Med. 4, 1051–1062 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Maric, N. P. et al. Psychiatric and neuropsychological changes in growth hormone-deficient patients after traumatic brain injury in response to growth hormone therapy. J. Endocrinol. Invest. 33, 770–775 (2010).

    Article  CAS  PubMed  Google Scholar 

  119. Williams, J. A. et al. Inflammation and brain structure in schizophrenia and other neuropsychiatric disorders: a Mendelian randomization study. JAMA Psychiatry 79, 498–507 (2022). This study highlights the role of systemic inflammation and its relationship with brain structure in neuropsychiatric conditions.

    Article  PubMed  PubMed Central  Google Scholar 

  120. Ting, E. Y. C., Yang, A. C. & Tsai, S. J. Role of interleukin-6 in depressive disorder. Int. J. Mol. Sci. 21, 2194 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Kumar, R. G., Boles, J. A. & Wagner, A. K. Chronic inflammation after severe traumatic brain injury: characterization and associations with outcome at 6 and 12 months postinjury. J. Head Trauma Rehabil. 30, 369–381 (2015).

    Article  PubMed  Google Scholar 

  122. Vijapur, S. M. et al. Treelet transform analysis to identify clusters of systemic inflammatory variance in a population with moderate-to-severe traumatic brain injury. Brain. Behav. Immun. 95, 45–60 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Juengst, S. B., Kumar, R. G., Failla, M. D., Goyal, A. & Wagner, A. K. Acute inflammatory biomarker profiles predict depression risk following moderate to severe traumatic brain injury. J. Head Trauma Rehabil. 30, 207–218 (2015).

    Article  PubMed  Google Scholar 

  124. Helmy, A. et al. Recombinant human interleukin-1 receptor antagonist in severe traumatic brain injury: a phase II randomized control trial. J. Cereb. Blood Flow. Metab. 34, 845–851 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Helmy, A. et al. Recombinant human interleukin-1 receptor antagonist promotes M1 microglia biased cytokines and chemokines following human traumatic brain injury. J. Cereb. Blood Flow. Metab. 36, 1434–1448 (2016).

    Article  CAS  PubMed  Google Scholar 

  126. Laurens, C., Abot, A., Delarue, A. & Knauf, C. Central effects of β-blockers may be due to nitric oxide and hydrogen peroxide release independently of their ability to cross the blood–brain barrier. Front. Neurosci. 13, 33 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  127. Olesen, J. & Hertz, M. Isoproterenol and propranolol: ability to cross the blood–brain barrier and effects on cerebral circulation in man. Stroke 9, 344–349 (1978).

    Article  CAS  PubMed  Google Scholar 

  128. Dixon, M. L., Thiruchselvam, R., Todd, R. & Christoff, K. Emotion and the prefrontal cortex: an integrative review. Psychol. Bull. 143, 1033–1081 (2017). Overview of the prefrontal cortex, its sub-domains and connections, in relation to emotional function.

    Article  PubMed  Google Scholar 

  129. Kreibig, S. D. Autonomic nervous system activity in emotion: a review. Biol. Psychol. 84, 394–421 (2010).

    Article  PubMed  Google Scholar 

  130. van Eijck, M. M. et al. The use of the PSH-AM in patients with diffuse axonal injury and autonomic dysregulation: a cohort study and review. J. Crit. Care 49, 110–117 (2019).

    Article  PubMed  Google Scholar 

  131. Hasen, M., Almojuela, A. & Zeiler, F. A. Autonomic dysfunction and associations with functional and neurophysiological outcome in moderate/severe traumatic brain injury: a scoping review. J. Neurotrauma 14, 1419–1504 (2018).

    Google Scholar 

  132. Li, L. M., Vichayanrat, E., Del Giovane, M., Lai, H. H. L. & Iodice, V. Autonomic dysfunction after moderate-to-severe traumatic brain injury: symptom spectrum and clinical testing outcomes. BMJ Neurol. Open 4, e000308 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  133. Hilz, M. J. et al. Severity of traumatic brain injury correlates with long-term cardiovascular autonomic dysfunction. J. Neurol. 264, 1956–1967 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  134. Amorapanth, P. X. et al. Traumatic brain injury results in altered physiologic, but not subjective responses to emotional stimuli. Brain Inj. 32, 1712–1719 (2018).

    Article  PubMed  Google Scholar 

  135. Pavlov, V. A. & Tracey, K. J. The vagus nerve and the inflammatory reflex — linking immunity and metabolism. Nat. Rev. Endocrinol. 8, 743–754 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Hanscom, M., Loane, D. J. & Shea-Donohue, T. Brain-gut axis dysfunction in the pathogenesis of traumatic brain injury. J. Clin. Invest. 131, e143777 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Hanscom, M. et al. Acute colitis during chronic experimental traumatic brain injury in mice induces dysautonomia and persistent extraintestinal, systemic, and CNS inflammation with exacerbated neurological deficits. J. Neuroinflammation 18, 24 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Rice, M. W., Pandya, J. D. & Shear, D. A. Gut microbiota as a therapeutic target to ameliorate the biochemical, neuroanatomical, and behavioral effects of traumatic brain injuries. Front. Neurol. 10, 875 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  139. Celorrio, M. et al. Gut microbial dysbiosis after traumatic brain injury modulates the immune response and impairs neurogenesis. Acta Neuropathol. Commun. 9, 40 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Paljärvi, T. et al. Mortality in psychotic depression: 18-year follow-up study. Br. J. Psychiatry 222, 37–43 (2023).

    Article  PubMed  Google Scholar 

  141. Maas, A. I. R. et al. Collaborative European neurotrauma effectiveness research in traumatic brain injury (CENTER-TBI): a prospective longitudinal observational study. Neurosurgery 76, 67–80 (2015).

    Article  PubMed  Google Scholar 

  142. Edlow, B. L. et al. Multimodal characterization of the late effects of traumatic brain injury: a methodological overview of the late effects of traumatic brain injury project. J. Neurotrauma 16, 1604–1619 (2018).

    Article  Google Scholar 

  143. Graham, N. S. N. et al. Multicentre longitudinal study of fluid and neuroimaging biomarkers of axonal injury after traumatic brain injury: the BIO-AX-TBI study protocol. BMJ Open 10, e042093 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  144. Wilde, E. A., Dennis, E. L. & Tate, D. F. The ENIGMA Brain Injury working group: approach, challenges, and potential benefits. Brain Imaging Behav. 15, 465–474 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  145. Smith, D. H. et al. Collaborative neuropathology network characterizing outcomes of TBI (CONNECT-TBI). Acta Neuropathol. Commun. 9, 32 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  146. Brett, B. L. et al. Latent profile analysis of neuropsychiatric symptoms and cognitive function of adults 2 weeks after traumatic brain injury: findings from the TRACK-TBI study. JAMA Netw. Open 4, e213467 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  147. Maas, A. I. et al. Common data elements for traumatic brain injury: recommendations from the interagency working group on demographics and clinical assessment. Arch. Phys. Med. Rehabil. 91, 1641–1649 (2010). Expert consensus recommendations for common data elements in TBI studies.

    Article  PubMed  Google Scholar 

  148. Saatman, K. E. et al. Classification of traumatic brain injury for targeted therapies. J. Neurotrauma 25, 719–738 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  149. Nielsen, G. et al. Physio4FMD: protocol for a multicentre randomised controlled trial of specialist physiotherapy for functional motor disorder. BMC Neurol. 19, 242 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  150. Goldstein, L. H. et al. Cognitive behavioural therapy for adults with dissociative seizures (CODES): a pragmatic, multicentre, randomised controlled trial. Lancet Psychiatry 7, 491–505 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  151. Hammond, F. M. et al. Amantadine effect on perceptions of irritability after traumatic brain injury: results of the amantadine irritability multisite study. J. Neurotrauma 32, 1230–1238 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  152. Polich, G., Iaccarino, M. A., Kaptchuk, T. J., Morales-Quezada, L. & Zafonte, R. Placebo effects in traumatic brain injury. J. Neurotrauma 35, 1205–1212 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  153. Fava, M., Evins, A. E., Dorer, D. J. & Schoenfeld, D. A. The problem of the placebo response in clinical trials for psychiatric disorders: culprits, possible remedies, and a novel study design approach. Psychother. Psychosom. 72, 115–127 (2003).

    Article  PubMed  Google Scholar 

  154. Angus, D. C. et al. Adaptive platform trials: definition, design, conduct and reporting considerations. Nat. Rev. Drug Discov. 18, 797–807 (2019). Overview of adaptive platform trials, a potentially fruitful approach for TBI clinical studies.

    Article  Google Scholar 

  155. Mehta, A. R. et al. Smarter adaptive platform clinical trials in neurology: a showcase for UK innovation. Brain 145, e64–e65 (2022).

    Article  PubMed  Google Scholar 

  156. Miller, T. M. et al. Trial of antisense oligonucleotide tofersen for SOD1 ALS. N. Engl. J. Med. 387, 1099–1110 (2022).

    Article  CAS  PubMed  Google Scholar 

  157. NIHR National Institute for Health and Care Research. Dementia Platform Trial MRC-NIHR EME Programme Call Specification Document https://www.nihr.ac.uk/documents/dementia-platform-trial-mrc-nihr-eme-programme-call-specification-document/32627 (2023).

  158. Stunnenberg, B. C. et al. N-of-1 trials in neurology: a systematic review. Neurology 98, e174–e185 (2022).

    Article  PubMed  Google Scholar 

  159. Khandake, G. M. et al. Protocol for the insight study: a randomised controlled trial of single-dose tocilizumab in patients with depression and low-grade inflammation. BMJ Open 8, e025333 (2018).

    Article  Google Scholar 

  160. Knight, J. M. et al. The IL-6 antagonist tocilizumab is associated with worse depression and related symptoms in the medically ill. Transl. Psychiatry 11, 58 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Tiosano, S. et al. The impact of tocilizumab on anxiety and depression in patients with rheumatoid arthritis. Eur. J. Clin. Invest. 50, e13268 (2020).

    Article  CAS  PubMed  Google Scholar 

  162. Somani, A. & Kar, S. K. Efficacy of repetitive transcranial magnetic stimulation in treatment-resistant depression: the evidence thus far. Gen. Psychiatry 32, e100074 (2019).

    Article  Google Scholar 

  163. Gallagher, M., McLeod, H. J. & McMillan, T. M. A systematic review of recommended modifications of CBT for people with cognitive impairments following brain injury. Neuropsychol. Rehabil. 29, 1–21 (2019). This work shows how current treatments for psychiatric conditions, such as depression, can be modified for the TBI population.

    Article  PubMed  Google Scholar 

  164. Fann, J. R., Hart, T. & Schomer, K. G. Treatment for depression after traumatic brain injury: a systematic review. J. Neurotrauma 26, 2383–2402 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  165. Yeo, B. T. et al. The organization of the human cerebral cortex estimated by intrinsic functional connectivity. J. Neurophysiol. 106, 1125–1165 (2011).

    Article  PubMed  Google Scholar 

  166. Seeley, W. W. et al. Dissociable intrinsic connectivity networks for salience processing and executive control. J. Neurosci. 27, 2349–2356 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Harlow, J. M. Recovery from the passage of an iron bar through the head. Hist. Psychiatry 4, 271–281 (1993).

    Article  Google Scholar 

  168. O’Driscoll, K. & Leach, J. P. ‘No longer Gage’: an iron bar through the head. Early observations of personality change after injury to the prefrontal cortex. BMJ 317, 1673–1674 (1998).

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank D. Kurtin for assistance with the preparation of Fig. 2.

Author information

Authors and Affiliations

Authors

Contributions

All authors planned the article content and researched data for the article. L.M.L. wrote the first draft and K.D.O.C. and A.C. reviewed and edited the manuscript before submission.

Corresponding author

Correspondence to Lucia M. Li.

Ethics declarations

Competing interests

A.C. declares that he is employed as Editor of the Journal of Neurology, Neurosurgery and Psychiatry; is the current President of the Functional Neurologic Disorders Society; is Chair of the Research and Data Usage Committee of the Scottish Trauma Network; and receives payment for providing expert testimony in court on neuropsychiatric conditions, including traumatic brain injury. The other authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Neurology thanks Malcolm Hopwood and the other, anonymous, reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

CENTER-TBI: https://www.center-tbi.eu/

CREACTIVE: http://creactive.marionegri.it/

MSKTC TBI Model Systems: https://msktc.org/tbi/model-system-centers

The Nurses’ Health Study: https://nurseshealthstudy.org/

TRACK-TBI: https://tracktbi.ucsf.edu/transforming-research-and-clinical-knowledge-tbi

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, L.M., Carson, A. & Dams-O’Connor, K. Psychiatric sequelae of traumatic brain injury — future directions in research. Nat Rev Neurol 19, 556–571 (2023). https://doi.org/10.1038/s41582-023-00853-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41582-023-00853-8

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing