Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Multifaceted microglia — key players in primary brain tumour heterogeneity

Abstract

Microglia are the resident innate immune cells of the immune-privileged CNS and, as such, represent the first line of defence against tissue injury and infection. Given their location, microglia are undoubtedly the first immune cells to encounter a developing primary brain tumour. Our knowledge of these cells is therefore important to consider in the context of such neoplasms. As the heterogeneous nature of the most aggressive primary brain tumours is thought to underlie their poor prognosis, this Review places a special emphasis on the heterogeneity of the tumour-associated microglia and macrophage populations present in primary brain tumours. Where available, specific information on microglial heterogeneity in various types and subtypes of brain tumour is included. Emerging evidence that highlights the importance of considering the heterogeneity of both the tumour and of microglial populations in providing improved treatment outcomes for patients is also discussed.

Key points

  • Brain tumours are heterogeneous and can now be subdivided into molecular subtypes based on genetic alterations.

  • These tumour subtypes contain tumour-associated microglia and/or macrophages that can vary in number and phenotype.

  • Microglia display acquired as well as intrinsic spatiotemporal heterogeneity (that is, reaction states and subtypes) that should be considered in the context of the tumour microenvironment.

  • Understanding the complexity of tumour-associated microglia and macrophage populations could have diagnostic value and generate novel avenues for therapeutic intervention.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Microglial subtypes have unique spatiotemporal distributions.
Fig. 2: TAM content in paediatric and adult brain tumours.
Fig. 3: Cell markers can discriminate resident microglia from infiltrating macrophages in the tumour microenvironment.
Fig. 4: Intrinsic and extrinsic factors that might contribute to microglial heterogeneity in the tumour microenvironment.
Fig. 5: TAM characteristics might contribute an additional stratum in the classification of primary brain tumours.

Similar content being viewed by others

References

  1. Spittau, B. Aging microglia-phenotypes, functions and implications for age-related neurodegenerative diseases. Front. Aging Neurosci. 9, 194 (2017).

    PubMed  PubMed Central  Google Scholar 

  2. Wolf, S. A., Boddeke, H. W. & Kettenmann, H. Microglia in physiology and disease. Annu. Rev. Physiol. 79, 619–643 (2017).

    CAS  PubMed  Google Scholar 

  3. Li, Q. & Barres, B. A. Microglia and macrophages in brain homeostasis and disease. Nat. Rev. Immunol. 18, 225–242 (2018).

    CAS  PubMed  Google Scholar 

  4. Ostrom, Q. T. et al. The epidemiology of glioma in adults: a “state of the science” review. Neuro Oncol. 16, 896–913 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Bondy, M. L. et al. Brain tumor epidemiology: consensus from the Brain Tumor Epidemiology Consortium. Cancer 113, 1953–1968 (2008).

    PubMed  Google Scholar 

  6. Louis, D. N. et al. The 2016 World Health Organization classification of tumors of the central nervous system: a summary. Acta Neuropathol. 131, 803–820 (2016).

    PubMed  Google Scholar 

  7. Preusser, M., Brastianos, P. K. & Mawrin, C. Advances in meningioma genetics: novel therapeutic opportunities. Nat. Rev. Neurol. 14, 106–115 (2018).

    CAS  PubMed  Google Scholar 

  8. Villa, A. et al. Sex-specific features of microglia from adult mice. Cell Rep. 23, 3501–3511 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Guneykaya, D. et al. Transcriptional and translational differences of microglia from male and female brains. Cell Rep. 24, 2773–2783 (2018).

    CAS  PubMed  Google Scholar 

  10. Kodama, L. et al. Microglial microRNAs mediate sex-specific responses to tau pathology. Nat. Neurosci. 23, 167–171 (2020).

    CAS  PubMed  Google Scholar 

  11. Ochocka, N. et al. Single-cell RNA sequencing reveals functional heterogeneity and sex differences of glioma-associated brain macrophages. Preprint at bioRxiv https://doi.org/10.1101/752949 (2020).

    Article  Google Scholar 

  12. McKinney, P. A. Brain tumours: incidence, survival, and aetiology. J. Neurol. Neurosurg. Psychiatry 75 (Suppl. 2), ii12–ii17 (2004).

    PubMed  PubMed Central  Google Scholar 

  13. Jessa, S. et al. Stalled developmental programs at the root of pediatric brain tumors. Nat. Genet. 51, 1702–1713 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Masuda, T., Sankowski, R., Staszewski, O. & Prinz, M. Microglia heterogeneity in the single-cell era. Cell Rep. 30, 1271–1281 (2020).

    CAS  PubMed  Google Scholar 

  15. Van Hove, H. et al. A single-cell atlas of mouse brain macrophages reveals unique transcriptional identities shaped by ontogeny and tissue environment. Nat. Neurosci. 22, 1021–1035 (2019).

    PubMed  Google Scholar 

  16. Bisht, K. et al. Dark microglia: a new phenotype predominantly associated with pathological states. Glia 64, 826–839 (2016).

    PubMed  PubMed Central  Google Scholar 

  17. Hammond, T. R. et al. Single-cell RNA sequencing of microglia throughout the mouse lifespan and in the injured brain reveals complex cell-state changes. Immunity 50, 253–271.e6 (2019).

    CAS  PubMed  Google Scholar 

  18. Lenz, K. M. & Nelson, L. H. Microglia and beyond: innate immune cells as regulators of brain development and behavioral function. Front. Immunol. 9, 698 (2018).

    PubMed  PubMed Central  Google Scholar 

  19. Grabert, K. et al. Microglial brain region-dependent diversity and selective regional sensitivities to aging. Nat. Neurosci. 19, 504–516 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Stratoulias, V., Venero, J. L., Tremblay, M. E. & Joseph, B. Microglial subtypes: diversity within the microglial community. EMBO J. 38, e101997 (2019).

    PubMed  PubMed Central  Google Scholar 

  21. Wlodarczyk, A. et al. A novel microglial subset plays a key role in myelinogenesis in developing brain. EMBO J. 36, 3292–3308 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Ueno, M. et al. Layer V cortical neurons require microglial support for survival during postnatal development. Nat. Neurosci. 16, 543–551 (2013).

    CAS  PubMed  Google Scholar 

  23. Benmamar-Badel, A., Owens, T. & Wlodarczyk, A. Protective microglial subset in development, aging, and disease: lessons from transcriptomic studies. Front. Immunol. 11, 430 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Li, Q. et al. Developmental heterogeneity of microglia and brain myeloid cells revealed by deep single-cell RNA sequencing. Neuron 101, 207–223.e10 (2019).

    CAS  PubMed  Google Scholar 

  25. Yao, M. et al. Astrocytic trans-differentiation completes a multicellular paracrine feedback loop required for medulloblastoma tumor growth. Cell 180, 502–520 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Gibson, P. et al. Subtypes of medulloblastoma have distinct developmental origins. Nature 468, 1095–1099 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. de Pablo, F. & de la Rosa, E. J. The developing CNS: a scenario for the action of proinsulin, insulin and insulin-like growth factors. Trends Neurosci. 18, 143–150 (1995).

    PubMed  Google Scholar 

  28. Svalina, M. N. et al. IGF1R as a key target in high risk, metastatic medulloblastoma. Sci. Rep. 6, 27012 (2016).

    PubMed  PubMed Central  Google Scholar 

  29. Sato-Hashimoto, M. et al. Microglial SIRPα regulates the emergence of CD11c+ microglia and demyelination damage in white matter. eLife 8, e42025 (2019).

    PubMed  PubMed Central  Google Scholar 

  30. Van Vuurden, D. G. H. E. et al. SIRPα is transcriptionally downregulated by epigenetic silencing in medulloblastoma. J. Mol. Clin. Med. 1, 157–168 (2018).

    Google Scholar 

  31. Gholamin, S. et al. Disrupting the CD47–SIRPα anti-phagocytic axis by a humanized anti-CD47 antibody is an efficacious treatment for malignant pediatric brain tumors. Sci. Transl Med. 9, eaaf2968 (2017).

    PubMed  Google Scholar 

  32. Szulzewsky, F. et al. Glioma-associated microglia/macrophages display an expression profile different from M1 and M2 polarization and highly express Gpnmb and Spp1. PLoS ONE 10, e0116644 (2015).

    PubMed  PubMed Central  Google Scholar 

  33. Domingues, P. H. et al. Association between inflammatory infiltrates and isolated monosomy 22/del(22q) in meningiomas. PLoS ONE 8, e74798 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Bertolotto, A., Caterson, B., Canavese, G., Migheli, A. & Schiffer, D. Monoclonal antibodies to keratan sulfate immunolocalize ramified microglia in paraffin and cryostat sections of rat brain. J. Histochem. Cytochem. 41, 481–487 (1993).

    CAS  PubMed  Google Scholar 

  35. Bertolotto, A., Agresti, C., Castello, A., Manzardo, E. & Riccio, A. 5D4 keratan sulfate epitope identifies a subset of ramified microglia in normal central nervous system parenchyma. J. Neuroimmunol. 85, 69–77 (1998).

    CAS  PubMed  Google Scholar 

  36. Wilms, H., Wollmer, M. A. & Sievers, J. In vitro-staining specificity of the antibody 5-D-4 for microglia but not for monocytes and macrophages indicates that microglia are a unique subgroup of the myelomonocytic lineage. J. Neuroimmunol. 98, 89–95 (1999).

    CAS  PubMed  Google Scholar 

  37. Jones, L. L. & Tuszynski, M. H. Spinal cord injury elicits expression of keratan sulfate proteoglycans by macrophages, reactive microglia, and oligodendrocyte progenitors. J. Neurosci. 22, 4611–4624 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Zhang, Z. et al. Deficiency of a sulfotransferase for sialic acid-modified glycans mitigates Alzheimer’s pathology. Proc. Natl Acad. Sci. USA 114, E2947–E2954 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Hirano, K. et al. Ablation of keratan sulfate accelerates early phase pathogenesis of ALS. PLoS ONE 8, e66969 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Mughal, A. A. et al. Patterns of invasive growth in malignant gliomas-the hippocampus emerges as an invasion-spared brain region. Neoplasia 20, 643–656 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Lapin, D. H., Tsoli, M. & Ziegler, D. S. Genomic insights into diffuse intrinsic pontine glioma. Front. Oncol. 7, 57 (2017).

    PubMed  PubMed Central  Google Scholar 

  42. Vitanza, N. A. & Monje, M. Diffuse intrinsic pontine glioma: from diagnosis to next-generation clinical trials. Curr. Treat. Options Neurol. 21, 37 (2019).

    PubMed  Google Scholar 

  43. Nioka, H., Matsumura, K., Nakasu, S. & Handa, J. Immunohistochemical localization of glycosaminoglycans in experimental rat glioma models. J. Neurooncol. 21, 233–242 (1994).

    CAS  PubMed  Google Scholar 

  44. Kato, Y. et al. Increased expression of highly sulfated keratan sulfate synthesized in malignant astrocytic tumors. Biochem. Biophys. Res. Commun. 369, 1041–1046 (2008).

    CAS  PubMed  Google Scholar 

  45. Leiphrakpam, P. D. et al. Role of keratan sulfate expression in human pancreatic cancer malignancy. Sci. Rep. 9, 9665 (2019).

    PubMed  PubMed Central  Google Scholar 

  46. Yin, J. et al. Transforming growth factor-β1 upregulates keratan sulfate and chondroitin sulfate biosynthesis in microglias after brain injury. Brain Res. 1263, 10–22 (2009).

    CAS  PubMed  Google Scholar 

  47. Lin, G. L. et al. Non-inflammatory tumor microenvironment of diffuse intrinsic pontine glioma. Acta Neuropathol. Commun. 6, 51 (2018).

    PubMed  PubMed Central  Google Scholar 

  48. Jander, S., Schroeter, M., Fischer, J. & Stoll, G. Differential regulation of microglial keratan sulfate immunoreactivity by proinflammatory cytokines and colony-stimulating factors. Glia 30, 401–410 (2000).

    CAS  PubMed  Google Scholar 

  49. Lun, M. P. et al. Spatially heterogeneous choroid plexus transcriptomes encode positional identity and contribute to regional CSF production. J. Neurosci. 35, 4903–4916 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Wolff, J. E., Sajedi, M., Brant, R., Coppes, M. J. & Egeler, R. M. Choroid plexus tumours. Br. J. Cancer 87, 1086–1091 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Chen, S. K. et al. Hematopoietic origin of pathological grooming in Hoxb8 mutant mice. Cell 141, 775–785 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. De, S. et al. Two distinct ontogenies confer heterogeneity to mouse brain microglia. Development 145, dev152306 (2018).

    PubMed  PubMed Central  Google Scholar 

  53. Tremblay, M. E., Lowery, R. L. & Majewska, A. K. Microglial interactions with synapses are modulated by visual experience. PLoS Biol. 8, e1000527 (2010).

    PubMed  PubMed Central  Google Scholar 

  54. Wake, H., Moorhouse, A. J., Jinno, S., Kohsaka, S. & Nabekura, J. Resting microglia directly monitor the functional state of synapses in vivo and determine the fate of ischemic terminals. J. Neurosci. 29, 3974–3980 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Cunningham, C. L., Martinez-Cerdeno, V. & Noctor, S. C. Microglia regulate the number of neural precursor cells in the developing cerebral cortex. J. Neurosci. 33, 4216–4233 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Burns, J. C. et al. Differential accumulation of storage bodies with aging defines discrete subsets of microglia in the healthy brain. eLife 9, e57495 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Sedgwick, J. D. et al. Isolation and direct characterization of resident microglial cells from the normal and inflamed central nervous system. Proc. Natl Acad. Sci. USA 88, 7438–7442 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Muller, A., Brandenburg, S., Turkowski, K., Muller, S. & Vajkoczy, P. Resident microglia, and not peripheral macrophages, are the main source of brain tumor mononuclear cells. Int. J. Cancer 137, 278–288 (2015).

    PubMed  Google Scholar 

  59. Bowman, R. L. et al. Macrophage ontogeny underlies differences in tumor-specific education in brain malignancies. Cell Rep. 17, 2445–2459 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Yu, K. et al. Surveying brain tumor heterogeneity by single-cell RNA-sequencing of multi-sector biopsies. Natl Sci. Rev. 7, 1306–1318 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Muller, S. et al. Single-cell profiling of human gliomas reveals macrophage ontogeny as a basis for regional differences in macrophage activation in the tumor microenvironment. Genome Biol. 18, 234 (2017).

    PubMed  PubMed Central  Google Scholar 

  62. Hambardzumyan, D., Gutmann, D. H. & Kettenmann, H. The role of microglia and macrophages in glioma maintenance and progression. Nat. Neurosci. 19, 20–27 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Charles, N. A., Holland, E. C., Gilbertson, R., Glass, R. & Kettenmann, H. The brain tumor microenvironment. Glia 60, 502–514 (2012).

    PubMed  Google Scholar 

  64. Wei, J., Gabrusiewicz, K. & Heimberger, A. The controversial role of microglia in malignant gliomas. Clin. Dev. Immunol. 2013, 285246 (2013).

    PubMed  PubMed Central  Google Scholar 

  65. Gutmann, D. H. & Kettenmann, H. Microglia/brain macrophages as central drivers of brain tumor pathobiology. Neuron 104, 442–449 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Haage, V. et al. Comprehensive gene expression meta-analysis identifies signature genes that distinguish microglia from peripheral monocytes/macrophages in health and glioma. Acta Neuropathol. Commun. 7, 20 (2019).

    PubMed  PubMed Central  Google Scholar 

  67. Louis, D. N. et al. The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol. 114, 97–109 (2007).

    PubMed  PubMed Central  Google Scholar 

  68. Brennan, C. W. et al. The somatic genomic landscape of glioblastoma. Cell 155, 462–477 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Verhaak, R. G. W. et al. Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell 17, 98–110 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Houillier, C. et al. IDH1 or IDH2 mutations predict longer survival and response to temozolomide in low-grade gliomas. Neurology 75, 1560–1566 (2010).

    CAS  PubMed  Google Scholar 

  71. Parsons, D. W. et al. An integrated genomic analysis of human glioblastoma multiforme. Science 321, 1807–1812 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Yan, H. et al. IDH1 and IDH2 mutations in gliomas. N. Engl. J. Med. 360, 765–773 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Wang, Q. et al. Tumor evolution of glioma-intrinsic gene expression subtypes associates with immunological changes in the microenvironment. Cancer Cell 32, 42–56 (2017).

    PubMed  PubMed Central  Google Scholar 

  74. Behnan, J., Finocchiaro, G. & Hanna, G. The landscape of the mesenchymal signature in brain tumours. Brain 142, 847–866 (2019).

    PubMed  PubMed Central  Google Scholar 

  75. Engler, J. R. et al. Increased microglia/macrophage gene expression in a subset of adult and pediatric astrocytomas. PLoS ONE 7, e43339 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Shan, X. et al. Prognostic value of a nine-gene signature in glioma patients based on tumor-associated macrophages expression profiling. Clin. Immunol. 216, 108430 (2020).

    CAS  PubMed  Google Scholar 

  77. Kaffes, I. et al. Human mesenchymal glioblastomas are characterized by an increased immune cell presence compared to proneural and classical tumors. Oncoimmunology 8, e1655360 (2019).

    PubMed  PubMed Central  Google Scholar 

  78. Darmanis, S. et al. Single-cell RNA-seq analysis of infiltrating neoplastic cells at the migrating front of human glioblastoma. Cell Rep. 21, 1399–1410 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Nduom, E. K., Weller, M. & Heimberger, A. B. Immunosuppressive mechanisms in glioblastoma. Neuro Oncol. 17 (Suppl. 7), vii9–vii14 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Watters, J. J., Schartner, J. M. & Badie, B. Microglia function in brain tumors. J. Neurosci. Res. 81, 447–455 (2005).

    CAS  PubMed  Google Scholar 

  81. Gieryng, A., Pszczolkowska, D., Walentynowicz, K. A., Rajan, W. D. & Kaminska, B. Immune microenvironment of gliomas. Lab. Invest. 97, 498–518 (2017).

    CAS  PubMed  Google Scholar 

  82. Walentynowicz, K. A. et al. In search of reliable markers for glioma-induced polarization of microglia. Front. Immunol. 9, 1329 (2018).

    PubMed  PubMed Central  Google Scholar 

  83. Chen, Z. et al. Cellular and molecular identity of tumor-associated macrophages in glioblastoma. Cancer Res. 77, 2266–2278 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Klemm, F. et al. Interrogation of the microenvironmental landscape in brain tumors reveals disease-specific alterations of immune cells. Cell 181, 1643–1660 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Friebel, E. et al. Single-cell mapping of human brain cancer reveals tumor-specific instruction of tissue-invading leukocytes. Cell 181, 1626–1642 (2020).

    CAS  PubMed  Google Scholar 

  86. Phillips, H. S. et al. Molecular subclasses of high-grade glioma predict prognosis, delineate a pattern of disease progression, and resemble stages in neurogenesis. Cancer Cell 9, 157–173 (2006).

    CAS  PubMed  Google Scholar 

  87. Northcott, P. A. et al. Medulloblastoma comprises four distinct molecular variants. J. Clin. Oncol. 29, 1408–1414 (2011).

    PubMed  Google Scholar 

  88. Thompson, M. C. et al. Genomics identifies medulloblastoma subgroups that are enriched for specific genetic alterations. J. Clin. Oncol. 24, 1924–1931 (2006).

    CAS  PubMed  Google Scholar 

  89. Cavalli, F. M. G. et al. Intertumoral heterogeneity within medulloblastoma subgroups. Cancer Cell 31, 737–754.e6 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Griesinger, A. M. et al. Characterization of distinct immunophenotypes across pediatric brain tumor types. J. Immunol. 191, 4880–4888 (2013).

    CAS  PubMed  Google Scholar 

  91. Pham, C. D. et al. Differential immune microenvironments and response to immune checkpoint blockade among molecular subtypes of murine medulloblastoma. Clin. Cancer Res. 22, 582–595 (2016).

    CAS  PubMed  Google Scholar 

  92. Bockmayr, M. et al. Subgroup-specific immune and stromal microenvironment in medulloblastoma. Oncoimmunology 7, e1462430 (2018).

    PubMed  PubMed Central  Google Scholar 

  93. Maximov, V. et al. Tumour-associated macrophages exhibit anti-tumoural properties in Sonic Hedgehog medulloblastoma. Nat. Commun. 10, 2410 (2019).

    PubMed  PubMed Central  Google Scholar 

  94. Lee, C. et al. M1 macrophage recruitment correlates with worse outcome in SHH medulloblastomas. BMC Cancer 18, 535 (2018).

    PubMed  PubMed Central  Google Scholar 

  95. Seizinger, B. R., de la Monte, S., Atkins, L., Gusella, J. F. & Martuza, R. L. Molecular genetic approach to human meningioma: loss of genes on chromosome 22. Proc. Natl Acad. Sci. USA 84, 5419–5423 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Sanson, M. et al. Germline deletion in a neurofibromatosis type 2 kindred inactivates the NF2 gene and a candidate meningioma locus. Hum. Mol. Genet. 2, 1215–1220 (1993).

    CAS  PubMed  Google Scholar 

  97. Brastianos, P. K. et al. Genomic sequencing of meningiomas identifies oncogenic SMO and AKT1 mutations. Nat. Genet. 45, 285–289 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Sahm, F. et al. DNA methylation-based classification and grading system for meningioma: a multicentre, retrospective analysis. Lancet Oncol. 18, 682–694 (2017).

    CAS  PubMed  Google Scholar 

  99. Wood, G. W. & Morantz, R. A. Immunohistologic evaluation of the lymphoreticular infiltrate of human central nervous system tumors. J. Natl Cancer Inst. 62, 485–491 (1979).

    CAS  PubMed  Google Scholar 

  100. Rossi, M. L., Cruz Sanchez, F., Hughes, J. T., Esiri, M. M. & Coakham, H. B. Immunocytochemical study of the cellular immune response in meningiomas. J. Clin. Pathol. 41, 314–319 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Bo, L., Mork, S. J. & Nyland, H. An immunohistochemical study of mononuclear cells in meningiomas. Neuropathol. Appl. Neurobiol. 18, 548–558 (1992).

    CAS  PubMed  Google Scholar 

  102. Asai, J. et al. Fluorescence automatic cell sorter and immunohistochemical investigation of CD68-positive cells in meningioma. Clin. Neurol. Neurosurg. 101, 229–234 (1999).

    CAS  PubMed  Google Scholar 

  103. Strik, H. M., Stoll, M. & Meyermann, R. Immune cell infiltration of intrinsic and metastatic intracranial tumours. Anticancer Res. 24, 37–42 (2004).

    PubMed  Google Scholar 

  104. Grund, S. et al. The microglial/macrophagic response at the tumour-brain border of invasive meningiomas. Neuropathol. Appl. Neurobiol. 35, 82–88 (2009).

    CAS  PubMed  Google Scholar 

  105. Proctor, D. T. et al. Tumor-associated macrophage infiltration in meningioma. Neurooncol. Adv. 1, vdz018 (2019).

    PubMed  PubMed Central  Google Scholar 

  106. Adams, C. L. et al. A rapid robust method for subgrouping non-NF2 meningiomas according to genotype and detection of lower levels of M2 macrophages in AKT1 E17K mutated tumours. Int. J. Mol. Sci. 21, 1273 (2020).

    CAS  PubMed Central  Google Scholar 

  107. Lauber, C., Klink, B. & Seifert, M. Comparative analysis of histologically classified oligodendrogliomas reveals characteristic molecular differences between subgroups. BMC Cancer 18, 399 (2018).

    PubMed  PubMed Central  Google Scholar 

  108. Kamoun, A. et al. Integrated multi-omics analysis of oligodendroglial tumours identifies three subgroups of 1p/19q co-deleted gliomas. Nat. Commun. 7, 11263 (2016).

    PubMed  PubMed Central  Google Scholar 

  109. Deininger, M. H. et al. Cyclooxygenase (COX)-1 expressing macrophages/microglial cells and COX-2 expressing astrocytes accumulate during oligodendroglioma progression. Brain Res. 885, 111–116 (2000).

    CAS  PubMed  Google Scholar 

  110. Deininger, M. H. et al. Heme oxygenase (HO)-1 expressing macrophages/microglial cells accumulate during oligodendroglioma progression. Brain Res. 882, 1–8 (2000).

    CAS  PubMed  Google Scholar 

  111. Tirosh, I. et al. Single-cell RNA-seq supports a developmental hierarchy in human oligodendroglioma. Nature 539, 309–313 (2016).

    PubMed  PubMed Central  Google Scholar 

  112. Venteicher, A. S. et al. Decoupling genetics, lineages, and microenvironment in IDH-mutant gliomas by single-cell RNA-seq. Science 355, eaai8478 (2017).

    PubMed  PubMed Central  Google Scholar 

  113. Nam, S. J. et al. Tumor-infiltrating immune cell subpopulations and programmed death ligand 1 (PD-L1) expression associated with clinicopathological and prognostic parameters in ependymoma. Cancer Immunol. Immunother. 68, 305–318 (2019).

    PubMed  Google Scholar 

  114. Pajtler, K. W. et al. Molecular classification of ependymal tumors across all CNS compartments, histopathological grades, and age groups. Cancer Cell 27, 728–743 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Lester, A. & McDonald, K. L. Intracranial ependymomas: molecular insights and translation to treatment. Brain Pathol. 30, 3–12 (2020).

    PubMed  Google Scholar 

  116. Eder, N. et al. YAP1/TAZ drives ependymoma-like tumour formation in mice. Nat. Commun. 11, 2380 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Liu, S. J. et al. Multiplatform molecular profiling reveals epigenomic intratumor heterogeneity in ependymoma. Cell Rep. 30, 1300–1309.e5 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Elsarrag, M., Patel, P. D., Chatrath, A., Taylor, D. & Jane, J. A. Genomic and molecular characterization of pituitary adenoma pathogenesis: review and translational opportunities. Neurosurg. Focus. 48, E11 (2020).

    PubMed  Google Scholar 

  119. Lu, J. Q. et al. Immune cell infiltrates in pituitary adenomas: more macrophages in larger adenomas and more T cells in growth hormone adenomas. Endocr. Pathol. 26, 263–272 (2015).

    CAS  PubMed  Google Scholar 

  120. Yagnik, G., Rutowski, M. J., Shah, S. S. & Aghi, M. K. Stratifying nonfunctional pituitary adenomas into two groups distinguished by macrophage subtypes. Oncotarget 10, 2212–2223 (2019).

    PubMed  PubMed Central  Google Scholar 

  121. Sato, M. et al. Analysis of tumor angiogenesis and immune microenvironment in non-functional pituitary endocrine tumors. J. Clin. Med. 8, 695 (2019).

    CAS  PubMed Central  Google Scholar 

  122. Desbaillets, I. et al. Human astrocytomas and glioblastomas express monocyte chemoattractant protein-1 (MCP-1) in vivo and in vitro. Int. J. Cancer 58, 240–247 (1994).

    CAS  PubMed  Google Scholar 

  123. Chang, A. L. et al. CCL2 produced by the glioma microenvironment is essential for the recruitment of regulatory T cells and myeloid-derived suppressor cells. Cancer Res. 76, 5671–5682 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Lindemann, C., Marschall, V., Weigert, A., Klingebiel, T. & Fulda, S. SMAC mimetic-induced upregulation of CCL2/MCP-1 triggers migration and invasion of glioblastoma cells and influences the tumor microenvironment in a paracrine manner. Neoplasia 17, 481–489 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Platten, M. et al. Monocyte chemoattractant protein-1 increases microglial infiltration and aggressiveness of gliomas. Ann. Neurol. 54, 388–392 (2003).

    CAS  PubMed  Google Scholar 

  126. Cassetta, L. & Pollard, J. W. Targeting macrophages: therapeutic approaches in cancer. Nat. Rev. Drug Discov. 17, 887–904 (2018).

    CAS  PubMed  Google Scholar 

  127. Brana, I. et al. Carlumab, an anti-C-C chemokine ligand 2 monoclonal antibody, in combination with four chemotherapy regimens for the treatment of patients with solid tumors: an open-label, multicenter phase 1b study. Target. Oncol. 10, 111–123 (2015).

    PubMed  Google Scholar 

  128. Elmore, M. R. et al. Colony-stimulating factor 1 receptor signaling is necessary for microglia viability, unmasking a microglia progenitor cell in the adult brain. Neuron 82, 380–397 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Easley-Neal, C., Foreman, O., Sharma, N., Zarrin, A. A. & Weimer, R. M. CSF1R ligands IL-34 and CSF1 are differentially required for microglia development and maintenance in white and gray matter brain regions. Front. Immunol. 10, 2199 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Pyonteck, S. M. et al. CSF-1R inhibition alters macrophage polarization and blocks glioma progression. Nat. Med. 19, 1264–1272 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Quail, D. F. et al. The tumor microenvironment underlies acquired resistance to CSF-1R inhibition in gliomas. Science 352, aad3018 (2016).

    PubMed  PubMed Central  Google Scholar 

  132. Butowski, N. et al. Orally administered colony stimulating factor 1 receptor inhibitor PLX3397 in recurrent glioblastoma: an Ivy Foundation Early Phase Clinical Trials Consortium phase II study. Neuro Oncol. 18, 557–564 (2016).

    PubMed  Google Scholar 

  133. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02526017 (2020).

  134. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT04257617 (2020).

  135. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02216409 (2019).

  136. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03512340 (2020).

  137. Kosaka, A., Ohkuri, T. & Okada, H. Combination of an agonistic anti-CD40 monoclonal antibody and the COX-2 inhibitor celecoxib induces anti-glioma effects by promotion of type-1 immunity in myeloid cells and T-cells. Cancer Immunol. Immunother. 63, 847–857 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Shoji, T. et al. Local convection-enhanced delivery of an anti-CD40 agonistic monoclonal antibody induces antitumor effects in mouse glioma models. Neuro Oncol. 18, 1120–1128 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Vonderheide, R. H. et al. Phase I study of the CD40 agonist antibody CP-870,893 combined with carboplatin and paclitaxel in patients with advanced solid tumors. Oncoimmunology 2, e23033 (2013).

    PubMed  PubMed Central  Google Scholar 

  140. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03389802 (2020).

  141. Stathopoulos, A. et al. Development of immune memory to glial brain tumors after tumor regression induced by immunotherapeutic Toll-like receptor 7/8 activation. Oncoimmunology 1, 298–305 (2012).

    PubMed  PubMed Central  Google Scholar 

  142. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT01204684. (2020).

  143. Gupta, K. & Burns, T. C. Radiation-induced alterations in the recurrent glioblastoma microenvironment: therapeutic implications. Front. Oncol. 8, 503 (2018).

    PubMed  PubMed Central  Google Scholar 

  144. Wang, S. C., Yu, C. F., Hong, J. H., Tsai, C. S. & Chiang, C. S. Radiation therapy-induced tumor invasiveness is associated with SDF-1-regulated macrophage mobilization and vasculogenesis. PLoS ONE 8, e69182 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Russell, J. S. & Brown, J. M. The irradiated tumor microenvironment: role of tumor-associated macrophages in vascular recovery. Front. Physiol. 4, 157 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Tabatabaei, P. et al. Radiotherapy induces an immediate inflammatory reaction in malignant glioma: a clinical microdialysis study. J. Neurooncol. 131, 83–92 (2017).

    CAS  PubMed  Google Scholar 

  147. Bhat, K. P. L. et al. Mesenchymal differentiation mediated by NF-κB promotes radiation resistance in glioblastoma. Cancer Cell 24, 331–346 (2013).

    CAS  PubMed  Google Scholar 

  148. Thomas, R. P. et al. Macrophage exclusion after radiation therapy (MERT): a first in human phase I/II trial using a CXCR4 inhibitor in glioblastoma. Clin. Cancer Res. 25, 6948–6957 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  149. Akkari, L. et al. Dynamic changes in glioma macrophage populations after radiotherapy reveal CSF-1R inhibition as a strategy to overcome resistance. Sci. Transl Med. 12, eaaw7843 (2020).

    CAS  PubMed  Google Scholar 

  150. Poon, C. C. et al. Differential microglia and macrophage profiles in human IDH-mutant and -wild type glioblastoma. Oncotarget 10, 3129–3143 (2019).

    PubMed  PubMed Central  Google Scholar 

  151. van Dalen, F. J., van Stevendaal, M., Fennemann, F. L., Verdoes, M. & Ilina, O. Molecular repolarisation of tumour-associated macrophages. Molecules 24, 9 (2018).

    PubMed Central  Google Scholar 

  152. Paolicelli, R. C. et al. Synaptic pruning by microglia is necessary for normal brain development. Science 333, 1456–1458 (2011).

    CAS  PubMed  Google Scholar 

  153. Chen, Y. & Xu, R. Drug repurposing for glioblastoma based on molecular subtypes. J. Biomed. Inf. 64, 131–138 (2016).

    Google Scholar 

  154. Jeanmougin, M. et al. Improved prognostication of glioblastoma beyond molecular subtyping by transcriptional profiling of the tumor microenvironment. Mol. Oncol. 14, 1016–1027 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  155. Olar, A. & Aldape, K. D. Using the molecular classification of glioblastoma to inform personalized treatment. J. Pathol. 232, 165–177 (2014).

    PubMed  PubMed Central  Google Scholar 

  156. Sorensen, M. D., Dahlrot, R. H., Boldt, H. B., Hansen, S. & Kristensen, B. W. Tumour-associated microglia/macrophages predict poor prognosis in high-grade gliomas and correlate with an aggressive tumour subtype. Neuropathol. Appl. Neurobiol. 44, 185–206 (2018).

    CAS  PubMed  Google Scholar 

  157. Zeiner, P. S. et al. Distribution and prognostic impact of microglia/macrophage subpopulations in gliomas. Brain Pathol. 29, 513–529 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  158. Villa, A., Della Torre, S. & Maggi, A. Sexual differentiation of microglia. Front. Neuroendocrinol. 52, 156–164 (2019).

    PubMed  Google Scholar 

  159. Bennett, M. L. et al. New tools for studying microglia in the mouse and human CNS. Proc. Natl Acad. Sci. USA 113, E1738–E1746 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  160. Butovsky, O. et al. Identification of a unique TGF-β-dependent molecular and functional signature in microglia. Nat. Neurosci. 17, 131–143 (2014).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors’ research is supported by grants from the Swedish Research Council (to B.J.), Swedish Cancer Foundation (to B.J.), Swedish Childhood Cancer Foundation (to K.B.), Swedish Cancer Society (to B.J.), Swedish Brain Foundation (to B.J.), Åke Wiberg Foundation (to M.C.), Petrus och Augusta Hedlund Foundation (to M.C.) and Karolinska Institutet Foundations (to B.J.).

Author information

Authors and Affiliations

Authors

Contributions

L.K. and B.J. contributed to all aspects of the article. M.C. and K.B. contributed substantially to discussions of the article content and participated in review and/or editing of the manuscript before submission.

Corresponding author

Correspondence to Bertrand Joseph.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Neurology thanks B. Kaminska, R. Verhaak and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Keane, L., Cheray, M., Blomgren, K. et al. Multifaceted microglia — key players in primary brain tumour heterogeneity. Nat Rev Neurol 17, 243–259 (2021). https://doi.org/10.1038/s41582-021-00463-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41582-021-00463-2

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer