Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Regulation of nephron progenitor cell lifespan and nephron endowment

Abstract

Low nephron number — resulting, for example, from prematurity or developmental anomalies — is a risk factor for the development of hypertension, chronic kidney disease and kidney failure. Considerable interest therefore exists in the mechanisms that regulate nephron endowment and contribute to the premature cessation of nephrogenesis following preterm birth. The cessation of nephrogenesis in utero or shortly after birth is synchronized across multiple niches in all mammals, and is coupled with the exhaustion of nephron progenitor cells. Consequently, no nephrons are formed after the cessation of developmental nephrogenesis, and lifelong renal function therefore depends on the complement of nephrons generated during gestation. In humans, a tenfold variation in nephron endowment between individuals contributes to differences in susceptibility to kidney disease; however, the mechanisms underlying this variation are not yet clear. Salient advances in our understanding of environmental inputs, and of intrinsic molecular mechanisms that contribute to the regulation of cessation timing or nephron progenitor cell exhaustion, have the potential to inform interventions to enhance nephron endowment and improve lifelong kidney health for susceptible individuals.

Key points

  • Nephron endowment in humans varies more than tenfold between individuals, with consequences for susceptibility to chronic kidney disease and kidney failure.

  • Nephron endowment can be reduced or increased by modulation of nutritional inputs including gestational protein, fat and vitamin intake. Adaptation to prenatal nutrition may prove detrimental when the offspring’s adult environment differs from gestational conditions.

  • Numerous genes are required for maintenance of the self-renewing population; the reduction or loss of these genes in embryonic nephron progenitor cells can result in premature depletion of this progenitor population with consequent reduced nephron numbers.

  • Nephrogenesis cessation timing in mice is determined by a community effect and is tunable by altering the perception of WNT signalling strength by nephron progenitor cells to favour self-renewal versus differentiation.

  • The twofold range in nephron number observed between mouse strains could be leveraged to identify genetic loci that regulate nephron number variation. Optimization of methods to accurately evaluate nephron numbers in vivo will be of great value to future efforts.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Nephrogenesis in the mouse.
Fig. 2: Effect of nutritional status on nephron number.
Fig. 3: Model for determining the timing of nephrogenesis cessation.

Similar content being viewed by others

References

  1. Costantini, F. & Kopan, R. Patterning a complex organ: branching morphogenesis and nephron segmentation in kidney development. Dev. Cell 18, 698–712 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. McMahon, A. P. Development of the mammalian kidney. Curr. Top. Dev. Biol. 117, 31–64 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Little, M. H., Howden, S. E., Lawlor, K. T. & Vanslambrouck, J. M. Determining lineage relationships in kidney development and disease. Nat. Rev. Nephrol. 18, 8–21 (2022).

    Article  CAS  PubMed  Google Scholar 

  4. Short, K. M. & Smyth, I. M. Branching morphogenesis as a driver of renal development. Anat. Rec. 303, 2578–2587 (2020).

    Article  Google Scholar 

  5. Dressler, G. R. The cellular basis of kidney development. Annu. Rev. Cell Dev. Biol. 22, 509–529 (2006).

    Article  CAS  PubMed  Google Scholar 

  6. Oxburgh, L. Kidney nephron determination. Annu. Rev. Cell Dev. Biol. 34, 427–450 (2018).

    Article  CAS  PubMed  Google Scholar 

  7. Li, H., Hohenstein, P. & Kuure, S. Embryonic kidney development, stem cells and the origin of Wilms tumor. Genes https://doi.org/10.3390/genes12020318 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Hartman, H. A., Lai, H. L. & Patterson, L. T. Cessation of renal morphogenesis in mice. Dev. Biol. 310, 379–387 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Rumballe, B. A. et al. Nephron formation adopts a novel spatial topology at cessation of nephrogenesis. Dev. Biol. 360, 110–122 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Al-Awqati, Q. & Goldberg, M. R. Architectural patterns in branching morphogenesis in the kidney. Kidney Int. 54, 1832–1842 (1998).

    Article  CAS  PubMed  Google Scholar 

  11. Schuh, M. P. et al. The rhesus macaque serves as a model for human lateral branch nephrogenesis. J. Am. Soc. Nephrol. 32, 1097–1112 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Short, K. M. et al. Branching morphogenesis in the developing kidney is not impacted by nephron formation or integration. Elife https://doi.org/10.7554/eLife.38992 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Cebrian, C., Borodo, K., Charles, N. & Herzlinger, D. A. Morphometric index of the developing murine kidney. Dev. Dyn. 231, 601–608 (2004).

    Article  PubMed  Google Scholar 

  14. Osathanondh, V. & Potter, E. L. Development of human kidney as shown by microdissection. V. Development of vascular pattern of glomerulus. Arch. Pathol. 82, 403–411 (1966).

    CAS  PubMed  Google Scholar 

  15. Potter, E. L. Normal and Abnormal Development of the Kidney (Yearbook Medical, 1972).

  16. Moritz, K. M., Wintour, E. M., Black, M. J., Bertram, J. F. & Caruana, G. Factors influencing mammalian kidney development: implications for health in adult life. Adv. Anat. Embryol. Cell Biol. 196, 1–78 (2008).

    CAS  PubMed  Google Scholar 

  17. Sutherland, M. R. et al. Accelerated maturation and abnormal morphology in the preterm neonatal kidney. J. Am. Soc. Nephrol. 22, 1365–1374 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Abitbol, C. L. & Rodriguez, M. M. The long-term renal and cardiovascular consequences of prematurity. Nat. Rev. Nephrol. 8, 265–274 (2012).

    Article  CAS  PubMed  Google Scholar 

  19. Dyson, A. & Kent, A. L. The effect of preterm birth on renal development and renal health outcome. Neoreviews 20, e725–e736 (2019).

    Article  PubMed  Google Scholar 

  20. Rodriguez, M. M. et al. Histomorphometric analysis of postnatal glomerulogenesis in extremely preterm infants. Pediatr. Dev. Pathol. 7, 17–25 (2004).

    Article  PubMed  Google Scholar 

  21. Brennan, S., Watson, D. L., Rudd, D. M. & Kandasamy, Y. Kidney growth following preterm birth: evaluation with renal parenchyma ultrasonography. Pediatr. Res. https://doi.org/10.1038/s41390-022-01970-8 (2022).

    Article  PubMed  Google Scholar 

  22. Gaitonde, D. Y., Cook, D. L. & Rivera, I. M. Chronic kidney disease: detection and evaluation. Am. Fam. Physician 96, 776–783 (2017).

    PubMed  Google Scholar 

  23. Kusaba, T., Lalli, M., Kramann, R., Kobayashi, A. & Humphreys, B. D. Differentiated kidney epithelial cells repair injured proximal tubule. Proc. Natl Acad. Sci. USA 111, 1527–1532 (2014).

    Article  CAS  PubMed  Google Scholar 

  24. Humphreys, B. D. et al. Repair of injured proximal tubule does not involve specialized progenitors. Proc. Natl Acad. Sci. USA 108, 9226–9231 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Rinkevich, Y. et al. In vivo clonal analysis reveals lineage-restricted progenitor characteristics in mammalian kidney development, maintenance, and regeneration. Cell Rep. 7, 1270–1283 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Asao, R. et al. Rac1 in podocytes promotes glomerular repair and limits the formation of sclerosis. Sci. Rep. 8, 5061 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Peired, A., Lazzeri, E., Lasagni, L. & Romagnani, P. Glomerular regeneration: when can the kidney regenerate from injury and what turns failure into success. Nephron Exp. Nephrol. 126, 70 (2014).

    Article  CAS  PubMed  Google Scholar 

  28. Romagnani, P. et al. Chronic kidney disease. Nat. Rev. Dis. Prim. 3, 17088 (2017).

    Article  PubMed  Google Scholar 

  29. Bertram, J. F., Douglas-Denton, R. N., Diouf, B., Hughson, M. D. & Hoy, W. E. Human nephron number: implications for health and disease. Pediatr. Nephrol. 26, 1529–1533 (2011).

    Article  PubMed  Google Scholar 

  30. Puelles, V. G. et al. Glomerular number and size variability and risk for kidney disease. Curr. Opin. Nephrol. Hypertens. 20, 7–15 (2011).

    Article  PubMed  Google Scholar 

  31. Hoy, W. E. et al. Distribution of volumes of individual glomeruli in kidneys at autopsy: association with physical and clinical characteristics and with ethnic group. Am. J. Nephrol. 33, 15–20 (2011).

    Article  PubMed  Google Scholar 

  32. Hoy, W. E. et al. Distribution of volumes of individual glomeruli in kidneys at autopsy: association with age, nephron number, birth weight and body mass index. Clin. Nephrol. 74, S105–S112 (2010).

    PubMed  Google Scholar 

  33. Hughson, M., Farris, A. B. III, Douglas-Denton, R., Hoy, W. E. & Bertram, J. F. Glomerular number and size in autopsy kidneys: the relationship to birth weight. Kidney Int. 63, 2113–2122 (2003).

    Article  PubMed  Google Scholar 

  34. Brenner, B. M., Garcia, D. L. & Anderson, S. Glomeruli and blood pressure. Less of one, more the other? Am. J. Hypertens. 1, 335–347 (1988).

    Article  CAS  PubMed  Google Scholar 

  35. Gurusinghe, S., Tambay, A. & Sethna, C. B. Developmental origins and nephron endowment in hypertension. Front. Pediatr. 5, 151 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Hoy, W. E., Hughson, M. D., Bertram, J. F., Douglas-Denton, R. & Amann, K. Nephron number, hypertension, renal disease, and renal failure. J. Am. Soc. Nephrol. 16, 2557–2564 (2005).

    Article  PubMed  Google Scholar 

  37. Mills, K. T., Stefanescu, A. & He, J. The global epidemiology of hypertension. Nat. Rev. Nephrol. 16, 223–237 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Calderon-Margalit, R. et al. History of childhood kidney disease and risk of adult end-stage renal disease. N. Engl. J. Med. 378, 428–438 (2018).

    Article  PubMed  Google Scholar 

  39. Leiba, A. et al. Association of adolescent hypertension with future end-stage renal disease. JAMA Intern. Med. 179, 517–523 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Alfandary, H. et al. Is the prognosis of congenital single functioning kidney benign? A population-based study. Pediatr. Nephrol. 36, 2837–2845 (2021).

    Article  PubMed  Google Scholar 

  41. Crump, C., Sundquist, J., Winkleby, M. A. & Sundquist, K. Preterm birth and risk of chronic kidney disease from childhood into mid-adulthood: national cohort study. BMJ 365, l1346 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Massie, A. B. et al. Quantifying postdonation risk of ESRD in living kidney donors. J. Am. Soc. Nephrol. 28, 2749–2755 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Reese, P. P., Boudville, N. & Garg, A. X. Living kidney donation: outcomes, ethics, and uncertainty. Lancet 385, 2003–2013 (2015).

    Article  PubMed  Google Scholar 

  44. Argeri, R. et al. Programmed adult kidney disease: importance of fetal environment. Front. Physiol. 11, 586290 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Charlton, J. R., Springsteen, C. H. & Carmody, J. B. Nephron number and its determinants in early life: a primer. Pediatr. Nephrol. 29, 2299–2308 (2014).

    Article  PubMed  Google Scholar 

  46. Lee, Y. Q., Collins, C. E., Gordon, A., Rae, K. M. & Pringle, K. G. The relationship between maternal nutrition during pregnancy and offspring kidney structure and function in humans: a systematic review. Nutrients https://doi.org/10.3390/nu10020241 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Schulz, L. C. The Dutch hunger winter and the developmental origins of health and disease. Proc. Natl Acad. Sci. USA 107, 16757–16758 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Painter, R. C. et al. Microalbuminuria in adults after prenatal exposure to the Dutch famine. J. Am. Soc. Nephrol. 16, 189–194 (2005).

    Article  PubMed  Google Scholar 

  49. Stanner, S. A. & Yudkin, J. S. Fetal programming and the Leningrad Siege study. Twin Res. 4, 287–292 (2001).

    Article  CAS  PubMed  Google Scholar 

  50. Barker, D. J., Shiell, A. W., Barker, M. E. & Law, C. M. Growth in utero and blood pressure levels in the next generation. J. Hypertens. 18, 843–846 (2000).

    Article  CAS  PubMed  Google Scholar 

  51. Alshamrani, A. et al. Long-term but not short-term maternal fasting reduces nephron number and alters the glomerular filtration barrier in rat offspring. Life https://doi.org/10.3390/life11040318 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Awazu, M. & Hida, M. Maternal nutrient restriction inhibits ureteric bud branching but does not affect the duration of nephrogenesis in rats. Pediatr. Res. 77, 633–639 (2015).

    Article  PubMed  Google Scholar 

  53. Howell, J. J. & Manning, B. D. mTOR couples cellular nutrient sensing to organismal metabolic homeostasis. Trends Endocrinol. Metab. 22, 94–102 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Chen, S. et al. Intrinsic age-dependent changes and cell-cell contacts regulate nephron progenitor lifespan. Dev. Cell 35, 49–62 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Volovelsky, O. et al. Hamartin regulates cessation of mouse nephrogenesis independently of Mtor. Proc. Natl Acad. Sci. USA 115, 5998–6003 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Makayes, Y. et al. Increasing mTORC1 pathway activity or methionine supplementation during pregnancy reverses the negative effect of maternal malnutrition on the developing kidney. J. Am. Soc. Nephrol. https://doi.org/10.1681/ASN.2020091321 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Li, J. et al. Ouabain protects against adverse developmental programming of the kidney. Nat. Commun. 1, 42 (2010).

    Article  CAS  PubMed  Google Scholar 

  58. Rabadi, M. M. et al. Maternal malnourishment induced upregulation of fetuin-B blunts nephrogenesis in the low birth weight neonate. Dev. Biol. 443, 78–91 (2018).

    Article  CAS  PubMed  Google Scholar 

  59. Yu, M. et al. Intrauterine low-protein diet disturbs metanephric gene expression and induces urinary tract developmental abnormalities in mice. Biochem. Biophys. Res. Commun. 513, 732–739 (2019).

    Article  CAS  PubMed  Google Scholar 

  60. Swali, A. et al. Cell cycle regulation and cytoskeletal remodelling are critical processes in the nutritional programming of embryonic development. PLoS One 6, e23189 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Swali, A. et al. Processes underlying the nutritional programming of embryonic development by iron deficiency in the rat. PLoS One 7, e48133 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Lelievre-Pegorier, M. et al. Mild vitamin A deficiency leads to inborn nephron deficit in the rat. Kidney Int. 54, 1455–1462 (1998).

    Article  CAS  PubMed  Google Scholar 

  63. Gilbert, T. Vitamin A and kidney development. Nephrol. Dial. Transpl. 17, 78–80 (2002).

    Article  CAS  Google Scholar 

  64. Goodyer, P. et al. Effects of maternal vitamin A status on kidney development: a pilot study. Pediatr. Nephrol. 22, 209–214 (2007).

    Article  PubMed  Google Scholar 

  65. Makrakis, J., Zimanyi, M. A. & Black, M. J. Retinoic acid enhances nephron endowment in rats exposed to maternal protein restriction. Pediatr. Nephrol. 22, 1861–1867 (2007).

    Article  PubMed  Google Scholar 

  66. Rosselot, C. et al. Non-cell-autonomous retinoid signaling is crucial for renal development. Development 137, 283–292 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Batourina, E. et al. Vitamin A controls epithelial/mesenchymal interactions through Ret expression. Nat. Genet. 27, 74–78 (2001).

    Article  CAS  PubMed  Google Scholar 

  68. Levinson, R. & Mendelsohn, C. Stromal progenitors are important for patterning epithelial and mesenchymal cell types in the embryonic kidney. Semin. Cell Dev. Biol. 14, 225–231 (2003).

    Article  PubMed  Google Scholar 

  69. Sutherland, M. R., Gubhaju, L., Yoder, B. A., Stahlman, M. T. & Black, M. J. The effects of postnatal retinoic acid administration on nephron endowment in the preterm baboon kidney. Pediatr. Res. 65, 397–402 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Maka, N. et al. Vitamin D deficiency during pregnancy and lactation stimulates nephrogenesis in rat offspring. Pediatr. Nephrol. 23, 55–61 (2008).

    Article  PubMed  Google Scholar 

  71. Vyas, S. P. & Goswami, R. Calcitriol and retinoic acid antagonize each other to suppress the production of IL-9 by Th9 cells. J. Nutr. Biochem. 96, 108788 (2021).

    Article  CAS  PubMed  Google Scholar 

  72. Jimenez-Lara, A. M. & Aranda, A. Interaction of vitamin D and retinoid receptors on regulation of gene expression. Horm. Res. 54, 301–305 (2000).

    CAS  PubMed  Google Scholar 

  73. Hokke, S. et al. Maternal fat feeding augments offspring nephron endowment in mice. PLoS One 11, e0161578 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Boubred, F. et al. Effects of early postnatal hypernutrition on nephron number and long-term renal function and structure in rats. Am. J. Physiol. Renal Physiol. 293, F1944–F1949 (2007).

    Article  CAS  PubMed  Google Scholar 

  75. Belfort, M. B., Martin, C. R., Smith, V. C., Gillman, M. W. & McCormick, M. C. Infant weight gain and school-age blood pressure and cognition in former preterm infants. Pediatrics 125, e1419–e1426 (2010).

    Article  PubMed  Google Scholar 

  76. Wlodek, M. E. et al. Normal lactational environment restores nephron endowment and prevents hypertension after placental restriction in the rat. J. Am. Soc. Nephrol. 18, 1688–1696 (2007).

    Article  CAS  PubMed  Google Scholar 

  77. Mansano, R., Desai, M., Garg, A., Choi, G. Y. & Ross, M. G. Enhanced nephrogenesis in offspring of water-restricted rat dams. Am. J. Obstet. Gynecol. 196, 480 e481–480 e486 (2007).

    Article  Google Scholar 

  78. Briffa, J. F., Wlodek, M. E. & Moritz, K. M. Transgenerational programming of nephron deficits and hypertension. Semin. Cell Dev. Biol. https://doi.org/10.1016/j.semcdb.2018.05.025 (2018).

    Article  PubMed  Google Scholar 

  79. Harrison, M. & Langley-Evans, S. C. Intergenerational programming of impaired nephrogenesis and hypertension in rats following maternal protein restriction during pregnancy. Br. J. Nutr. 101, 1020–1030 (2009).

    Article  CAS  PubMed  Google Scholar 

  80. Jetton, J. G. et al. Incidence and outcomes of neonatal acute kidney injury (AWAKEN): a multicentre, multinational, observational cohort study. Lancet Child. Adolesc. Health 1, 184–194 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  81. Askenazi, D. J., Griffin, R., McGwin, G., Carlo, W. & Ambalavanan, N. Acute kidney injury is independently associated with mortality in very low birthweight infants: a matched case-control analysis. Pediatr. Nephrol. 24, 991–997 (2009).

    Article  PubMed  Google Scholar 

  82. Coca, S. G., Singanamala, S. & Parikh, C. R. Chronic kidney disease after acute kidney injury: a systematic review and meta-analysis. Kidney Int. 81, 442–448 (2012).

    Article  PubMed  Google Scholar 

  83. Harer, M. W., Pope, C. F., Conaway, M. R. & Charlton, J. R. Follow-up of acute kidney injury in neonates during childhood years (FANCY): a prospective cohort study. Pediatr. Nephrol. 32, 1067–1076 (2017).

    Article  PubMed  Google Scholar 

  84. Viswanathan, S., Manyam, B., Azhibekov, T. & Mhanna, M. M. J. Risk factors associated with acute kidney injury in extremely low birth weight (ELBW) infants. Pediatr. Nephrol. 27, 303–311 (2012).

    Article  PubMed  Google Scholar 

  85. Koralkar, R. et al. Acute kidney injury reduces survival in very low birth weight infants. Pediatr. Res. 69, 354–358 (2011).

    Article  PubMed  Google Scholar 

  86. Menendez-Castro, C. et al. Neonatal nephron loss during active nephrogenesis — detrimental impact with long-term renal consequences. Sci. Rep. 8, 4542 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  87. Charlton, J. R. et al. Nephron loss detected by MRI following neonatal acute kidney injury in rabbits. Pediatr. Res. 87, 1185–1192 (2020).

    Article  CAS  PubMed  Google Scholar 

  88. Sutherland, M. R. et al. Effects of ibuprofen treatment on the developing preterm baboon kidney. Am. J. Physiol. Renal Physiol. 302, F1286–F1292 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Lindle, K. A. et al. Angiotensin-converting enzyme inhibitor nephrotoxicity in neonates with cardiac disease. Pediatr. Cardiol. 35, 499–506 (2014).

    Article  PubMed  Google Scholar 

  90. Yosypiv, I. V. Renin-angiotensin system in mammalian kidney development. Pediatr. Nephrol. 36, 479–489 (2021).

    Article  PubMed  Google Scholar 

  91. Tufro-McReddie, A., Romano, L. M., Harris, J. M., Ferder, L. & Gomez, R. A. Angiotensin II regulates nephrogenesis and renal vascular development. Am. J. Physiol. 269, F110–F115 (1995).

    CAS  PubMed  Google Scholar 

  92. Yosypiv, I. V., Sequeira-Lopez, M. L. S., Song, R. & De Goes Martini, A. Stromal prorenin receptor is critical for normal kidney development. Am. J. Physiol. Regul. Integr. Comp. Physiol. 316, R640–R650 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Song, R., Kidd, L., Janssen, A. & Yosypiv, I. V. Conditional ablation of the prorenin receptor in nephron progenitor cells results in developmental programming of hypertension. Physiol. Rep. 6, e13644 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  94. McGoldrick, E., Stewart, F., Parker, R. & Dalziel, S. R. Antenatal corticosteroids for accelerating fetal lung maturation for women at risk of preterm birth. Cochrane Database Syst. Rev. 12, CD004454 (2020).

    PubMed  Google Scholar 

  95. Singh, R. R., Moritz, K. M., Bertram, J. F. & Cullen-McEwen, L. A. Effects of dexamethasone exposure on rat metanephric development: in vitro and in vivo studies. Am. J. Physiol. Renal Physiol. 293, F548–F554 (2007).

    Article  CAS  PubMed  Google Scholar 

  96. Aisa, M. C. et al. Renal consequences of gestational diabetes mellitus in term neonates: a multidisciplinary approach to the DOHaD perspective in the prevention and early recognition of neonates of GDM mothers at risk of hypertension and chronic renal diseases in later life. J. Clin. Med. https://doi.org/10.3390/jcm8040429 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  97. Ding, A., Walton, S. L., Moritz, K. M. & Phillips, J. K. Impact of prenatal and postnatal maternal environment on nephron endowment, renal function and blood pressure in the Lewis polycystic kidney rat. J. Dev. Orig. Health Dis. 10, 154–163 (2019).

    Article  CAS  PubMed  Google Scholar 

  98. Hilliard, S. et al. Defining the dynamic chromatin landscape of mouse nephron progenitors. Biol. Open https://doi.org/10.1242/bio.042754 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  99. Wanner, N. et al. DNA methyltransferase 1 controls nephron progenitor cell renewal and differentiation. J. Am. Soc. Nephrol. 30, 63–78 (2019).

    Article  CAS  PubMed  Google Scholar 

  100. Zhang, L. et al. EED, a member of the polycomb group, is required for nephron differentiation and the maintenance of nephron progenitor cells. Development https://doi.org/10.1242/dev.157149 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  101. Liu, H. et al. The polycomb proteins EZH1 and EZH2 co-regulate chromatin accessibility and nephron progenitor cell lifespan in mice. J. Biol. Chem. https://doi.org/10.1074/jbc.RA120.013348 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  102. O’Brien, L. L. et al. Differential regulation of mouse and human nephron progenitors by the Six family of transcriptional regulators. Development 143, 595–608 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  103. Li, J. et al. Chromatin remodelers interact with Eya1 and Six2 to target enhancers to control nephron progenitor cell maintenance. J. Am. Soc. Nephrol. 32, 2815–2833 (2021).

    Article  CAS  PubMed  Google Scholar 

  104. Basta, J. M. et al. The core SWI/SNF catalytic subunit Brg1 regulates nephron progenitor cell proliferation and differentiation. Dev. Biol. 464, 176–187 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Muthukrishnan, S. D., Ryzhov, S., Karolak, M. & Oxburgh, L. Nephron progenitor cell death elicits a limited compensatory response associated with interstitial expansion in the neonatal kidney. Dis. Model. Mech. https://doi.org/10.1242/dmm.030544 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  106. Cebrian, C., Asai, N., D’Agati, V. & Costantini, F. The number of fetal nephron progenitor cells limits ureteric branching and adult nephron endowment. Cell Rep. 7, 127–137 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Short, K. M. et al. Global quantification of tissue dynamics in the developing mouse kidney. Dev. Cell 29, 188–202 (2014).

    Article  CAS  PubMed  Google Scholar 

  108. Combes, A. N., Lefevre, J. G., Wilson, S., Hamilton, N. A. & Little, M. H. Cap mesenchyme cell swarming during kidney development is influenced by attraction, repulsion, and adhesion to the ureteric tip. Dev. Biol. 418, 297–306 (2016).

    Article  CAS  PubMed  Google Scholar 

  109. O’Brien, L. L. et al. Wnt11 directs nephron progenitor polarity and motile behavior ultimately determining nephron endowment. Elife https://doi.org/10.7554/eLife.40392 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  110. Barak, H. et al. FGF9 and FGF20 maintain the stemness of nephron progenitors in mice and man. Dev. Cell 22, 1191–1207 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Gallegos, T. F., Kamei, C. N., Rohly, M. & Drummond, I. A. Fibroblast growth factor signaling mediates progenitor cell aggregation and nephron regeneration in the adult zebrafish kidney. Dev. Biol. 454, 44–51 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Lawlor, K. T. et al. Nephron progenitor commitment is a stochastic process influenced by cell migration. Elife https://doi.org/10.7554/eLife.41156 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  113. Krause, M., Rak-Raszewska, A., Pietila, I., Quaggin, S. E. & Vainio, S. Signaling during kidney development. Cells 4, 112–132 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Kopan, R., Chen, S. & Little, M. Nephron progenitor cells: shifting the balance of self-renewal and differentiation. Curr. Top. Dev. Biol. 107C, 293–331 (2014).

    Article  Google Scholar 

  115. Cain, J. E., Di Giovanni, V., Smeeton, J. & Rosenblum, N. D. Genetics of renal hypoplasia: insights into the mechanisms controlling nephron endowment. Pediatr. Res. 68, 91–98 (2010).

    Article  PubMed  Google Scholar 

  116. Kuure, S. & Sariola, H. Mouse models of congenital kidney anomalies. Adv. Exp. Med. Biol. 1236, 109–136 (2020).

    Article  CAS  PubMed  Google Scholar 

  117. O’Brien, L. L. Nephron progenitor cell commitment: striking the right balance. Semin. Cell Dev. Biol. 91, 94–103 (2019).

    Article  PubMed  Google Scholar 

  118. Sauer, B. Inducible gene targeting in mice using the Cre/lox system. Methods 14, 381–392 (1998).

    Article  CAS  PubMed  Google Scholar 

  119. Huh, S. H., Warchol, M. E. & Ornitz, D. M. Cochlear progenitor number is controlled through mesenchymal FGF receptor signaling. Elife https://doi.org/10.7554/eLife.05921 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  120. Combes, A. N. et al. Haploinsufficiency for the Six2 gene increases nephron progenitor proliferation promoting branching and nephron number. Kidney Int. 93, 589–598 (2018).

    Article  CAS  PubMed  Google Scholar 

  121. Kobayashi, A. et al. Six2 defines and regulates a multipotent self-renewing nephron progenitor population throughout mammalian kidney development. Cell Stem Cell 3, 169–181 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. McNeill, H. & Reginensi, A. Lats1/2 regulate Yap/Taz to control nephron progenitor epithelialization and inhibit myofibroblast formation. J. Am. Soc. Nephrol. 28, 852–861 (2017).

    Article  CAS  PubMed  Google Scholar 

  123. Lindstrom, N. O., Carragher, N. O. & Hohenstein, P. The PI3K pathway balances self-renewal and differentiation of nephron progenitor cells through beta-catenin signaling. Stem Cell Rep. 4, 551–560 (2015).

    Article  CAS  Google Scholar 

  124. Ihermann-Hella, A. et al. Dynamic MAPK/ERK activity sustains nephron progenitors through niche regulation and primes precursors for differentiation. Stem Cell Rep. 11, 912–928 (2018).

    Article  CAS  Google Scholar 

  125. Costantini, F. & Shakya, R. GDNF/Ret signaling and the development of the kidney. Bioessays 28, 117–127 (2006).

    Article  CAS  PubMed  Google Scholar 

  126. Magella, B. et al. Cross-platform single cell analysis of kidney development shows stromal cells express Gdnf. Dev. Biol. 434, 36–47 (2018).

    Article  CAS  PubMed  Google Scholar 

  127. Chatterjee, R. et al. Traditional and targeted exome sequencing reveals common, rare and novel functional deleterious variants in RET-signaling complex in a cohort of living US patients with urinary tract malformations. Hum. Genet. 131, 1725–1738 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Kaczmarczyk, M. et al. Association between RET (rs1800860) and GFRA1 (rs45568534, rs8192663, rs181595401, rs7090693, and rs2694770) variants and kidney size in healthy newborns. Genet. Test. Mol. Biomark. 20, 624–628 (2016).

    Article  CAS  Google Scholar 

  129. Hwang, D. Y. et al. Mutations in 12 known dominant disease-causing genes clarify many congenital anomalies of the kidney and urinary tract. Kidney Int. 85, 1429–1433 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Cullen-McEwen, L. A., Kett, M. M., Dowling, J., Anderson, W. P. & Bertram, J. F. Nephron number, renal function, and arterial pressure in aged GDNF heterozygous mice. Hypertension 41, 335–340 (2003).

    Article  CAS  PubMed  Google Scholar 

  131. Cullen-McEwen, L. A., Drago, J. & Bertram, J. F. Nephron endowment in glial cell line-derived neurotrophic factor (GDNF) heterozygous mice. Kidney Int. 60, 31–36 (2001).

    Article  CAS  PubMed  Google Scholar 

  132. Pichel, J. G. et al. Defects in enteric innervation and kidney development in mice lacking GDNF. Nature 382, 73–76 (1996).

    Article  CAS  PubMed  Google Scholar 

  133. Li, H. et al. Postnatal prolongation of mammalian nephrogenesis by excess fetal GDNF. Development https://doi.org/10.1242/dev.197475 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  134. Hatini, V., Huh, S. O., Herzlinger, D., Soares, V. C. & Lai, E. Essential role of stromal mesenchyme in kidney morphogenesis revealed by targeted disruption of Winged Helix transcription factor BF-2. Genes Dev. 10, 1467–1478 (1996).

    Article  CAS  PubMed  Google Scholar 

  135. Hum, S., Rymer, C., Schaefer, C., Bushnell, D. & Sims-Lucas, S. Ablation of the renal stroma defines its critical role in nephron progenitor and vasculature patterning. PLoS One 9, e88400 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  136. Zhang, H. et al. FAT4 fine-tunes kidney development by regulating RET signaling. Dev. Cell 48, 780–792 e784 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  137. Phelep, A. et al. MITF — a controls branching morphogenesis and nephron endowment. PLoS Genet. 13, e1007093 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  138. Grieshammer, U. et al. FGF8 is required for cell survival at distinct stages of nephrogenesis and for regulation of gene expression in nascent nephrons. Development 132, 3847–3857 (2005).

    Article  CAS  PubMed  Google Scholar 

  139. Huh, S. H., Ha, L. & Jang, H. S. Nephron progenitor maintenance is controlled through fibroblast growth factors and Sprouty1 interaction. J. Am. Soc. Nephrol. 31, 2559–2572 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  140. Sharma, A. et al. FGF8 induces chemokinesis and regulates condensation of mouse nephron progenitor cells. Preprint at bioRxiv https://doi.org/10.1101/2022.02.07.478973 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  141. Michos, O. et al. Kidney development in the absence of Gdnf and Spry1 requires Fgf10. PLoS Genet. 6, e1000809 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  142. Miyamoto, R. et al. Loss of Sprouty2 partially rescues renal hypoplasia and stomach hypoganglionosis but not intestinal aganglionosis in Ret Y1062F mutant mice. Dev. Biol. 349, 160–168 (2011).

    Article  CAS  PubMed  Google Scholar 

  143. Rozen, E. J. et al. Loss of Sprouty1 rescues renal agenesis caused by Ret mutation. J. Am. Soc. Nephrol. 20, 255–259 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Nusse, R. & Clevers, H. Wnt/beta-catenin signaling, disease, and emerging therapeutic modalities. Cell 169, 985–999 (2017).

    Article  CAS  PubMed  Google Scholar 

  145. Ramalingam, H. et al. Disparate levels of beta-catenin activity determine nephron progenitor cell fate. Dev. Biol. 440, 13–21 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Karner, C. M. et al. Canonical Wnt9b signaling balances progenitor cell expansion and differentiation during kidney development. Development 138, 1247–1257 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Dickinson, K. K. et al. Molecular determinants of WNT9b responsiveness in nephron progenitor cells. PLoS One 14, e0215139 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Kuure, S., Popsueva, A., Jakobson, M., Sainio, K. & Sariola, H. Glycogen synthase kinase-3 inactivation and stabilization of beta-catenin induce nephron differentiation in isolated mouse and rat kidney mesenchymes. J. Am. Soc. Nephrol. 18, 1130–1139 (2007).

    Article  CAS  PubMed  Google Scholar 

  149. Guo, Q. et al. A β-catenin-driven switch in TCF/LEF transcription factor binding to DNA target sites promotes commitment of mammalian nephron progenitor cells. Elife 10, e64444 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Vidal, V. P. et al. R-spondin signalling is essential for the maintenance and differentiation of mouse nephron progenitors. Elife https://doi.org/10.7554/eLife.53895 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  151. Lebensohn, A. M. & Rohatgi, R. R-spondins can potentiate WNT signaling without LGRs. Elife https://doi.org/10.7554/eLife.33126 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  152. Pan, X., Karner, C. M. & Carroll, T. J. Myc cooperates with beta-catenin to drive gene expression in nephron progenitor cells. Development 144, 4173–4182 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  153. Park, J.-S. et al. Six2 and Wnt regulate self-renewal and commitment of nephron progenitors through shared gene regulatory networks. Dev. Cell 23, 637–651 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Self, M. et al. Six2 is required for suppression of nephrogenesis and progenitor renewal in the developing kidney. EMBO J. 25, 5214–5228 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Jarmas, A. E., Brunskill, W. E., Chaturvedi, P., Salomonis, N. & Kopan, R. Progenitor translatome changes coordinated by Tsc1 increase perception of Wnt signals to end nephrogenesis. Nat. Commun. https://doi.org/10.1038/s41467-021-26626-9 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  156. McCoy, K. E., Zhou, X. & Vize, P. D. Non-canonical wnt signals antagonize and canonical wnt signals promote cell proliferation in early kidney development. Dev. Dyn. 240, 1558–1566 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Chiba, T. et al. Transforming growth factor-beta1 suppresses bone morphogenetic protein-2-induced mesenchymal-epithelial transition in HSC-4 human oral squamous cell carcinoma cells via Smad1/5/9 pathway suppression. Oncol. Rep. 37, 713–720 (2017).

    Article  CAS  PubMed  Google Scholar 

  158. Kim, S. et al. Micellized protein transduction domain-bone morphogenetic protein-7 efficiently blocks renal fibrosis via inhibition of transforming growth factor-beta-mediated epithelial-mesenchymal transition. Front. Pharmacol. 11, 591275 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Xu, J., Lamouille, S. & Derynck, R. TGF-β-induced epithelial to mesenchymal transition. Cell Res. 19, 156–172 (2009).

    Article  CAS  PubMed  Google Scholar 

  160. Fetting, J. L. et al. FOXD1 promotes nephron progenitor differentiation by repressing decorin in the embryonic kidney. Development 142, 17–27 (2014).

    Article  Google Scholar 

  161. Brown, A. C., Muthukrishnan, S. D. & Oxburgh, L. A synthetic niche for nephron progenitor cells. Dev. Cell 34, 229–241 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Maeshima, A. et al. Number of glomeruli is increased in the kidney of transgenic mice expressing the truncated type II activin receptor. Biochem. Biophys. Res. Commun. 268, 445–449 (2000).

    Article  CAS  PubMed  Google Scholar 

  163. Sims-Lucas, S., Caruana, G., Dowling, J., Kett, M. M. & Bertram, J. F. Augmented and accelerated nephrogenesis in TGF-β2 heterozygous mutant mice. Pediatr. Res. 63, 607–612 (2008).

    Article  CAS  PubMed  Google Scholar 

  164. Walker, K. A. et al. Betaglycan is required for the establishment of nephron endowment in the mouse. PLoS One 6, e18723 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Nagalakshmi, V. K. et al. Dicer regulates the development of nephrogenic and ureteric compartments in the mammalian kidney. Kidney Int. 79, 317–330 (2011).

    Article  CAS  PubMed  Google Scholar 

  166. Cerqueira, D. M. et al. Bim gene dosage is critical in modulating nephron progenitor survival in the absence of microRNAs during kidney development. FASEB J. 31, 3540–3554 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Urbach, A. et al. Lin28 sustains early renal progenitors and induces Wilms tumor. Genes Dev. 28, 971–982 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Yermalovich, A. V. et al. Lin28 and let-7 regulate the timing of cessation of murine nephrogenesis. Nat. Commun. 10, 168 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  169. Sene, L. B., Scarano, W. R., Zapparoli, A., Gontijo, J. A. R. & Boer, P. A. Impact of gestational low-protein intake on embryonic kidney microRNA expression and in nephron progenitor cells of the male fetus. PLoS One 16, e0246289 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Liu, J. et al. Regulation of nephron progenitor cell self-renewal by intermediary metabolism. J. Am. Soc. Nephrol. 28, 3323–3335 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Walton, S. L. et al. Prenatal hypoxia leads to hypertension, renal renin-angiotensin system activation and exacerbates salt-induced pathology in a sex-specific manner. Sci. Rep. 7, 8241 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Wilkinson, L. J. et al. Renal developmental defects resulting from in utero hypoxia are associated with suppression of ureteric beta-catenin signaling. Kidney Int. 87, 975–983 (2015).

    Article  CAS  PubMed  Google Scholar 

  173. Leelahavanichkul, A. et al. Angiotensin II overcomes strain-dependent resistance of rapid CKD progression in a new remnant kidney mouse model. Kidney Int. 78, 1136–1153 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Ma, L. J. & Fogo, A. B. Model of robust induction of glomerulosclerosis in mice: importance of genetic background. Kidney Int. 64, 350–355 (2003).

    Article  PubMed  Google Scholar 

  175. Ellis-Hutchings, R. G. et al. Altered health outcomes in adult offspring of Sprague Dawley and Wistar rats undernourished during early or late pregnancy. Birth Defects Res. B Dev. Reprod. Toxicol. 89, 396–407 (2010).

    Article  CAS  PubMed  Google Scholar 

  176. Baldelomar, E. J., Charlton, J. R., deRonde, K. A. & Bennett, K. M. In vivo measurements of kidney glomerular number and size in healthy and Os/+ mice using MRI. Am. J. Physiol. Renal Physiol. 317, F865–F873 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Baldelomar, E. J. et al. Mapping nephron mass in vivo using positron emission tomography. Am. J. Physiol. Renal Physiol. 320, F183–F192 (2021).

    Article  CAS  PubMed  Google Scholar 

  178. Eirini Papathanasiou, A. et al. Perinatal lipocalin-2 profile at the extremes of fetal growth. J. Matern. Fetal Neonatal Med. 34, 2166–2172 (2021).

    Article  CAS  PubMed  Google Scholar 

  179. Ardissino, G. et al. Serum creatinine during physiological perinatal dehydration may estimate individual nephron endowment. Eur. J. Pediatr. 177, 1383–1388 (2018).

    Article  PubMed  Google Scholar 

  180. Bagherie-Lachidan, M. et al. Stromal Fat4 acts non-autonomously with Dchs1/2 to restrict the nephron progenitor pool. Development 142, 2564–2573 (2015).

    CAS  PubMed  Google Scholar 

  181. Das, A. et al. Stromal-epithelial crosstalk regulates kidney progenitor cell differentiation. Nat. Cell Biol. 15, 1035–1044 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Diep, C. Q. et al. Identification of adult nephron progenitors capable of kidney regeneration in zebrafish. Nature 470, 95–100 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  183. Camarata, T. et al. Postembryonic nephrogenesis and persistence of Six2-expressing nephron progenitor cells in the reptilian kidney. PLoS One 11, e0153422 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

A.J.P. and R.K. contributed equally to all aspects of the article. M.P.S. contributed to the review of clinical topics and edited the manuscript before submission.

Corresponding author

Correspondence to Raphael Kopan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Nephrology thanks Satu Kuure, Elena Torban and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Uteroplacental insufficiency

A condition of inadequate placental exchange of oxygen, nutrients and waste products.

Patent ductus arteriosus

Abnormal persistent connection between the aorta and pulmonary artery after birth.

Heterochronic transplantation

Experimental method involving co-injection of nephron progenitor cells isolated from mouse kidneys of different embryonic ages into the same young niche in kidney explants.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Perl, A.J., Schuh, M.P. & Kopan, R. Regulation of nephron progenitor cell lifespan and nephron endowment. Nat Rev Nephrol 18, 683–695 (2022). https://doi.org/10.1038/s41581-022-00620-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41581-022-00620-w

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing