Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The impact of intrauterine growth restriction and prematurity on nephron endowment

Abstract

In humans born at term, maximal nephron number is reached by the time nephrogenesis is completed — at approximately 36 weeks’ gestation. The number of nephrons does not increase further and subsequently remains stable until loss occurs through ageing or disease. Nephron endowment is key to the functional capacity of the kidney and its resilience to disease; hence, any processes that impair kidney development in the developing fetus can have lifelong adverse consequences for renal health and, consequently, for quality and length of life. The timing of nephrogenesis underlies the vulnerability of developing human kidneys to adverse early life exposures. Indeed, exposure of the developing fetus to a suboptimal intrauterine environment during gestation — resulting in intrauterine growth restriction (IUGR) — and/or preterm birth can impede kidney development and lead to reduced nephron endowment. Furthermore, emerging research suggests that IUGR and/or preterm birth is associated with an elevated risk of chronic kidney disease in later life. The available data highlight the important role of early life development in the aetiology of kidney disease and emphasize the need to develop strategies to optimize nephron endowment in IUGR and preterm infants.

Key points

  • Low birthweight, small for gestational age, intrauterine growth restriction (IUGR) and preterm birth are often overlapping terms used to describe infants that have not met their growth potential; however, it is important to recognize them as distinct conditions.

  • The majority of nephrons are formed in the third trimester; both preterm birth and IUGR — although temporally and mechanistically distinct processes — can adversely affect a considerable proportion of the nephrogenic period.

  • Strong clinical and experimental evidence indicates that a nephron deficit occurs in the kidneys of infants exposed to IUGR during development; the effect of preterm birth on nephron number is less clear.

  • Reduced nephron endowment at birth is associated with a reduction in total renal filtration surface area, and therefore diminished renal functional capacity and disease resilience across the life course.

  • A surge in epidemiological research has persuasively demonstrated a link between all-cause low birthweight, small for gestational age and preterm birth, on the one hand, and the later development of chronic kidney disease on the other.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Terminology used to describe infants born too small and/or too soon.
Fig. 2: Timeline of nephrogenesis.
Fig. 3: Impact of intrauterine growth restriction and preterm birth on kidney development.

Similar content being viewed by others

References

  1. Blencowe, H. et al. National, regional, and worldwide estimates of low birthweight in 2015, with trends from 2000: a systematic analysis. Lancet Glob. Health 7, e849–e860 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Hughes, M. M., Black, R. E. & Katz, J. 2500-g Low birth weight cutoff: history and implications for future research and policy. Matern. Child. Health J. 21, 283–289 (2017).

    Article  PubMed  Google Scholar 

  3. Hanson, M., Godfrey, K. M., Lillycrop, K. A., Burdge, G. C. & Gluckman, P. D. Developmental plasticity and developmental origins of non-communicable disease: theoretical considerations and epigenetic mechanisms. Prog. Biophys. Mol. Biol. 106, 272–280 (2011).

    Article  PubMed  Google Scholar 

  4. Barker, D. J., Osmond, C., Golding, J., Kuh, D. & Wadsworth, M. E. Growth in utero, blood pressure in childhood and adult life, and mortality from cardiovascular disease. BMJ 298, 564–567 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Barker, D. J., Winter, P. D., Osmond, C., Margetts, B. & Simmonds, S. J. Weight in infancy and death from ischaemic heart disease. Lancet 2, 577–580 (1989).

    Article  CAS  PubMed  Google Scholar 

  6. Zohdi, V. et al. Low birth weight due to intrauterine growth restriction and/or preterm birth: effects on nephron number and long-term renal health. Int. J. Nephrol. 2012, 1–13 (2012).

    Article  Google Scholar 

  7. Blackmore, H. L. & Ozanne, S. E. Programming of cardiovascular disease across the life-course. J. Mol. Cell Cardiol. 83, 122–130 (2015).

    Article  CAS  PubMed  Google Scholar 

  8. Dasinger, J. H., Davis, G. K., Newsome, A. D. & Alexander, B. T. Developmental programming of hypertension. Hypertension 68, 826–831 (2016).

    Article  CAS  PubMed  Google Scholar 

  9. Bertagnolli, M., Luu, T. M., Lewandowski, A. J., Leeson, P. & Nuyt, A. M. Preterm birth and hypertension: is there a link? Curr. Hypertens. Rep. https://doi.org/10.1007/s11906-016-0637-6 (2016).

    Article  PubMed  Google Scholar 

  10. Luyckx, V. A. & Brenner, B. M. Clinical consequences of developmental programming of low nephron number. Anat. Rec. 303, 2613–2631 (2020).

    Article  Google Scholar 

  11. Lumbers, E. R. et al. Programming of renal development and chronic disease in adult life. Front. Physiol. 11, 757 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Vanholder, R. et al. Fighting the unbearable lightness of neglecting kidney health: the decade of the kidney. Clin. Kidney J. 14, 1719–1730 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  13. The Low Birth Weight and Nephron Number Working Group. The impact of kidney development on the life course: a consensus document for action. Nephron 136, 3–49 (2017).

    Article  Google Scholar 

  14. World Health Organization. Global action plan for the prevention and control of NCDs, 2013–2020 (WHO Document Production Services, 2013).

  15. Ingelfinger, J. R. et al. Averting the legacy of kidney disease — focus on childhood. Kidney Int. 89, 512–518 (2016).

    Article  PubMed  Google Scholar 

  16. Chawanpaiboon, S. et al. Global, regional, and national estimates of levels of preterm birth in 2014: a systematic review and modelling analysis. Lancet Glob. Health 7, e37–e46 (2019).

    Article  PubMed  Google Scholar 

  17. Villar, J. et al. International standards for newborn weight, length, and head circumference by gestational age and sex: the Newborn cross-sectional study of the INTERGROWTH-21st project. Lancet 384, 857–868 (2014).

    Article  PubMed  Google Scholar 

  18. Joseph, F. A. et al. New Australian birthweight centiles. Med. J. Aust. 213, 79–85 (2020).

    Article  PubMed  Google Scholar 

  19. Barros, F. C. et al. The distribution of clinical phenotypes of preterm birth syndrome. JAMA Pediatrics 169, 220 (2015).

    Article  PubMed  Google Scholar 

  20. Blencowe, H. et al. Born too soon: the global epidemiology of 15 million preterm births. Reprod. Health 10, S2 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Villar, J. et al. Association between preterm-birth phenotypes and differential morbidity, growth, and neurodevelopment at age 2 years. JAMA Pediatr. 175, 483 (2021).

    Article  PubMed  Google Scholar 

  22. Crump, C., Winkleby, M. A., Sundquist, J. & Sundquist, K. Prevalence of survival without major comorbidities among adults born prematurely. JAMA 322, 1580 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Moster, D., Lie, R. T. & Markestad, T. Long-term medical and social consequences of preterm birth. N. Engl. J. Med. 359, 262–273 (2008).

    Article  CAS  PubMed  Google Scholar 

  24. Beune, I. M. et al. Consensus based definition of growth restriction in the newborn. J. Pediatr. 196, 71–76.e71 (2018).

    Article  PubMed  Google Scholar 

  25. Zeve, D., Regelmann, M. O., Holzman, I. R. & Rapaport, R. Small at birth, but how small? The definition of SGA revisited. Horm. Res. Paediatr. 86, 357–360 (2016).

    Article  CAS  PubMed  Google Scholar 

  26. Gardosi, J., Kady, S. M., McGeown, P., Francis, A. & Tonks, A. Classification of stillbirth by relevant condition at death (ReCoDe): population based cohort study. BMJ 331, 1113–1117 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Kristensen, S. et al. SGA subtypes and mortality risk among singleton births. Early Hum. Dev. 83, 99–105 (2007).

    Article  PubMed  Google Scholar 

  28. Katz, J. et al. Mortality risk in preterm and small-for-gestational-age infants in low-income and middle-income countries: a pooled country analysis. Lancet 382, 417–425 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Lee, A. C. et al. National and regional estimates of term and preterm babies born small for gestational age in 138 low-income and middle-income countries in 2010. Lancet Glob. Health 1, e26–e36 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Sharma, D., Shastri, S. & Sharma, P. Intrauterine growth restriction: antenatal and postnatal aspects. Clin. Med. Insights Pediatr. https://doi.org/10.4137/cmped.s40070 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Melamed, N. et al. FIGO (international Federation of Gynecology and obstetrics) initiative on fetal growth: best practice advice for screening, diagnosis, and management of fetal growth restriction. Int. J. Gynaecol. Obstet. 152, 3–57 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Broere-Brown, Z. A., Schalekamp-Timmermans, S., Jaddoe, V. W. V. & Steegers, E. A. P. Deceleration of fetal growth rate as alternative predictor for childhood outcomes: a birth cohort study. BMC Pregnancy Childbirth 19, 216 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Sankaran, S. & Kyle, P. M. Aetiology and pathogenesis of IUGR. Best. Pract. Res. Clin. Obstet. Gynaecol. 23, 765–777 (2009).

    Article  PubMed  Google Scholar 

  34. Malhotra, A. et al. Neonatal morbidities of fetal growth restriction: pathophysiology and impact. Front. Endocrinol. 10, 55 (2019).

    Article  Google Scholar 

  35. von Beckerath, A. K. et al. Perinatal complications and long-term neurodevelopmental outcome of infants with intrauterine growth restriction. Am. J. Obstet. Gynecol. 208, 130.e131–136 (2013).

    Google Scholar 

  36. Cohen, E., Wong, F. Y., Horne, R. S. C. & Yiallourou, S. R. Intrauterine growth restriction: impact on cardiovascular development and function throughout infancy. Pediatr. Res. 79, 821–830 (2016).

    Article  CAS  PubMed  Google Scholar 

  37. Cullen-McEwen, L., Sutherland, M. R. & Black, M. J. The human kidney: parallels in structure, spatial development, and timing of nephrogenesis. In Kidney Development, Disease, Repair and Regeneration (ed. Little, M. H.) 27–40 (Academic Press, 2016).

  38. Osathanondh, V. & Potter, E. L. Development of human kidney as shown by microdissection. III. Formation and interrelationship of collecting tubules and nephrons. Arch. Pathol. 76, 290–302 (1963).

    CAS  PubMed  Google Scholar 

  39. Little, M., Georgas, K., Pennisi, D. & Wilkinson, L. Kidney development: two tales of tubulogenesis. Curr. Top. Dev. Biol. 90, 193–229 (2010).

    Article  CAS  PubMed  Google Scholar 

  40. Dressler, G. R. The cellular basis of kidney development. Annu. Rev. Cell Dev. Biol. 22, 509–529 (2006).

    Article  CAS  PubMed  Google Scholar 

  41. Schnell, J., Achieng, M. & Lindström, N. O. Principles of human and mouse nephron development. Nat. Rev. Nephrol. 18, 628–642 (2022).

    Article  PubMed  Google Scholar 

  42. Habara, K., Asakawa, M. & Ito, H. [Morphological studies on the renal papillae of the kidney in Japanese adults]. Kaibogaku Zasshi 69, 270–279 (1994).

    CAS  PubMed  Google Scholar 

  43. Straus, W. L. The structure of the primate kidney. J. Anat. 69, 93–108 (1934).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Woolf, A. S., Winyard, P. J. D., Hermanns, M. H. & Welham, S. J. M. Maldevelopment of the human kidney and lower urinary tract: an overview. In The Kidney: From Normal Development to Congenital Disease (eds Vize, P. D., Woolf, A. S. & Bard, J. B. L.) 377–393 (Academic Press, 2003).

  45. Hinchliffe, S. A., Sargent, P. H., Howard, C. V., Chan, Y. F. & van Velzen, D. Human intrauterine renal growth expressed in absolute number of glomeruli assessed by the disector method and Cavalieri principle. Lab. Invest. 64, 777–784 (1991).

    CAS  PubMed  Google Scholar 

  46. Ryan, D. et al. Development of the human fetal kidney from mid to late gestation in male and female infants. EBioMedicine 27, 275–283 (2018).

    Article  PubMed  Google Scholar 

  47. Sutherland, M. R. et al. Accelerated maturation and abnormal morphology in the preterm neonatal kidney. J. Am. Soc. Nephrol. 22, 1365–1374 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Rodríguez, M. M. et al. Histomorphometric analysis of postnatal glomerulogenesis in extremely preterm infants. Pediatr. Dev. Pathol. 7, 17–25 (2004).

    Article  PubMed  Google Scholar 

  49. Stonestreet, B. S., Hansen, N. B., Laptook, A. R. & Oh, W. Glucocorticoid accelerates renal functional maturation in fetal lambs. Early Hum. Dev. 8, 331–341 (1983).

    Article  CAS  PubMed  Google Scholar 

  50. Whitsett, J. A. & Matsuzaki, Y. Transcriptional regulation of perinatal lung maturation. Pediatr. Clin. North. Am. 53, 873–887 (2006).

    Article  PubMed  Google Scholar 

  51. Gubhaju, L. et al. Is nephrogenesis affected by preterm birth? Studies in a non-human primate model. Am. J. Physiol. Renal Physiol. 297, F1668–F1677 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Perl, A. J., Schuh, M. P. & Kopan, R. Regulation of nephron progenitor cell lifespan and nephron endowment. Nat. Rev. Nephrol. 18, 683–695 (2022).

    Article  PubMed  Google Scholar 

  53. Bertram, J. F., Douglas-Denton, R. N., Diouf, B., Hughson, M. D. & Hoy, W. E. Human nephron number: implications for health and disease. Pediatr. Nephrol. 26, 1529–1533 (2011).

    Article  PubMed  Google Scholar 

  54. Zhang, Z. et al. A common RET variant is associated with reduced newborn kidney size and function. J. Am. Soc. Nephrol. 19, 2027–2034 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. El Kares, R. et al. A human ALDH1A2 gene variant is associated with increased newborn kidney size and serum retinoic acid. Kidney Int. 78, 96–102 (2010).

    Article  CAS  PubMed  Google Scholar 

  56. Singh, R. R., Cuffe, J. S. & Moritz, K. M. Short- and long-term effects of exposure to natural and synthetic glucocorticoids during development. Clin. Exp. Pharmacol. Physiol. 39, 979–989 (2012).

    Article  CAS  PubMed  Google Scholar 

  57. Stelloh, C. et al. Prematurity in mice leads to reduction in nephron number, hypertension, and proteinuria. Transl. Res. 159, 80–89 (2012).

    Article  CAS  PubMed  Google Scholar 

  58. Wlodek, M. E. et al. Normal lactational environment restores nephron endowment and prevents hypertension after placental restriction in the rat. J. Am. Soc. Nephrol. 18, 1688–1696 (2007).

    Article  CAS  PubMed  Google Scholar 

  59. Makrakis, J., Zimanyi, M. A. & Black, M. J. Retinoic acid enhances nephron endowment in rats exposed to maternal protein restriction. Pediatr. Nephrol. 22, 1861–1867 (2007).

    Article  PubMed  Google Scholar 

  60. Gray, S. P., Denton, K. M., Cullen-McEwen, L., Bertram, J. F. & Moritz, K. M. Prenatal exposure to alcohol reduces nephron number and raises blood pressure in progeny. J. Am. Soc. Nephrol. 21, 1891–1902 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Hokke, S. et al. Maternal fat feeding augments offspring nephron endowment in mice. PLoS One 11, e0161578 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Walton, S. L. et al. Prenatal hypoxia leads to hypertension, renal renin-angiotensin system activation and exacerbates salt-induced pathology in a sex-specific manner. Sci. Rep. https://doi.org/10.1038/s41598-017-08365-4 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Hinchliffe, S. A., Lynch, M. R., Sargent, P. H., Howard, C. V. & Van Velzen, D. The effect of intrauterine growth retardation on the development of renal nephrons. Br. J. Obstet. Gynaecol. 99, 296–301 (1992).

    Article  CAS  PubMed  Google Scholar 

  64. Mañalich, R., Reyes, L., Herrera, M., Melendi, C. & Fundora, I. Relationship between weight at birth and the number and size of renal glomeruli in humans: a histomorphometric study. Kidney Int. 58, 770–773 (2000).

    Article  PubMed  Google Scholar 

  65. Sato, A., Yamaguchi, Y., Liou, S. M., Sato, M. & Suzuki, M. Growth of the fetal kidney assessed by real-time ultrasound. Gynecol. Obstet. Invest. 20, 1–5 (1985).

    Article  CAS  PubMed  Google Scholar 

  66. Deutinger, J., Bartl, W., Pfersmann, C., Neumark, J. & Bernaschek, G. Fetal kidney volume and urine production in cases of fetal growth retardation. J. Perinat. Med. 15, 307–315 (1987).

    Article  CAS  PubMed  Google Scholar 

  67. Konje, J. C., Bell, S. C., Morton, J. J., de Chazal, R. & Taylor, D. J. Human fetal kidney morphometry during gestation and the relationship between weight, kidney morphometry and plasma active renin concentration at birth. Clin. Sci. 91, 169–175 (1996).

    Article  CAS  Google Scholar 

  68. Konje, J. C., Okaro, C. I., Bell, S. C., De Chazal, R. & Taylor, D. J. A cross-sectional study of changes in fetal renal size with gestation in appropriate- and small-for-gestational-age fetuses. Ultrasound Obstet. Gynecol. 10, 22–26 (1997).

    Article  CAS  PubMed  Google Scholar 

  69. Silver, L. E., Decamps, P. J., Korst, L. M., Platt, L. D. & Castro, L. Intrauterine growth restriction is accompanied by decreased renal volume in the human fetus. Am. J. Obstet. Gynecol. 188, 1320–1325 (2003).

    Article  PubMed  Google Scholar 

  70. Verburg, B. O. et al. Fetal kidney volume and its association with growth and blood flow in fetal life: the Generation R Study. Kidney Int. 72, 754–761 (2007).

    Article  CAS  PubMed  Google Scholar 

  71. Senra, J. C. et al. Kidney impairment in fetal growth restriction: three-dimensional evaluation of volume and vascularization. Prenat. Diagn. 40, 1408–1417 (2020).

    Article  PubMed  Google Scholar 

  72. Sutherland, M. R., Vojisavljevic, D. & Black, M. J. A practical guide to the stereological assessment of glomerular number, size, and cellular composition. Anat. Rec. 303, 2679–2692 (2020).

    Article  Google Scholar 

  73. Merlet-Bénichou, C., Leroy, B., Gilbert, T. & Lelièvre-Pégorier, M. Retard de croissance intra-utérin et déficit en néphrons. Méd. Sci. 9, 777–780 (1993).

    Google Scholar 

  74. Schreuder, M., Delemarre-van de Waal, H. & van Wijk, A. Consequences of intrauterine growth restriction for the kidney. Kidney Blood Press. Res. 29, 108–125 (2006).

    Article  CAS  PubMed  Google Scholar 

  75. Lucas, S. R. R., Silva, V. L. C., Miraglia, S. M. & Gil, F. Z. Functional and morphometric evaluation of offspring kidney after intrauterine undernutrition. Pediatr. Nephrol. 11, 719–723 (1997).

    Article  CAS  PubMed  Google Scholar 

  76. Zimanyi, M. A. et al. A developmental nephron deficit in rats is associated with increased susceptibility to a secondary renal injury due to advanced glycation end-products. Diabetologia 49, 801–810 (2006).

    Article  CAS  PubMed  Google Scholar 

  77. Boubred, F. et al. The magnitude of nephron number reduction mediates intrauterine growth-restriction-induced long term chronic renal disease in the rat. A comparative study in two experimental models. J. Transl. Med. 14, 331 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  78. Gonçalves, G. D. et al. Maternal hypoxia developmentally programs low podocyte endowment in male, but not female offspring. Anat. Rec. 303, 2668–2678 (2020).

    Article  Google Scholar 

  79. Philipson, E. H., Sokol, R. J. & Williams, T. Oligohydramnios: clinical associations and predictive value for intrauterine growth retardation. Am. J. Obstet. Gynecol. 146, 271–278 (1983).

    Article  CAS  PubMed  Google Scholar 

  80. Sutherland, M. R. et al. Renal dysfunction is already evident within the first month of life in Australian Indigenous infants born preterm. Kidney Int. 96, 1205–1216 (2019).

    Article  CAS  PubMed  Google Scholar 

  81. Heuchel, K. M. et al. Blood pressure and kidney function in neonates and young infants with intrauterine growth restriction. Pediatr. Nephrol. https://doi.org/10.1007/s00467-022-05713-z (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  82. Aly, H. et al. Renal function in small for gestational age preterm infants. J. Perinatol. 39, 1263–1267 (2019).

    Article  CAS  PubMed  Google Scholar 

  83. Zhu, J., Xing, Y. & Wang, X. L. [A preliminary study of renal function in small-for-gestational-age infants at early stage after birth]. Zhongguo Dang Dai Er Ke Za Zhi 19, 389–392 (2017).

    PubMed  Google Scholar 

  84. Robinson, D., Weiner, C., Nakamura, K. & Robillard, J. Effect of intrauterine growth retardation on renal function on day one of life. Am. J. Perinatol. 7, 343–346 (1990).

    Article  CAS  PubMed  Google Scholar 

  85. Pachi, A. et al. Renal tubular damage in fetuses with intrauterine growth retardation. Fetal Diagn. Ther. 8, 109–113 (1993).

    Article  CAS  PubMed  Google Scholar 

  86. Kamianowska, M., Szczepański, M., Kulikowska, E. E., Bebko, B. & Wasilewska, A. The tubular damage markers: neutrophil gelatinase-associated lipocalin and kidney injury molecule-1 in newborns with intrauterine growth restriction. Neonatology 115, 169–174 (2019).

    Article  CAS  PubMed  Google Scholar 

  87. Chevalier, R. L. The proximal tubule is the primary target of injury and progression of kidney disease: role of the glomerulotubular junction. Am. J. Physiol. Renal Physiol. 311, F145–F161 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Fowden, A. L., Ward, J. W. & Forhead, A. J. in Developmental Origins of Health and Disease (eds Gluckman, P. & Hanson, M.) 143–158 (Cambridge University Press, 2006).

  89. Chevalier, R. L. Bioenergetic evolution explains prevalence of low nephron number at birth: risk factor for CKD. Kidney360 1, 863–879 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  90. Nijland, M. J., Schlabritz-Loutsevitch, N. E., Hubbard, G. B., Nathanielsz, P. W. & Cox, L. A. Non-human primate fetal kidney transcriptome analysis indicates mammalian target of rapamycin (mTOR) is a central nutrient-responsive pathway. J. Physiol. 579, 643–656 (2007).

    Article  CAS  PubMed  Google Scholar 

  91. Wang, Y.-P. et al. Effects of a restricted fetal growth environment on human kidney morphology, cell apoptosis and gene expression. J. Renin Angiotensin Aldosterone Syst. 16, 1028–1035 (2015).

    Article  CAS  PubMed  Google Scholar 

  92. Welham, S. J. M., Wade, A. & Woolf, A. S. Protein restriction in pregnancy is associated with increased apoptosis of mesenchymal cells at the start of rat metanephrogenesis. Kidney Int. 61, 1231–1242 (2002).

    Article  CAS  PubMed  Google Scholar 

  93. Wilkinson, L. J. et al. Renal developmental defects resulting from in utero hypoxia are associated with suppression of ureteric β-catenin signaling. Kidney Int. 87, 975–983 (2015).

    Article  CAS  PubMed  Google Scholar 

  94. Xia, S. et al. Prenatal exposure to hypoxia induced beclin 1 signaling-mediated renal autophagy and altered renal development in rat fetuses. Reprod. Sci. 22, 156–164 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  95. Moritz, K. M. et al. Review: sex specific programming: a critical role for the renal renin-angiotensin system. Placenta 31 (Suppl), S40–S46 (2010).

    Article  PubMed  Google Scholar 

  96. Batourina, E. et al. Vitamin A controls epithelial/mesenchymal interactions through Ret expression. Nat. Genet. 27, 74–78 (2001).

    Article  CAS  PubMed  Google Scholar 

  97. Lelièvre-Pégorier, M. et al. Mild vitamin A deficiency leads to inborn nephron deficit in the rat. Kidney Int. 54, 1455–1462 (1998).

    Article  PubMed  Google Scholar 

  98. Gray, S. P., Cullen-McEwen, L. A., Bertram, J. F. & Moritz, K. M. Mechanism of alcohol-induced impairment in renal development: could it be reduced by retinoic acid? Clin. Exp. Pharmacol. Physiol. 39, 807–813 (2012).

    Article  CAS  PubMed  Google Scholar 

  99. Gibson, I. W., Downie, T. T., More, I. A. & Lindop, G. B. Atubular glomeruli and glomerular cysts — a possible pathway for nephron loss in the human kidney? J. Pathol. 179, 421–426 (1996).

    Article  CAS  PubMed  Google Scholar 

  100. Marcussen, N. Tubulointerstitial damage leads to atubular glomeruli: significance and possible role in progression. Nephrol. Dial. Transplant. 15, 74–75 (2000).

    Article  PubMed  Google Scholar 

  101. Gao, Q., Lu, C., Tian, X., Zheng, J. & Ding, F. Urine podocyte mRNA loss in preterm infants and related perinatal risk factors. Pediatr. Nephrol. https://doi.org/10.1007/s00467-022-05663-6 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  102. Ashraf, U. M., Hall, D. L., Rawls, A. Z. & Alexander, B. T. Epigenetic processes during preeclampsia and effects on fetal development and chronic health. Clin. Sci. 135, 2307–2327 (2021).

    Article  CAS  Google Scholar 

  103. Jain, V. G., Willis, K. A., Jobe, A. & Ambalavanan, N. Chorioamnionitis and neonatal outcomes. Pediatr. Res. 91, 289–296 (2022).

    Article  PubMed  Google Scholar 

  104. Galinsky, R. et al. Effect of intra-amniotic lipopolysaccharide on nephron number in preterm fetal sheep. Am. J. Physiol. Renal Physiol. 301, F280–F285 (2011).

    Article  CAS  PubMed  Google Scholar 

  105. Hoogenboom, L. A. et al. Chorioamnionitis causes kidney inflammation, podocyte damage, and pro-fibrotic changes in fetal lambs. Front. Pediatr. 10, 796702 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  106. Sorokina, I., Ospanova, T., Myroshnychenko, M. & Korneyko, I. Macroscopic features of the kidneys of fetuses and newborns in preeclampsia: postmortem observational study. Int. J. Reprod. Biomed. 16, 115–118 (2018).

    PubMed  PubMed Central  Google Scholar 

  107. Antenatal Corticosteroid Clinical Practice Guidelines Panel. Antenatal corticosteroids given to women prior to birth to improve fetal, infant, child and adult health: Clinical Practice Guidelines (Liggins Institute, The University of Auckland, 2015).

  108. Moritz, K. M. et al. Prenatal glucocorticoid exposure in the sheep alters renal development in utero: implications for adult renal function and blood pressure control. Am. J. Physiol. Regul. Integr. Comp. Physiol. 301, R500–R509 (2011).

    Article  CAS  PubMed  Google Scholar 

  109. Satlin, L. M., Woda, C. B. & Schwartz, G. J. in The Kidney: From Normal Development to Congenital Disease (eds Vize, P. D., Woolf, A. & Bard, J. B. L.) 267–325 (Academic Press, 2003).

  110. Popescu, C. R. et al. Hyperoxia exposure impairs nephrogenesis in the neonatal rat: role of HIF-1α. PLoS One 8, e82421 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  111. Sutherland, M. R., Ryan, D., Dahl, M. J., Albertine, K. H. & Black, M. J. Effects of preterm birth and ventilation on glomerular capillary growth in the neonatal lamb kidney. J. Hypertens. 34, 1988–1997 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Sutherland, M. R. et al. Effects of ibuprofen treatment on the developing preterm baboon kidney. Am. J. Physiol. Renal Physiol. 302, F1286–F1292 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Kent, A. L. et al. Renal glomeruli and tubular injury following indomethacin, ibuprofen, and gentamicin exposure in a neonatal rat model. Pediatr. Res. 62, 307–312 (2007).

    Article  CAS  PubMed  Google Scholar 

  114. Charlton, J. R. et al. Nephron loss detected by MRI following neonatal acute kidney injury in rabbits. Pediatr. Res. 87, 1185–1192 (2020).

    Article  CAS  PubMed  Google Scholar 

  115. Gubhaju, L. et al. Assessment of renal functional maturation and injury in preterm neonates during the first month of life. Am. J. Physiol. Renal Physiol. 307, F149–F158 (2014).

    Article  CAS  PubMed  Google Scholar 

  116. Gallini, F., Maggio, L., Romagnoli, C., Marrocco, G. & Tortorolo, G. Progression of renal function in preterm neonates with gestational age < or = 32 weeks. Pediatr. Nephrol. 15, 119–124 (2000).

    Article  CAS  PubMed  Google Scholar 

  117. Go, H. et al. Neonatal and maternal serum creatinine levels during the early postnatal period in preterm and term infants. PLoS One 13, e0196721 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  118. Vieux, R., Hascoet, J. M., Merdariu, D., Fresson, J. & Guillemin, F. Glomerular filtration rate reference values in very preterm infants. Pediatr 125, e1186–e1192 (2010).

    Article  Google Scholar 

  119. Awad, H., el-Safty, I., el-Barbary, M. & Imam, S. Evaluation of renal glomerular and tubular functional and structural integrity in neonates. Am. J. Med. Sci. 324, 261–266 (2002).

    Article  PubMed  Google Scholar 

  120. Tsukahara, H. et al. Renal handling of albumin and β-2-microglobulin in neonates. Nephron 68, 212–216 (1994).

    Article  CAS  PubMed  Google Scholar 

  121. Jetton, J. G. et al. Incidence and outcomes of neonatal acute kidney injury (AWAKEN): a multicentre, multinational, observational cohort study. Lancet Child. Adolesc. Health 1, 184–194 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  122. Stapleton, F. B., Jones, D. P. & Green, R. S. Acute renal failure in neonates: incidence, etiology and outcome. Pediatr. Nephrol. 1, 314–320 (1987).

    Article  CAS  PubMed  Google Scholar 

  123. Basile, D. P., Anderson, M. D. & Sutton, T. A. Pathophysiology of acute kidney injury. Compr. Physiol. 2, 1303–1353 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  124. Mammen, C. et al. Long-term risk of CKD in children surviving episodes of acute kidney injury in the intensive care unit: a prospective cohort study. Am. J. Kidney Dis. 59, 523–530 (2012).

    Article  PubMed  Google Scholar 

  125. Menon, S., Kirkendall, E. S., Nguyen, H. & Goldstein, S. L. Acute kidney injury associated with high nephrotoxic medication exposure leads to chronic kidney disease after 6 months. J. Pediatr. 165, 522–527.e2 (2014).

    Article  CAS  PubMed  Google Scholar 

  126. Nenov, V. D., Taal, M. W., Sakharova, O. V. & Brenner, B. M. Multi-hit nature of chronic renal disease. Curr. Opin. Nephrol. Hypertens. 9, 85–97 (2000).

    Article  CAS  PubMed  Google Scholar 

  127. Luyckx, V. A. et al. Nephron overload as a therapeutic target to maximize kidney lifespan. Nat. Rev. Nephrol. 18, 171–183 (2022).

    Article  PubMed  Google Scholar 

  128. Hoogenboom, L. A., Wolfs, T. G. A. M., Hütten, M. C., Peutz-Kootstra, C. J. & Schreuder, M. F. Prematurity, perinatal inflammatory stress, and the predisposition to develop chronic kidney disease beyond oligonephropathy. Pediatr. Nephrol. 36, 1673–1681 (2021).

    Article  PubMed  Google Scholar 

  129. Voggel, J. et al. Translational insights into mechanisms and preventative strategies after renal injury in neonates. Semin. Fetal Neonatal Med. 27, 101245 (2022).

    Article  PubMed  Google Scholar 

  130. Brenner, B. M. & Chertow, G. M. Congenital oligonephropathy and the etiology of adult hypertension and progressive renal injury. Am. J. Kidney Dis. 23, 171–175 (1994).

    Article  CAS  PubMed  Google Scholar 

  131. Fong, D., Denton, K. M., Moritz, K. M., Evans, R. & Singh, R. R. Compensatory responses to nephron deficiency: adaptive or maladaptive? Nephrology 19, 119–128 (2014).

    Article  CAS  PubMed  Google Scholar 

  132. Crump, C., Sundquist, J. & Sundquist, K. Preterm birth and risk of type 1 and type 2 diabetes: a national cohort study. Diabetologia 63, 508–518 (2020).

    Article  CAS  PubMed  Google Scholar 

  133. Barker, D. J. P. et al. Type 2 (non-insulin-dependent) diabetes mellitus, hypertension and hyperlipidaemia (syndrome X): relation to reduced fetal growth. Diabetologia 36, 62–67 (1993).

    Article  CAS  PubMed  Google Scholar 

  134. Huxley, R. R., Shiell, A. W. & Law, C. M. The role of size at birth and postnatal catch-up growth in determining systolic blood pressure: a systematic review of the literature. J. Hypertens. 18, 815–831 (2000).

    Article  CAS  PubMed  Google Scholar 

  135. De Jong, F., Monuteaux, M. C., Van Elburg, R. M., Gillman, M. W. & Belfort, M. B. Systematic review and meta-analysis of preterm birth and later systolic blood pressure. Hypertension 59, 226–234 (2012).

    Article  PubMed  Google Scholar 

  136. Morrison, J. L., Duffield, J. A., Muhlhausler, B. S., Gentili, S. & McMillen, I. C. Fetal growth restriction, catch-up growth and the early origins of insulin resistance and visceral obesity. Pediatr. Nephrol. 25, 669–677 (2010).

    Article  PubMed  Google Scholar 

  137. Abitbol, C. L. et al. Obesity and preterm birth: additive risks in the progression of kidney disease in children. Pediatr. Nephrol. 24, 1363–1370 (2009).

    Article  PubMed  Google Scholar 

  138. Ou-Yang, M. C. et al. Accelerated weight gain, prematurity, and the risk of childhood obesity: a meta-analysis and systematic review. PLoS One 15, e0232238 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. White, S. L. et al. Is low birth weight an antecedent of CKD in later life? A systematic review of observational studies. Am. J. Kidney Dis. 54, 248–261 (2009).

    Article  PubMed  Google Scholar 

  140. Gielen, M. et al. Birth weight and creatinine clearance in young adult twins: influence of genetic, prenatal, and maternal factors. J. Am. Soc. Nephrol. 16, 2471–2476 (2005).

    Article  PubMed  Google Scholar 

  141. Gjerde, A., Reisæter, A. V., Skrunes, R., Marti, H.-P. & Vikse, B. E. Intrauterine growth restriction and risk of diverse forms of kidney disease during the first 50 years of life. Clin. J. Am. Soc. Nephrol. 15, 1413–1423 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Ruggajo, P. et al. Familial factors, low birth weight, and development of ESRD: a nationwide registry study. Am. J. Kidney Dis. 67, 601–608 (2016).

    Article  PubMed  Google Scholar 

  143. Vikse, B. E., Irgens, L. M., Leivestad, T., Hallan, S. & Iversen, B. M. Low birth weight increases risk for end-stage renal disease. J. Am. Soc. Nephrol. 19, 151–157 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  144. Eriksson, J. G., Salonen, M. K., Kajantie, E. & Osmond, C. Prenatal growth and CKD in older adults: longitudinal findings from the Helsinki birth cohort study, 1924–1944. Am. J. Kidney Dis. 71, 20–26 (2018).

    Article  PubMed  Google Scholar 

  145. Hirano, D. et al. Association between low birth weight and childhood-onset chronic kidney disease in Japan: a combined analysis of a nationwide survey for paediatric chronic kidney disease and the National Vital Statistics Report. Nephrol. Dial. Transpl. 31, 1895–1900 (2016).

    Article  Google Scholar 

  146. Hsu, C. W., Yamamoto, K. T., Henry, R. K., De Roos, A. J. & Flynn, J. T. Prenatal risk factors for childhood CKD. J. Am. Soc. Nephrol. 25, 2105–2111 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  147. Australian Institute of Health and Welfare. Cardiovascular disease, diabetes and chronic kidney disease — Australian facts: Aboriginal and Torres Strait Islander people. Series 5. Cat. CDK 5 Canberra (AIHW, 2015).

  148. Hoy, W. E., Swanson, C. E. & Mott, S. A. Birthweight and the prevalence, progression, and incidence of CKD in a multideterminant model in a high-risk Australian Aboriginal community. Kidney Int. Rep. 6, 2782–2793 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  149. Hoy, W. E. et al. The influence of birthweight, past poststreptococcal glomerulonephritis and current body mass index on levels of albuminuria in young adults: the multideterminant model of renal disease in a remote Australian Aboriginal population with high rates of renal disease and renal failure. Nephrol. Dial. Transpl. 31, 971–977 (2014).

    Article  Google Scholar 

  150. Crump, C., Sundquist, J., Winkleby, M. A. & Sundquist, K. Preterm birth and risk of chronic kidney disease from childhood into mid-adulthood: national cohort study. BMJ 365, l1346 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  151. Luyckx, V. A. et al. A developmental approach to the prevention of hypertension and kidney disease: a report from the Low Birth Weight and Nephron Number Working Group. Lancet 390, 424–428 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

M.R.S. wrote the manuscript and created the figures. Both authors contributed substantially to discussion of the manuscript content and reviewed and edited the manuscript before submission.

Corresponding author

Correspondence to Mary Jane Black.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Nephrology thanks Kai-Dietrich Nüsken, Kirsty Pringle, and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sutherland, M.R., Black, M.J. The impact of intrauterine growth restriction and prematurity on nephron endowment. Nat Rev Nephrol 19, 218–228 (2023). https://doi.org/10.1038/s41581-022-00668-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41581-022-00668-8

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing