Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The Klotho proteins in health and disease

Abstract

The Klotho proteins, αKlotho and βKlotho, are essential components of endocrine fibroblast growth factor (FGF) receptor complexes, as they are required for the high-affinity binding of FGF19, FGF21 and FGF23 to their cognate FGF receptors (FGFRs). Collectively, these proteins form a unique endocrine system that governs multiple metabolic processes in mammals. FGF19 is a satiety hormone that is secreted from the intestine on ingestion of food and binds the βKlotho–FGFR4 complex in hepatocytes to promote metabolic responses to feeding. By contrast, under fasting conditions, the liver secretes the starvation hormone FGF21, which induces metabolic responses to fasting and stress responses through the activation of the hypothalamus–pituitary–adrenal axis and the sympathetic nervous system following binding to the βKlotho–FGFR1c complex in adipocytes and the suprachiasmatic nucleus, respectively. Finally, FGF23 is secreted by osteocytes in response to phosphate intake and binds to αKlotho–FGFR complexes, which are expressed most abundantly in renal tubules, to regulate mineral metabolism. Growing evidence suggests that the FGF–Klotho endocrine system also has a crucial role in the pathophysiology of ageing-related disorders, including diabetes, cancer, arteriosclerosis and chronic kidney disease. Therefore, targeting the FGF–Klotho endocrine axes might have therapeutic benefit in multiple systems; investigation of the crystal structures of FGF–Klotho–FGFR complexes is paving the way for the development of drugs that can regulate these axes.

Key points

  • The Klotho proteins αKlotho and βKlotho are essential components of endocrine fibroblast growth factor (FGF) receptor complexes, as they are required for the high-affinity binding of FGF19, FGF21 and FGF23 to their cognate FGF receptors.

  • FGF21 is a starvation hormone that induces stress responses by activating the sympathetic nervous system and the hypothalamus–pituitary–adrenal axis.

  • FGF19 is a satiety hormone that promotes metabolic responses to feeding.

  • FGF23 is a phosphaturic hormone; increased FGF23 levels in patients with early-stage chronic kidney disease or elderly individuals is indicative of excess phosphate intake relative to the residual nephron number.

  • Calciprotein particles are colloids of calcium phosphate adsorbed to fetuin A, which increase in concentration as renal function declines and that can induce innate immune responses and cell death, suggesting that they are mediators of phosphate-induced damage.

  • Solving the crystal structure of αKlotho and βKlotho will facilitate the development of agonists and antagonists of endocrine FGFs, which will be potentially useful for the treatment of various disorders, including chronic kidney disease and other ageing-related disorders.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Structural basis of FGF23–αKlotho–FGFR1c complex formation.
Fig. 2: The FGF23–αKlotho endocrine axis.
Fig. 3: Pathophysiology of CKD progression.
Fig. 4: CPP-mediated inflammation and vascular damage.
Fig. 5: Membrane αKlotho and soluble αKlotho.
Fig. 6: The FGF21–βKlotho endocrine axis.
Fig. 7: The FGF15/FGF19–βKlotho endocrine axis.

Notes

  1. Ccr, creatinine clearance; Pcr, serum creatinine concentration; Pp, serum phosphate concentration; Ucr, urinary creatinine concentration; Up, urinary phosphate concentration; V, 24-hour urinary volume.

References

  1. Kuro-o, M. et al. Mutation of the mouse klotho gene leads to a syndrome resembling ageing. Nature 390, 45–51 (1997). This study reports the discovery of the αKlotho gene as a putative ‘ageing-suppressor’ gene.

    CAS  PubMed  Google Scholar 

  2. Kurosu, H. et al. Regulation of fibroblast growth factor-23 signaling by klotho. J. Biol. Chem. 281, 6120–6123 (2006). The first study to demonstrate that αKlotho forms complexes with FGFRs and functions as the obligate co-receptor for FGF23.

    CAS  PubMed  Google Scholar 

  3. Urakawa, I. et al. Klotho converts canonical FGF receptor into a specific receptor for FGF23. Nature 444, 770–774 (2006).

    CAS  PubMed  Google Scholar 

  4. Shimada, T. et al. Targeted ablation of Fgf23 demonstrates an essential physiological role of FGF23 in phosphate and vitamin D metabolism. J. Clin. Invest. 113, 561–568 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Shimada, T. et al. FGF-23 is a potent regulator of vitamin D metabolism and phosphate homeostasis. J. Bone Miner. Res. 19, 429–435 (2004).

    CAS  PubMed  Google Scholar 

  6. Yu, X. et al. Analysis of the biochemical mechanisms for the endocrine actions of fibroblast growth factor-23. Endocrinology 146, 4647–4656 (2005).

    CAS  PubMed  Google Scholar 

  7. Kuro-o, M. Ageing-related receptors resolved. Nature 553, 409–410 (2018).

    CAS  PubMed  Google Scholar 

  8. Itoh, N. & Ornitz, D. M. Fibroblast growth factors: from molecular evolution to roles in development, metabolism and disease. J. Biochem. 149, 121–130 (2011).

    CAS  PubMed  Google Scholar 

  9. Jones, S. A. Physiology of FGF15/19. Adv. Exp. Med. Biol. 728, 171–182 (2012).

    CAS  PubMed  Google Scholar 

  10. Hu, M. C., Shiizaki, K., Kuro-o, M. & Moe, O. W. Fibroblast growth factor 23 and klotho: physiology and pathophysiology of an endocrine network of mineral metabolism. Annu. Rev. Physiol. 75, 503–533 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Schlessinger, J. et al. Crystal structure of a ternary FGF-FGFR-heparin complex reveals a dual role for heparin in FGFR binding and dimerization. Mol. Cell 6, 743–750 (2000).

    CAS  PubMed  Google Scholar 

  12. Ibrahimi, O. A. et al. Analysis of mutations in fibroblast growth factor (FGF) and a pathogenic mutation in FGF receptor (FGFR) provides direct evidence for the symmetric two-end model for FGFR dimerization. Mol. Cell. Biol. 25, 671–684 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Harmer, N. J., Pellegrini, L., Chirgadze, D., Fernandez-Recio, J. & Blundell, T. L. The crystal structure of fibroblast growth factor (FGF) 19 reveals novel features of the FGF family and offers a structural basis for its unusual receptor affinity. Biochemistry 43, 629–640 (2004).

    CAS  PubMed  Google Scholar 

  14. Mohammadi, M., Olsen, S. K. & Ibrahimi, O. A. Structural basis for fibroblast growth factor receptor activation. Cytokine Growth Factor Rev. 16, 107–137 (2005).

    CAS  PubMed  Google Scholar 

  15. Goetz, R. et al. Molecular insights into the klotho-dependent, endocrine mode of action of fibroblast growth factor 19 subfamily members. Mol. Cell. Biol. 27, 3417–3428 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Ito, S. et al. Molecular cloning and expression analyses of mouse betaklotho, which encodes a novel Klotho family protein. Mech. Dev. 98, 115–119 (2000).

    CAS  PubMed  Google Scholar 

  17. Ogawa, Y. et al. βKlotho is required for metabolic activity of fibroblast growth factor 21. Proc. Natl Acad. Sci. USA 104, 7432–7437 (2007). This study demonstrates that βKlotho forms complexes with FGFR1c and functions as the obligate co-receptor for FGF21.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Kurosu, H. et al. Tissue-specific expression of betaKlotho and fibroblast growth factor (FGF) receptor isoforms determines metabolic activity of FGF19 and FGF21. J. Biol. Chem. 282, 26687–26695 (2007). This investigation showed that FGF19 binds to the βKlotho–FGFR4 complex to activate FGF signaling.

    CAS  PubMed  Google Scholar 

  19. Zhang, Y. et al. The starvation hormone, fibroblast growth factor-21, extends lifespan in mice. eLife 1, e00065 (2012).

    PubMed  PubMed Central  Google Scholar 

  20. Chen, G. et al. α-Klotho is a non-enzymatic molecular scaffold for FGF23 hormone signalling. Nature 553, 461–466 (2018). The first report on the crystal structure of the αKlotho–FGFR1c–FGF23 ternary complex.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Lee, S. et al. Structures of β-klotho reveal a ‘zip code’-like mechanism for endocrine FGF signalling. Nature 553, 501–505 (2018). The first report on the crystal structure of βKlotho.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Lan, T. et al. FGF19, FGF21, and an FGFR1/β-Klotho-activating antibody act on the nervous system to regulate body weight and glycemia. Cell Metab. 26, 709–718.e3 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Gaich, G. et al. The effects of LY2405319, an FGF21 analog, in obese human subjects with type 2 diabetes. Cell Metab. 18, 333–340 (2013).

    CAS  PubMed  Google Scholar 

  24. Liu, S. et al. Pathogenic role of Fgf23 in Hyp mice. Am. J. Physiol. Endocrinol. Metab. 291, E38–E49 (2006).

    CAS  PubMed  Google Scholar 

  25. Feng, J. Q. et al. Loss of DMP1 causes rickets and osteomalacia and identifies a role for osteocytes in mineral metabolism. Nat. Genet. 38, 1310–1315 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Fon Tacer, K. et al. Research resource: comprehensive expression atlas of the fibroblast growth factor system in adult mouse. Mol. Endocrinol. 24, 2050–2064 (2010).

    PubMed  PubMed Central  Google Scholar 

  27. Kuro-o, M. Phosphate and Klotho. Kidney Int. 79, S20–S23 (2011).

    Google Scholar 

  28. Murer, H., Forster, I. & Biber, J. The sodium phosphate cotransporter family SLC34. Pflugers Arch. 447, 763–767 (2004).

    CAS  PubMed  Google Scholar 

  29. Shimada, T. et al. Cloning and characterization of FGF23 as a causative factor of tumor-induced osteomalacia. Proc. Natl Acad. Sci. USA 98, 6500–6505 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Dominguez, J. R., Shlipak, M. G., Whooley, M. A. & Ix, J. H. Fractional excretion of phosphorus modifies the association between fibroblast growth factor-23 and outcomes. J. Am. Soc. Nephrol. 24, 647–654 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Barthel, T. K. et al. 1,25-Dihydroxyvitamin D3/VDR-mediated induction of FGF23 as well as transcriptional control of other bone anabolic and catabolic genes that orchestrate the regulation of phosphate and calcium mineral metabolism. J. Steroid Biochem. Mol. Biol. 103, 381–388 (2007).

    CAS  PubMed  Google Scholar 

  32. Lavi-Moshayoff, V., Wasserman, G., Meir, T., Silver, J. & Naveh-Many, T. PTH increases FGF23 gene expression and mediates the high-FGF23 levels of experimental kidney failure: a bone parathyroid feedback loop. Am. J. Physiol. Renal Physiol. 299, F882–F889 (2010).

    CAS  PubMed  Google Scholar 

  33. Inoue, Y. et al. Role of the vitamin D receptor in FGF23 action on phosphate metabolism. Biochem. J. 390, 325–331 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Masuyama, R. et al. Vitamin D receptor in chondrocytes promotes osteoclastogenesis and regulates FGF23 production in osteoblasts. J. Clin. Invest. 116, 3150–3159 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Rhee, Y. et al. Parathyroid hormone receptor signaling in osteocytes increases the expression of fibroblast growth factor-23 in vitro and in vivo. Bone 49, 636–643 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Ben-Dov, I. Z. et al. The parathyroid is a target organ for FGF23 in rats. J. Clin. Invest. 117, 4003–4008 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Liu, S. et al. Fibroblast growth factor 23 is a counter-regulatory phosphaturic hormone for vitamin D. J. Am. Soc. Nephrol. 17, 1305–1315 (2006).

    CAS  PubMed  Google Scholar 

  38. Meyer, M. B. et al. A kidney-specific genetic control module in mice governs endocrine regulation of the cytochrome P450 gene Cyp27b1 essential for vitamin D3 activation. J. Biol. Chem. 292, 17541–17558 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Olauson, H. et al. Parathyroid-specific deletion of Klotho unravels a novel calcineurin-dependent FGF23 signaling pathway that regulates PTH secretion. PLOS Genet. 9, e1003975 (2013).

    PubMed  PubMed Central  Google Scholar 

  40. Farrow, E. G., Davis, S. I., Summers, L. J. & White, K. E. Initial FGF23-mediated signaling occurs in the distal convoluted tubule. J. Am. Soc. Nephrol. 20, 955–960 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Andrukhova, O. et al. FGF23 regulates renal sodium handling and blood pressure. EMBO Mol. Med. 6, 744–759 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Chen, S. Y. et al. Epithelial sodium channel regulated by aldosterone-induced protein sgk. Proc. Natl Acad. Sci. USA 96, 2514–2519 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Cai, H. et al. WNK4 kinase regulates surface expression of the human sodium chloride cotransporter in mammalian cells. Kidney Int. 69, 2162–2170 (2006).

    CAS  PubMed  Google Scholar 

  44. Andrukhova, O. et al. FGF23 promotes renal calcium reabsorption through the TRPV5 channel. EMBO J. 33, 229–246 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Hall, J. E. in Guyton and Hall Textbook of Medical Physiology 13th edn 1001–1019 (Elsevier, 2016).

  46. Yuan, Q. et al. FGF-23/Klotho signaling is not essential for the phosphaturic and anabolic functions of PTH. J. Bone Miner. Res. 26, 2026–2035 (2011).

    CAS  PubMed  Google Scholar 

  47. Pitts, T. O. et al. Inhibitory effects of volume expansion performed in vivo on transport in the isolated rabbit proximal tubule perfused in vitro. J. Clin. Invest. 81, 997–1003 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Liput, J., Rose, M., Galya, C., Chen, T. C. & Puschett, J. B. Inhibition by volume expansion of phosphate uptake by the renal proximal tubule brush border membrane. Biochem. Pharmacol. 38, 321–325 (1989).

    CAS  PubMed  Google Scholar 

  49. Brown, E. M., Pollak, M., Riccardi, D. & Hebert, S. C. Cloning and characterization of an extracellular Ca2+-sensing receptor from parathyroid and kidney: new insights into the physiology and pathophysiology of calcium metabolism. Nephrol. Dial Transplant 9, 1703–1706 (1994).

    CAS  PubMed  Google Scholar 

  50. Quinn, S. J. et al. Interactions between calcium and phosphorus in the regulation of the production of fibroblast growth factor 23 in vivo. Am. J. Physiol. Endocrinol. Metab. 304, E310–E320 (2013).

    CAS  PubMed  Google Scholar 

  51. Rodriguez-Ortiz, M. E. et al. Calcium deficiency reduces circulating levels of FGF23. J. Am. Soc. Nephrol. 23, 1190–1197 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Zhang, B. et al. Up-regulation of FGF23 release by aldosterone. Biochem. Biophys. Res. Commun. 470, 384–390 (2016).

    CAS  PubMed  Google Scholar 

  53. de Seigneux, S. & Martin, P. Y. Phosphate and FGF23 in the renoprotective benefit of RAAS inhibition. Pharmacol. Res. 106, 87–91 (2016).

    PubMed  Google Scholar 

  54. Lawrence, T. The nuclear factor NF-κB pathway in inflammation. Cold Spring Harb. Perspect Biol. 1, a001651 (2009).

    PubMed  PubMed Central  Google Scholar 

  55. David, V., Francis, C. & Babitt, J. L. Ironing out the cross talk between FGF23 and inflammation. Am. J. Physiol. Renal Physiol. 312, F1–F8 (2017).

    CAS  PubMed  Google Scholar 

  56. Tsujikawa, H., Kurotaki, Y., Fujimori, T., Fukuda, K. & Nabeshima, Y. Klotho, a gene related to a syndrome resembling human premature aging, functions in a negative regulatory circuit of vitamin D endocrine system. Mol. Endocrinol. 17, 2393–2403 (2003).

    CAS  PubMed  Google Scholar 

  57. Forster, R. E. et al. Vitamin D receptor controls expression of the anti-aging klotho gene in mouse and human renal cells. Biochem. Biophys. Res. Commun. 414, 557–562 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Zhang, H. et al. Klotho is a target gene of PPAR-gamma. Kidney Int. 74, 732–739 (2008).

    CAS  PubMed  Google Scholar 

  59. Tang, R. et al. Fosinopril and Losartan regulate Klotho gene and nicotinamide adenine dinucleotide phosphate oxidase expression in kidneys of spontaneously hypertensive rats. Kidney Blood Pressure Res. 34, 350–357 (2011).

    CAS  Google Scholar 

  60. de Borst, M. H., Vervloet, M. G., ter Wee, P. M. & Navis, G. Cross talk between the renin-angiotensin-aldosterone system and vitamin D-FGF-23-klotho in chronic kidney disease. J. Am. Soc. Nephrol. 22, 1603–1609 (2011).

    PubMed  PubMed Central  Google Scholar 

  61. Marsell, R. et al. Gene expression analysis of kidneys from transgenic mice expressing fibroblast growth factor-23. Nephrol. Dial Transplant 23, 827–833 (2008).

    PubMed  Google Scholar 

  62. White, K. E. et al. Autosomal dominant hypophosphataemic rickets is associated with mutations in FGF23. Nat. Genet. 26, 345–348 (2000). The first demonstration of a link between FGF23 and phosphate homeostasis in humans.

    CAS  Google Scholar 

  63. Kurosu, H. & Kuro-o, M. Endocrine fibroblast growth factors as regulators of metabolic homeostasis. Biofactors 35, 52–60 (2009).

    CAS  PubMed  Google Scholar 

  64. Yu, X. & White, K. E. FGF23 and disorders of phosphate homeostasis. Cytokine Growth Factor Rev. 16, 221–232 (2005).

    CAS  PubMed  Google Scholar 

  65. The HYP Consortium. A gene (PEX) with homologies to endopeptidases is mutated in patients with X-linked hypophosphatemic rickets. Nat. Genet. 11, 130–136 (1995).

    Google Scholar 

  66. Garringer, H. J. et al. The role of mutant UDP-N-acetyl-α-D-galactosamine-polypeptide N-acetylgalactosaminyltransferase 3 in regulating serum intact fibroblast growth factor 23 and matrix extracellular phosphoglycoprotein in heritable tumoral calcinosis. J. Clin. Endocrinol. Metab. 91, 4037–4042 (2006).

    CAS  PubMed  Google Scholar 

  67. Kato, K. et al. Polypeptide GalNAc-transferase T3 and familial tumoral calcinosis. Secretion of fibroblast growth factor 23 requires O-glycosylation. J. Biol. Chem. 281, 18370–18377 (2006).

    CAS  PubMed  Google Scholar 

  68. Ichikawa, S. et al. A homozygous missense mutation in human KLOTHO causes severe tumoral calcinosis. J. Clin. Invest. 117, 2692–2701 (2007).

    Google Scholar 

  69. Brownstein, C. A. et al. A translocation causing increased alpha-klotho level results in hypophosphatemic rickets and hyperparathyroidism. Proc. Natl Acad. Sci. USA 105, 3455–3460 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Smith, R. C. et al. Circulating alphaKlotho influences phosphate handling by controlling FGF23 production. J. Clin. Invest. 122, 4710–4715 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Isakova, T. et al. Fibroblast growth factor 23 is elevated before parathyroid hormone and phosphate in chronic kidney disease. Kidney Int. 79, 1370–1378 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Coresh, J. et al. Prevalence of chronic kidney disease in the United States. JAMA 298, 2038–2047 (2007).

    CAS  PubMed  Google Scholar 

  73. Denic, A. et al. The substantial loss of nephrons in healthy human kidneys with aging. J. Am. Soc. Nephrol. 28, 313–320 (2016).

    PubMed  PubMed Central  Google Scholar 

  74. Bacchetta, J. et al. The influence of glomerular filtration rate and age on fibroblast growth factor 23 serum levels in pediatric chronic kidney disease. J. Clin. Endocrinol. Metab. 95, 1741–1748 (2010).

    CAS  PubMed  Google Scholar 

  75. Hasegawa, H. et al. Direct evidence for a causative role of FGF23 in the abnormal renal phosphate handling and vitamin D metabolism in rats with early-stage chronic kidney disease. Kidney Int. 78, 975–980 (2010).

    CAS  PubMed  Google Scholar 

  76. Mackay, E. M. & Oliver, J. Renal damage following the ingestion of a diet containing an excess of inorganic phosphate. J. Exp. Med. 61, 319–334 (1935).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Haut, L. L., Alfrey, A. C., Guggenheim, S., Buddington, B. & Schrier, N. Renal toxicity of phosphate in rats. Kidney Int. 17, 722–731 (1980).

    CAS  PubMed  Google Scholar 

  78. Faul, C. et al. FGF23 induces left ventricular hypertrophy. J. Clin. Invest. 121, 4393–4408 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Hu, M. C. et al. Klotho and phosphate are modulators of pathologic uremic cardiac remodeling. J. Am. Soc. Nephrol. 26, 1290–1302 (2015).

    CAS  PubMed  Google Scholar 

  80. Kawaguchi, H. et al. Independent impairment of osteoblast and osteoclast differentiation in klotho mouse exhibiting low-turnover osteopenia. J. Clin. Invest. 104, 229–237 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Suga, T. et al. Disruption of the klotho gene causes pulmonary emphysema in mice. Defect in maintenance of pulmonary integrity during postnatal life. Am. J. Respir. Cell. Mol. Biol. 22, 26–33 (2000).

    CAS  PubMed  Google Scholar 

  82. Kamemori, M. et al. Expression of Klotho protein in the inner ear. Hear Res. 171, 103–110 (2002).

    CAS  PubMed  Google Scholar 

  83. Nagai, T. et al. Cognition impairment in the genetic model of aging klotho gene mutant mice: a role of oxidative stress. FASEB J. 17, 50–52 (2003).

    CAS  PubMed  Google Scholar 

  84. Stubbs, J. R. et al. Role of hyperphosphatemia and 1,25-dihydroxyvitamin D in vascular calcification and mortality in fibroblastic growth factor 23 null mice. J. Am. Soc. Nephrol. 18, 2116–2124 (2007).

    CAS  PubMed  Google Scholar 

  85. Kuro-o, M. A potential link between phosphate and aging — lessons from Klotho-deficient mice. Mech. Ageing Dev. 131, 270–275 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Stenvinkel, P. & Larsson, T. E. Chronic kidney disease: a clinical model of premature aging. Am. J. Kidney Dis. 62, 339–351 (2013).

    PubMed  Google Scholar 

  87. Stenvinkel, P. et al. Novel treatment strategies for chronic kidney disease: insights from the animal kingdom. Nat. Rev. Nephrol. 14, 265–284 (2018).

    PubMed  Google Scholar 

  88. Heiss, A. et al. Structural basis of calcification inhibition by α2-HS glycoprotein/fetuin-A. Formation of colloidal calciprotein particles. J. Biol. Chem. 278, 13333–13341 (2003).

    CAS  PubMed  Google Scholar 

  89. Heiss, A., Jahnen-Dechent, W., Endo, H. & Schwahn, D. Structural dynamics of a colloidal protein-mineral complex bestowing on calcium phosphate a high solubility in biological fluids. Biointerphases 2, 16–20 (2007).

    CAS  PubMed  Google Scholar 

  90. Shuto, E. et al. Dietary phosphorus acutely impairs endothelial function. J. Am. Soc. Nephrol. 20, 1504–1512 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Yamada, H. et al. Daily variability in serum levels of calciprotein particles and their association with mineral metabolism parameters: a cross-sectional pilot study. Nephrology 23, 226–230 (2017).

    Google Scholar 

  92. Smith, E. R., Hanssen, E., McMahon, L. P. & Holt, S. G. Fetuin-A-containing calciprotein particles reduce mineral stress in the macrophage. PLOS ONE 8, e60904 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Di Marco, G. S. et al. Increased inorganic phosphate induces human endothelial cell apoptosis in vitro. Am. J. Physiol. Renal Physiol. 294, F1381–F1387 (2008).

    PubMed  Google Scholar 

  94. Ewence, A. E. et al. Calcium phosphate crystals induce cell death in human vascular smooth muscle cells: a potential mechanism in atherosclerotic plaque destabilization. Circ. Res. 103, e28–e34 (2008).

    CAS  PubMed  Google Scholar 

  95. Sage, A. P., Lu, J., Tintut, Y. & Demer, L. L. Hyperphosphatemia-induced nanocrystals upregulate the expression of bone morphogenetic protein-2 and osteopontin genes in mouse smooth muscle cells in vitro. Kidney Int. 79, 414–422 (2011).

    CAS  PubMed  Google Scholar 

  96. Reynolds, J. L. et al. Human vascular smooth muscle cells undergo vesicle-mediated calcification in response to changes in extracellular calcium and phosphate concentrations: a potential mechanism for accelerated vascular calcification in ESRD. J. Am. Soc. Nephrol. 15, 2857–2867 (2004).

    CAS  PubMed  Google Scholar 

  97. Villa-Bellosta, R. & Sorribas, V. Phosphonoformic acid prevents vascular smooth muscle cell calcification by inhibiting calcium-phosphate deposition. Arterioscler Thromb. Vasc. Biol. 29, 761–766 (2009).

    CAS  PubMed  Google Scholar 

  98. Bank, N., Su, W. S. & Aynedjian, H. S. A micropuncture study of renal phosphate transport in rats with chronic renal failure and secondary hyperparathyroidism. J. Clin. Invest. 61, 884–894 (1978).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Ohyama, Y. et al. Molecular cloning of rat klotho cDNA: markedly decreased expression of klotho by acute inflammatory stress. Biochem. Biophys. Res. Commun. 251, 920–925 (1998).

    CAS  Google Scholar 

  100. Goldstein, J. L. & Brown, M. S. A century of cholesterol and coronaries: from plaques to genes to statins. Cell 161, 161–172 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Unger, R. H. Longevity, lipotoxicity and leptin: the adipocyte defense against feasting and famine. Biochimie 87, 57–64 (2005).

    CAS  PubMed  Google Scholar 

  102. Miura, Y. et al. Identification and quantification of plasma calciprotein particles with distinct physical properties in patients with chronic kidney disease. Sci. Rep. 8, 1256 (2018).

    Google Scholar 

  103. Smith, E. R. et al. Phosphorylated fetuin-A-containing calciprotein particles are associated with aortic stiffness and a procalcific milieu in patients with pre-dialysis CKD. Nephrol. Dial Transplant 27, 1957–1966 (2012).

    CAS  PubMed  Google Scholar 

  104. Hamano, T. et al. Fetuin-mineral complex reflects extraosseous calcification stress in CKD. J. Am. Soc. Nephrol. 21, 1998–2007 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Hamano, K., Nitta, A., Ohtake, T. & Kobayashi, S. Associations of renal vascular resistance with albuminuria and other macroangiopathy in type 2 diabetic patients. Diabetes Care 31, 1853–1857 (2008).

    PubMed  PubMed Central  Google Scholar 

  106. Cai, M. M., Smith, E. R., Brumby, C., McMahon, L. P. & Holt, S. G. Fetuin-A-containing calciprotein particle levels can be reduced by dialysis, sodium thiosulphate and plasma exchange. Potential therapeutic implications for calciphylaxis? Nephrology 18, 724–727 (2013).

    CAS  Google Scholar 

  107. Jurk, D. et al. Chronic inflammation induces telomere dysfunction and accelerates ageing in mice. Nat. Commun. 2, 4172 (2014).

    PubMed  Google Scholar 

  108. Custodero, C. et al. Evidence-based nutritional and pharmacological interventions targeting chronic low-grade inflammation in middle-age and older adults: a systematic review and meta-analysis. Ageing Res. Rev. 46, 42–59 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Bloch, L. et al. Klotho is a substrate for alpha-, beta- and gamma-secretase. FEBS Lett. 583, 3221–3224 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Chen, C. D., Podvin, S., Gillespie, E., Leeman, S. E. & Abraham, C. R. Insulin stimulates the cleavage and release of the extracellular domain of Klotho by ADAM10 and ADAM17. Proc. Natl Acad. Sci. USA 104, 19796–19801 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Imura, A. et al. Secreted Klotho protein in sera and CSF: implication for post-translational cleavage in release of Klotho protein from cell membrane. FEBS Lett. 565, 143–147 (2004).

    CAS  PubMed  Google Scholar 

  112. Hu, M. C. et al. Renal production, uptake, and handling of circulating αKlotho. J. Am. Soc. Nephrol. 27, 79–90 (2016).

    PubMed  Google Scholar 

  113. Matsumura, Y. et al. Identification of the human klotho gene and its two transcripts encoding membrane and secreted klotho protein. Biochem. Biophys. Res. Commun. 242, 626–630 (1998).

    CAS  PubMed  Google Scholar 

  114. Shiraki-Iida, T. et al. Structure of the mouse klotho gene and its two transcripts encoding membrane and secreted protein. FEBS Lett. 424, 6–10 (1998).

    CAS  PubMed  Google Scholar 

  115. Barker, S. L. et al. The demonstration of alphaKlotho deficiency in human chronic kidney disease with a novel synthetic antibody. Nephrol. Dial Transplant 30, 223–233 (2015).

    CAS  PubMed  Google Scholar 

  116. Yamazaki, Y. et al. Establishment of sandwich ELISA for soluble α-Klotho measurement: age-dependent change of soluble alpha-Klotho levels in healthy subjects. Biochem. Biophys. Res. Commun. 398, 513–518 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Mian, I. S. Sequence, structural, functional, and phylogenetic analyses of three glycosidase families. Blood Cells Mol. Dis. 24, 83–100 (1998).

    CAS  PubMed  Google Scholar 

  118. Kretchmer, N. Lactose and lactase: a historical perspective. Gastroenterology 61, 805–813 (1971).

    CAS  PubMed  Google Scholar 

  119. Ito, S., Fujimori, T., Hayashizaki, Y. & Nabeshima, Y. Identification of a novel mouse membrane-bound family 1 glycosidase-like protein, which carries an atypical active site structure. Biochim. Biophys. Acta 1576, 341–345 (2002).

    CAS  PubMed  Google Scholar 

  120. Cha, S. K. et al. Removal of sialic acid involving Klotho causes cell-surface retention of TRPV5 channel via binding to galectin-1. Proc. Natl Acad. Sci. USA 105, 9805–9810 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Cha, S. K. et al. Regulation of ROMK1 channel and renal K+ excretion by Klotho. Mol. Pharmacol. 76, 38–46 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Ohtsubo, K. et al. Dietary and genetic control of glucose transporter 2 glycosylation promotes insulin secretion in suppressing diabetes. Cell 123, 1307–1321 (2005).

    CAS  PubMed  Google Scholar 

  123. Partridge, E. A. et al. Regulation of cytokine receptors by Golgi N-glycan processing and endocytosis. Science 306, 120–124 (2004).

    CAS  PubMed  Google Scholar 

  124. Wright, J. D. et al. Modeled structural basis for the recognition of alpha2-3-sialyllactose by soluble Klotho. FASEB J. 31, 3574–3586 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Imura, A. et al. Alpha-Klotho as a regulator of calcium homeostasis. Science 316, 1615–1618 (2007).

  126. Sugiura, H. et al. Klotho reduces apoptosis in experimental ischaemic acute renal failure. Nephrol. Dial. Transplant 20, 2636–2645 (2005).

    CAS  PubMed  Google Scholar 

  127. Wang, Y., Kuro-o, M. & Sun, Z. Klotho gene delivery suppresses Nox2 expression and attenuates oxidative stress in rat aortic smooth muscle cells via the cAMP-PKA pathway. Aging Cell 11, 410–417 (2012).

    PubMed  Google Scholar 

  128. Haruna, Y. et al. Amelioration of progressive renal injury by genetic manipulation of Klotho gene. Proc. Natl Acad. Sci. USA 104, 2331–2336 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Hu, M. C. et al. Klotho deficiency causes vascular calcification in chronic kidney disease. J. Am. Soc. Nephrol. 22, 124–136 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Kurosu, H. et al. Suppression of aging in mice by the hormone Klotho. Science 309, 1829–1833 (2005). This study confirmed that the αKlotho gene is an ageing-suppressor gene that can extend lifespan when overexpressed.

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Hu, M. C. et al. Klotho deficiency is an early biomarker of renal ischemia-reperfusion injury and its replacement is protective. Kidney Int. 78, 1240–1251 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Doi, S. et al. Klotho inhibits transforming growth factor-β1 (TGF-β1) signaling and suppresses renal fibrosis and cancer metastasis in mice. J. Biol. Chem. 286, 8655–8665 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Hu, M. C. et al. Recombinant α-Klotho may be prophylactic and therapeutic for acute to chronic kidney disease progression and uremic cardiomyopathy. Kidney Int. 91, 1104–1114 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Liu, H. et al. Augmented Wnt signaling in a mammalian model of accelerated aging. Science 317, 803–806 (2007).

    CAS  PubMed  Google Scholar 

  135. Kim, J. H. et al. Klotho may ameliorate proteinuria by targeting TRPC6 channels in podocytes. J. Am. Soc. Nephrol. 28, 140–151 (2017).

    CAS  PubMed  Google Scholar 

  136. Winn, M. P. et al. A mutation in the TRPC6 cation channel causes familial focal segmental glomerulosclerosis. Science 308, 1801–1804 (2005).

    CAS  PubMed  Google Scholar 

  137. Reiser, J. et al. TRPC6 is a glomerular slit diaphragm-associated channel required for normal renal function. Nat. Genet. 37, 739–744 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Hu, M. C. et al. Klotho: a novel phosphaturic substance acting as an autocrine enzyme in the renal proximal tubule. FASEB J. 24, 3438–3450 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Chang, Q. et al. The beta-glucuronidase klotho hydrolyzes and activates the TRPV5 channel. Science 310, 490–493 (2005).

    CAS  PubMed  Google Scholar 

  140. Hum, J. M. et al. Chronic hyperphosphatemia and vascular calcification are reduced by stable delivery of soluble Klotho. J. Am. Soc. Nephrol. 28, 1162–1174 (2016).

    PubMed  PubMed Central  Google Scholar 

  141. Saito, Y. et al. Klotho protein protects against endothelial dysfunction. Biochem. Biophys. Res. Commun. 248, 324–329 (1998).

    CAS  PubMed  Google Scholar 

  142. Leibrock, C. B. et al. NH4Cl treatment prevents tissue calcification in Klotho deficiency. J. Am. Soc. Nephrol. 26, 2423–2433 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  143. Nabeshima, Y. et al. Calpain 1 inhibitor BDA-410 ameliorates alpha-klotho-deficiency phenotypes resembling human aging-related syndromes. Sci. Rep. 4, 5847 (2014).

    CAS  Google Scholar 

  144. Wirrig, E. E., Gomez, M. V., Hinton, R. B. & Yutzey, K. E. COX2 inhibition reduces aortic valve calcification in vivo. Arterioscler. Thromb. Vasc. Biol. 35, 938–947 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Kharitonenkov, A. et al. FGF-21 as a novel metabolic regulator. J. Clin. Invest. 115, 1627–1635 (2005). This study characterized FGF21 as an anti-diabetic hormone.

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Inagaki, T. et al. Endocrine regulation of the fasting response by PPARα-mediated induction of fibroblast growth factor 21. Cell Metab. 5, 415–425 (2007).

    CAS  PubMed  Google Scholar 

  147. Inagaki, T. et al. Inhibition of growth hormone signaling by the fasting-induced hormone FGF21. Cell Metab. 8, 77–83 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  148. Potthoff, M. J. et al. FGF21 induces PGC-1α and regulates carbohydrate and fatty acid metabolism during the adaptive starvation response. Proc. Natl Acad. Sci. USA 106, 10853–10858 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  149. Owen, B. M., Mangelsdorf, D. J. & Kliewer, S. A. Tissue-specific actions of the metabolic hormones FGF15/19 and FGF21. Trends Endocrinol. Metabolism 26, 22–29 (2015).

    CAS  Google Scholar 

  150. Adams, A. C. et al. The breadth of FGF21’s metabolic actions are governed by FGFR1 in adipose tissue. Mol. Metab. 2, 31–37 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  151. Fisher, F. M. et al. Integrated regulation of hepatic metabolism by fibroblast growth factor 21 (FGF21) in vivo. Endocrinology 152, 2996–3004 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  152. Kenyon, C. J. The genetics of ageing. Nature 464, 504–512 (2010).

    CAS  PubMed  Google Scholar 

  153. Hsuchou, H., Pan, W. & Kastin, A. J. The fasting polypeptide FGF21 can enter brain from blood. Peptides 28, 2382–2386 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  154. Bookout, A. L. et al. FGF21 regulates metabolism and circadian behavior by acting on the nervous system. Nature Med. 19, 1147–1152 (2013).

    CAS  PubMed  Google Scholar 

  155. Anuwatmatee, S., Tang, S., Wu, B. J., Rye, K. A. & Ong, K. L. Fibroblast growth factor 21 in chronic kidney disease. Clin. Chim. Acta. https://doi.org/10.1016/j.cca.2017.11.002 (2017).

    Article  PubMed  Google Scholar 

  156. van der Pluijm, I. et al. Impaired genome maintenance suppresses the growth hormone — insulin-like growth factor 1 axis in mice with Cockayne syndrome. PLOS Biol. 5, e2 (2007).

    PubMed  Google Scholar 

  157. Niedernhofer, L. J. et al. A new progeroid syndrome reveals that genotoxic stress suppresses the somatotroph axis. Nature 444, 1038–1043 (2006).

    CAS  PubMed  Google Scholar 

  158. Schumacher, B. et al. Delayed and accelerated aging share common longevity assurance mechanisms. PLOS Genet. 4, e1000161 (2008).

    PubMed  PubMed Central  Google Scholar 

  159. Wei, W. et al. Fibroblast growth factor 21 promotes bone loss by potentiating the effects of peroxisome proliferator-activated receptor gamma. Proc. Natl Acad. Sci. USA 109, 3143–3148 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  160. Cohen, D. L., Huan, Y. & Townsend, R. R. Ambulatory blood pressure in chronic kidney disease. Curr. Hypertension Rep. 15, 160–166 (2013).

    Google Scholar 

  161. McClung, C. A. How might circadian rhythms control mood? Let me count the ways. Biol. Psychiatry 74, 242–249 (2013).

    PubMed  PubMed Central  Google Scholar 

  162. Farrokhi, F., Abedi, N., Beyene, J., Kurdyak, P. & Jassal, S. V. Association between depression and mortality in patients receiving long-term dialysis: a systematic review and meta-analysis. Am. J. Kidney Dis. 63, 623–635 (2014).

    PubMed  Google Scholar 

  163. Kohara, M. et al. Association between circulating fibroblast growth factor 21 and mortality in end-stage renal disease. PLOS ONE 12, e0178971 (2017).

    PubMed  PubMed Central  Google Scholar 

  164. Inagaki, T. et al. Fibroblast growth factor 15 functions as an enterohepatic signal to regulate bile acid homeostasis. Cell Metab. 2, 217–225 (2005). This study identified FGF15 as a regulator of bile acid synthesis.

    CAS  PubMed  Google Scholar 

  165. Badman, M. K. et al. Hepatic fibroblast growth factor 21 is regulated by PPARα and is a key mediator of hepatic lipid metabolism in ketotic states. Cell Metab. 5, 426–437 (2007).

    CAS  PubMed  Google Scholar 

  166. Kuro-o, M. Endocrine FGFs and Klothos: emerging concepts. Trends Endocrinol. Metab. 19, 239–245 (2008).

    CAS  PubMed  Google Scholar 

  167. Ito, S. et al. Impaired negative feedback suppression of bile acid synthesis in mice lacking betaKlotho. J. Clin. Invest. 115, 2202–2208 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  168. Yu, C. et al. Elevated cholesterol metabolism and bile acid synthesis in mice lacking membrane tyrosine kinase receptor FGFR4. J. Biol. Chem. 275, 15482–15489 (2000).

    CAS  PubMed  Google Scholar 

  169. Kir, S. et al. FGF19 as a postprandial, insulin-independent activator of hepatic protein and glycogen synthesis. Science 331, 1621–1624 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  170. Tomlinson, E. et al. Transgenic mice expressing human fibroblast growth factor-19 display increased metabolic rate and decreased adiposity. Endocrinology 143, 1741–1747 (2002).

    CAS  PubMed  Google Scholar 

  171. Fu, L. et al. Fibroblast growth factor 19 increases metabolic rate and reverses dietary and leptin-deficient diabetes. Endocrinology 145, 2594–2603 (2004).

    CAS  PubMed  Google Scholar 

  172. Johansson, H. et al. Circulating fibroblast growth factor 19 in portal and systemic blood. J. Clin. Exp. Hepatol. 8, 162–168 (2018).

    PubMed  Google Scholar 

  173. Nicholes, K. et al. A mouse model of hepatocellular carcinoma: ectopic expression of fibroblast growth factor 19 in skeletal muscle of transgenic mice. Am. J. Pathol. 160, 2295–2307 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  174. Desnoyers, L. R. et al. Targeting FGF19 inhibits tumor growth in colon cancer xenograft and FGF19 transgenic hepatocellular carcinoma models. Oncogene 27, 85–97 (2008).

    CAS  PubMed  Google Scholar 

  175. Wang, H. et al. Pregnane X receptor activation induces FGF19-dependent tumor aggressiveness in humans and mice. J. Clin. Invest. 121, 3220–3232 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  176. Walters, J. R. et al. A new mechanism for bile acid diarrhea: defective feedback inhibition of bile acid biosynthesis. Clin. Gastroenterol. Hepatol. 7, 1189–1194 (2009).

    CAS  PubMed  Google Scholar 

  177. Cosola, C., Rocchetti, M. T., Cupisti, A. & Gesualdo, L. Microbiota metabolites: pivotal players of cardiovascular damage in chronic kidney disease. Pharmacol. Res. 130, 132–142 (2018).

    CAS  PubMed  Google Scholar 

  178. Wahlstrom, A., Kovatcheva-Datchary, P., Stahlman, M., Backhed, F., & Marschall, H.-U. Crosstalk between bile acids and gut microbiota and its impact on farnesoid X receptor signalling. 35, 246–250 (2017).

  179. Li, M., Qureshi, A. R., Ellis, E. & Axelsson, J. Impaired postprandial fibroblast growth factor (FGF)-19 response in patients with stage 5 chronic kidney diseases is ameliorated following antioxidative therapy. Nephrol. Dial. Transplant 28 (Suppl. 4), 212–219 (2013).

    Google Scholar 

  180. Morishita, K. et al. The progression of aging in klotho mutant mice can be modified by dietary phosphorus and zinc. J. Nutr. 131, 3182–3188 (2001).

    CAS  PubMed  Google Scholar 

  181. Segawa, H. et al. Correlation between hyperphosphatemia and type II Na-Pi cotransporter activity in klotho mice. Am. J. Physiol. Renal Physiol. 292, F769–F779 (2007).

    CAS  PubMed  Google Scholar 

  182. Azuma, M. et al. Promoter methylation confers kidney-specific expression of the Klotho gene. FASEB J. 26, 4264–4274 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  183. Ohnishi, M., Nakatani, T., Lanske, B. & Razzaque, M. S. In vivo genetic evidence for suppressing vascular and soft-tissue calcification through the reduction of serum phosphate levels, even in the presence of high serum calcium and 1,25-dihydroxyvitamin d levels. Circ. Cardiovasc. Genet. 2, 583–590 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  184. Mencke, R. & Hillebrands, J. L. The role of the anti-ageing protein Klotho in vascular physiology and pathophysiology. Ageing Res. Rev. 35, 124–146 (2016).

    PubMed  Google Scholar 

  185. Lindberg, K. et al. Arterial Klotho expression and FGF23 effects on vascular calcification and function. PLOS ONE 8, e60658 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  186. Koh, N. et al. Severely reduced production of klotho in human chronic renal failure kidney. Biochem. Biophys. Res. Commun. 280, 1015–1020 (2001).

    CAS  PubMed  Google Scholar 

  187. Andrukhova, O. et al. FGF23 acts directly on renal proximal tubules to induce phosphaturia through activation of the ERK1/2-SGK1 signaling pathway. Bone 51, 621–628 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  188. Kuro-o, M. Klotho in health and disease. Curr. Opin. Nephrol. Hypertens. 21, 362–368 (2012).

    CAS  PubMed  Google Scholar 

  189. Olauson, H. et al. Targeted deletion of Klotho in kidney distal tubule disrupts mineral metabolism. J. Am. Soc. Nephrol. 23, 1641–1651 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  190. Ide, N. et al. In vivo evidence for a limited role of proximal tubular Klotho in renal phosphate handling. Kidney Int. 90, 348–362 (2016).

    CAS  PubMed  Google Scholar 

  191. Young, A. et al. Bone and mineral metabolism and fibroblast growth factor 23 levels after kidney donation. Am. J. Kidney Dis. 59, 761–769 (2011).

    PubMed  Google Scholar 

  192. Westerberg, P. A., Ljunggren, O., Larsson, T. E., Wadstrom, J. & Linde, T. Fibroblast growth factor-23 and mineral metabolism after unilateral nephrectomy. Nephrol. Dial Transplant 25, 4068–4071 (2010).

    CAS  PubMed  Google Scholar 

  193. Patterson, R. et al. Sedentary behaviour and risk of all-cause, cardiovascular and cancer mortality, and incident type 2 diabetes: a systematic review and dose response meta-analysis. Eur. J. Epidemiol. 33, 811–829 (2018).

    PubMed  PubMed Central  Google Scholar 

  194. Xie, T. & Leung, P. S. Fibroblast growth factor 21: a regulator of metabolic disease and health span. Am. J. Physiol. Endocrinol. Metab. 313, E292–E302 (2017).

    PubMed  PubMed Central  Google Scholar 

  195. Arking, D. E. et al. Association of human aging with a functional variant of klotho. Proc. Natl Acad. Sci. USA 99, 856–861 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  196. Dyson, H. J. & Wright, P. E. Intrinsically unstructured proteins and their functions. Nat. Rev. Mol. Cell Biol. 6, 197–208 (2005).

    CAS  PubMed  Google Scholar 

  197. Wright, P. E. & Dyson, H. J. Intrinsically unstructured proteins: re-assessing the protein structure-function paradigm. J. Mol. Biol. 293, 321–331 (1999).

    CAS  PubMed  Google Scholar 

  198. Yamada, H. et al. The urinary phosphate to serum fibroblast growth factor 23 ratio is a useful marker of atherosclerosis in early-stage chronic kidney disease. PLOS ONE 11, e0160782 (2016).

    PubMed  PubMed Central  Google Scholar 

  199. Yamada, H. et al. The urinary phosphate to serum fibroblast growth factor 23 ratio, deemed the nephron index, is a useful clinical index for early stage chronic kidney disease in patients with type 2 diabetes: an observational pilot study. Int. J. Nephrol. 2018, 4 (2018).

    Google Scholar 

  200. Chopra, A. & Lineweaver, C. H. in Proc. 8th Australian Space Science Conf. (eds Short, W. & Cairns, I.) 49–55 (National Space Society of Australia Ltd, 2008).

  201. Kuro-o, M. & Moe, O. W. FGF23-alphaKlotho as a paradigm for a kidney-bone network. Bone 100, 4–18 (2016).

    PubMed  Google Scholar 

  202. Kuro-o, M. Klotho and endocrine fibroblast growth factors: marker of chronic kidney disease progression and cardiovascular complications? Nephrol. Dial. Transplant https://doi.org/10.1093/ndt/gfy126 (2018).

    Article  Google Scholar 

Download references

Acknowledgements

The author’s work is supported by the Japan Agency for Medical Research and Development (AMED) Core Research for Evolutionary Medical Science and Technology (CREST), AMED (JP18gm0610012) and ACT-MS (18im0210806h0001), the Japan Society for the Promotion of Science (16H05302, 16K15470) and the Japan Aerospace Exploration Agency (JAXA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Makoto Kuro-o.

Ethics declarations

Competing interests

The author has received research funds from Bayer, Astellas, Bristol-Myer-Squibb, Kyowa-Hakko-Kirin and Kissei Pharmaceutical Co., Ltd.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Hereditary phosphate-wasting syndromes

Inherited disorders in which the disease symptoms are related to the depletion of phosphorus in the body owing to increased urinary phosphate excretion and resulting in hypophosphataemia and disrupted bone mineralization.

Inappropriately normal

Normal protein serum levels when they should be outside of the normal range owing to concurrent levels of other serum proteins. This effect is indicative of impaired physiological responses.

Rickets

A condition characterized by impaired (low) bone mineralization that results in weak, soft bones with increased osteoid (unmineralized bone matrix) in children. In adults, this condition is termed osteomalacia.

Breakpoint

Location in a chromosome where a genomic DNA sequence has been disrupted by deletion, translocation or insertion.

CKD–MBD

Denotes chronic kidney disease (CKD) complications that are associated with and are likely caused by disturbed calcium and phosphate metabolism and by abnormal serum levels of fibroblast growth factor 23 (FGF23), vitamin D, and parathyroid hormone. The term CDK–mineral and bone disorder (CKD–MBD) is used to describe cardiovascular and bone disorders in CKD, including vascular calcification, cardiac hypertrophy and renal osteodystrophy.

Postprandial

The period that follows the ingestion of food.

Sarcopenia

The degenerative decline in skeletal muscle volume and strength with ageing.

Osteopenia

A condition of low bone mineral density. Osteoporosis is a clinical diagnosis of osteopenia that is associated with a decrease in both bone matrix and bone mineral density, as well as altered bone microarchitecture.

Emphysematous lung

Lung tissue that is affected by pulmonary emphysema, which is characterized by enlarged alveolar spaces and damaged alveolar walls.

Colloids

Uniform mixtures of small particles (dispersoids) in the dispersion medium. Dispersoids are not dissolved but are evenly distributed in the dispersion medium.

Arteriosclerosis

A condition that includes two distinct pathologies, atherosclerosis and vascular calcification. Atherosclerosis is characterized by the accumulation of foam cells (macrophages laden with lipids) in the tunica intima, potentially causing obstruction of blood flow. By contrast, vascular calcification occurs in the tunica media and minimally obstructs the blood flow but increases vascular stiffness.

Flow-mediated dilatation

Clinical test in which the expansion rate of the brachial artery is calculated to evaluate vascular endothelial function.

Torpor

Short-term hibernation-like state that is associated with a low body temperature and inactivity.

Suprachiasmatic nucleus

(SCN). Cluster of neurons in the hypothalamus that function as the master circadian pacemaker. Some of these neurons have a direct projection to corticotropin-releasing factor-producing neurons in the paraventricular nucleus.

Nucleus of the solitary tract

(NTS). Cluster of sensory neurons in the medulla oblongata that are innervated from some cranial nerves, including vagus nerves, and project to various nuclei in the brainstem and parasympathetic neurons. It is also known as the central relay for the baroreflex that maintains blood pressure.

Progeroid syndrome

Hereditary disorder in which there are multiple signs and symptoms of ageing in individuals in the early stages of life. Examples include Werner syndrome, Hutchinson–Gilford syndrome, xeroderma pigmentosum and Cockayne syndrome. Patients with progeroid syndromes have defects in DNA repair systems.

Bile acid pool

Amount of bile acids held in the intestine, portal circulation, liver and gall bladder. Bile acids secreted into the intestine are mostly reabsorbed and returned to the liver to be secreted into the intestine again (enterohepatic circulation). The liver synthesizes the same amount of bile acids that are lost in the faeces to maintain the bile acid pool size.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuro-o, M. The Klotho proteins in health and disease. Nat Rev Nephrol 15, 27–44 (2019). https://doi.org/10.1038/s41581-018-0078-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41581-018-0078-3

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing