Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

FGF23 at the crossroads of phosphate, iron economy and erythropoiesis

Abstract

Fibroblast growth factor 23 (FGF23) was initially characterized as an important regulator of phosphate and calcium homeostasis. New research advances demonstrate that FGF23 is also linked to iron economy, inflammation and erythropoiesis. These advances have been fuelled, in part, by the serendipitous development of two distinct FGF23 assays that can substitute for invasive bone biopsies to infer the activity of the three main steps of FGF23 regulation in bone: transcription, post-translational modification and peptide cleavage. This ‘liquid bone biopsy for FGF23 dynamics’ enables large-scale longitudinal studies of FGF23 regulation that would otherwise be impossible in humans. The balance between FGF23 production, post-translational modification and cleavage is maintained or perturbed in different hereditary monogenic conditions and in acquired conditions that mimic these genetic disorders, including iron deficiency, inflammation, treatment with ferric carboxymaltose and chronic kidney disease. Looking ahead, a deeper understanding of the relationships between FGF23 regulation, iron homeostasis and erythropoiesis can be leveraged to devise novel therapeutic targets for treatment of anaemia and states of FGF23 excess, including chronic kidney disease.

Key points

  • The development of two complementary assays of full-length and C-terminal FGF23 provided tools to non-invasively survey FGF23 transcription and cleavage.

  • Iron deficiency, inflammation and erythropoiesis stimulate simultaneous production and cleavage of FGF23. This coupling of FGF23 transcription and FGF23 cleavage results in minimal change in concentrations of biologically active FGF23.

  • Albeit through different mechanisms, autosomal dominant hypophosphataemic rickets, chronic kidney disease and administration of ferric carboxymaltose reduce FGF23 cleavage. Uncoupling FGF23 protein cleavage from FGF23 gene transcription results in elevated concentrations of biologically active FGF23.

  • In individuals with normal kidney function, states of uncoupled FGF23 transcription and cleavage can lead to severe hypophosphataemia owing to the phosphaturic and vitamin D-suppressing effects of the increased levels of biologically active FGF23.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: FGF23 production, cleavage and serological assays.
Fig. 2: ‘Liquid bone biopsy for FGF23 dynamics’.
Fig. 3: Pathways linking inflammation and FGF23 regulation.
Fig. 4: Hypoxia-inducible factors in the regulation of FGF23.
Fig. 5: Interrelationships among iron deficiency, intravenous iron administration, FGF23 and mineral homeostasis.

Similar content being viewed by others

References

  1. Jonsson, K. B. et al. Fibroblast growth factor 23 in oncogenic osteomalacia and X-linked hypophosphatemia. N. Engl. J. Med. 348, 1656–1663 (2003).

    Article  CAS  PubMed  Google Scholar 

  2. Weber, T. J., Liu, S., Indridason, O. S. & Quarles, L. D. Serum FGF23 levels in normal and disordered phosphorus homeostasis. J. Bone Miner. Res. 18, 1227–1234 (2003).

    Article  CAS  Google Scholar 

  3. Scialla, J. J. et al. Fibroblast growth factor-23 and cardiovascular events in CKD. J. Am. Soc. Nephrol. 25, 349–360 (2014).

    Article  CAS  PubMed  Google Scholar 

  4. Nowak, K. L. et al. Fibroblast growth factor 23 and the risk of infection-related hospitalization in older adults. J. Am. Soc. Nephrol. 28, 1239–1246 (2017).

    Article  CAS  PubMed  Google Scholar 

  5. Garland, J. S. et al. Insulin resistance is associated with fibroblast growth factor-23 in stage 3-5 chronic kidney disease patients. J. Diabetes Complications 28, 61–65 (2014).

    Article  PubMed  Google Scholar 

  6. Shigematsu, T. et al. Possible involvement of circulating fibroblast growth factor 23 in the development of secondary hyperparathyroidism associated with renal insufficiency. Am. J. Kidney Dis. 44, 250–256 (2004).

    Article  CAS  PubMed  Google Scholar 

  7. Hasegawa, H. et al. Direct evidence for a causative role of FGF23 in the abnormal renal phosphate handling and vitamin D metabolism in rats with early-stage chronic kidney disease. Kidney Int. 78, 975–980 (2010).

    Article  CAS  PubMed  Google Scholar 

  8. Gutierrez, O. et al. Fibroblast growth factor-23 mitigates hyperphosphatemia but accentuates calcitriol deficiency in chronic kidney disease. J. Am. Soc. Nephrol. 16, 2205–2215 (2005).

    Article  CAS  PubMed  Google Scholar 

  9. Farrow, E. G. et al. Iron deficiency drives an autosomal dominant hypophosphatemic rickets (ADHR) phenotype in fibroblast growth factor-23 (Fgf23) knock-in mice. Proc. Natl Acad. Sci. USA 108, E1146–E1155 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Wolf, M., Koch, T. A. & Bregman, D. B. Effects of iron deficiency anemia and its treatment on fibroblast growth factor 23 and phosphate homeostasis in women. J. Bone Miner. Res. 28, 1793–1803 (2013).

    Article  CAS  PubMed  Google Scholar 

  11. Braithwaite, V., Jones, K. S., Assar, S., Schoenmakers, I. & Prentice, A. Predictors of intact and C-terminal fibroblast growth factor 23 in Gambian children. Endocr. Connect. 3, 1–10 (2014).

    Article  PubMed  CAS  Google Scholar 

  12. Holecki, M. et al. Inflammation but not obesity or insulin resistance is associated with increased plasma fibroblast growth factor 23 concentration in the elderly. Clin. Endocrinol. 82, 900–909 (2015).

    Article  CAS  Google Scholar 

  13. Dounousi, E. et al. Intact FGF23 and alpha-klotho during acute inflammation/sepsis in CKD patients. Eur. J. Clin. Invest. 47, 470–472 (2017).

    Article  PubMed  Google Scholar 

  14. Munoz Mendoza, J. et al. Fibroblast growth factor 23 and Inflammation in CKD. Clin. J. Am. Soc. Nephrol. 7, 1155–1162 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Clinkenbeard, E. L. et al. Neonatal iron deficiency causes abnormal phosphate metabolism by elevating FGF23 in normal and ADHR mice. J. Bone Miner. Res. 29, 361–369 (2014).

    Article  CAS  PubMed  Google Scholar 

  16. Coe, L. M. et al. FGF-23 is a negative regulator of prenatal and postnatal erythropoiesis. J. Biol. Chem. 289, 9795–9810 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Clinkenbeard, E. L. et al. Erythropoietin stimulates murine and human fibroblast growth factor-23, revealing novel roles for bone and bone marrow. Haematologica 102, e427–e430 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Toro, L. et al. Erythropoietin induces bone marrow and plasma fibroblast growth factor 23 during acute kidney injury. Kidney Int. 93, 1131–1141 (2018).

    Article  CAS  PubMed  Google Scholar 

  19. Hanudel, M. R. et al. Effects of erythropoietin on fibroblast growth factor 23 in mice and humans. Nephrol. Dial. Transplant. https://doi.org/10.1093/ndt/gfy189 (2018).

    Article  PubMed Central  CAS  Google Scholar 

  20. David, V. et al. Inflammation and functional iron deficiency regulate fibroblast growth factor 23 production. Kidney Int. 89, 135–146 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. ADHR Consortium. Autosomal dominant hypophosphataemic rickets is associated with mutations in FGF23. Nat. Genet. 26, 345–348 (2000).

    Article  CAS  Google Scholar 

  22. Wolf, M. et al. Randomized trial of intravenous iron-induced hypophosphatemia. JCI Insight 3, 124486 (2018).

    Article  Google Scholar 

  23. Bozentowicz-Wikarek, M. et al. C-terminal to intact fibroblast growth factor 23 ratio in relation to estimated glomerular filtration rate in elderly population. Kidney Blood Press. Res. 41, 519–526 (2016).

    Article  CAS  PubMed  Google Scholar 

  24. Yoshiko, Y. et al. Mineralized tissue cells are a principal source of FGF23. Bone 40, 1565–1573 (2007).

    Article  CAS  PubMed  Google Scholar 

  25. Leifheit-Nestler, M. et al. Induction of cardiac FGF23/FGFR4 expression is associated with left ventricular hypertrophy in patients with chronic kidney disease. Nephrol. Dial. Transplant. 31, 1088–1099 (2016).

    Article  CAS  PubMed  Google Scholar 

  26. Sugiura, H. et al. Fibroblast growth factor 23 is upregulated in the kidney in a chronic kidney disease rat model. PLOS ONE 13, e0191706 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Smith, E. R., Tan, S. J., Holt, S. G. & Hewitson, T. D. FGF23 is synthesised locally by renal tubules and activates injury-primed fibroblasts. Sci. Rep. 7, 3345 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Bansal, S. et al. Spleen contributes significantly to increased circulating levels of fibroblast growth factor 23 in response to lipopolysaccharide-induced inflammation. Nephrol. Dial. Transplant. 32, 960–968 (2017).

    Article  CAS  PubMed  Google Scholar 

  29. van Venrooij, N. A. et al. FGF23 protein expression in coronary arteries is associated with impaired kidney function. Nephrol. Dial. Transplant. 29, 1525–1532 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Shimada, T. et al. Cloning and characterization of FGF23 as a causative factor of tumor-induced osteomalacia. Proc. Natl Acad. Sci. USA 98, 6500–6505 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Wolf, M. Update on fibroblast growth factor 23 in chronic kidney disease. Kidney Int. 82, 737–747 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Erben, R. G. Update on FGF23 and Klotho signaling. Mol. Cell. Endocrinol. 432, 56–65 (2016).

    Article  CAS  PubMed  Google Scholar 

  33. Gattineni, J. et al. FGF23 decreases renal NaPi-2a and NaPi-2c expression and induces hypophosphatemia in vivo predominantly via FGF receptor 1. Am. J. Physiol. Ren. Physiol. 297, F282–F291 (2009).

    Article  CAS  Google Scholar 

  34. Chen, G. et al. αKlotho is a non-enzymatic molecular scaffold for FGF23 hormone signalling. Nature 553, 461–466 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Bai, X. et al. CYP24 inhibition as a therapeutic target in FGF23-mediated renal phosphate wasting disorders. J. Clin. Invest. 126, 667–680 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Koizumi, M., Komaba, H. & Fukagawa, M. Parathyroid function in chronic kidney disease: role of FGF23-Klotho axis. Contrib. Nephrol. 180, 110–123 (2013).

    Article  CAS  PubMed  Google Scholar 

  37. Ben-Dov, I. Z. et al. The parathyroid is a target organ for FGF23 in rats. J. Clin. Invest. 117, 4003–4008 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Krajisnik, T. et al. Fibroblast growth factor-23 regulates parathyroid hormone and 1alpha-hydroxylase expression in cultured bovine parathyroid cells. J. Endocrinol. 195, 125–131 (2007).

    Article  CAS  PubMed  Google Scholar 

  39. Rodriguez-Ortiz, M. E. et al. Calcium deficiency reduces circulating levels of FGF23. J. Am. Soc. Nephrol. 23, 1190–1197 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. David, V. et al. Calcium regulates FGF-23 expression in bone. Endocrinology 154, 4469–4482 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Yuan, Q. et al. PTH ablation ameliorates the anomalies of Fgf23-deficient mice by suppressing the elevated vitamin D and calcium levels. Endocrinology 152, 4053–4061 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Kawata, T. et al. Parathyroid hormone regulates fibroblast growth factor-23 in a mouse model of primary hyperparathyroidism. J. Am. Soc. Nephrol. 18, 2683–2688 (2007).

    Article  CAS  PubMed  Google Scholar 

  43. Meir, T. et al. Parathyroid hormone activates the orphan nuclear receptor Nurr1 to induce FGF23 transcription. Kidney Int. 86, 1106–1115 (2014).

    Article  CAS  PubMed  Google Scholar 

  44. Liu, S. et al. Fibroblast growth factor 23 is a counter-regulatory phosphaturic hormone for vitamin D. J. Am. Soc. Nephrol. 17, 1305–1315 (2006).

    Article  CAS  PubMed  Google Scholar 

  45. Saito, H. et al. Circulating FGF-23 is regulated by 1alpha,25-dihydroxyvitamin D3 and phosphorus in vivo. J. Biol. Chem. 280, 2543–2549 (2005).

    Article  CAS  PubMed  Google Scholar 

  46. Shimada, T. et al. Vitamin D receptor-independent FGF23 actions in regulating phosphate and vitamin D metabolism. Am. J. Physiol. Ren. Physiol. 289, F1088–F1095 (2005).

    Article  CAS  Google Scholar 

  47. Yu, X., Sabbagh, Y., Davis, S. I., Demay, M. B. & White, K. E. Genetic dissection of phosphate- and vitamin D-mediated regulation of circulating Fgf23 concentrations. Bone 36, 971–977 (2005).

    Article  CAS  PubMed  Google Scholar 

  48. Kolek, O. I. et al. 1α,25-Dihydroxyvitamin D3 upregulates FGF23 gene expression in bone: the final link in a renal-gastrointestinal-skeletal axis that controls phosphate transport. Am. J. Physiol. Gastrointest. Liver Physiol. 289, G1036–G1042 (2005).

    Article  CAS  PubMed  Google Scholar 

  49. Portale, A. A. et al. Disordered FGF23 and mineral metabolism in children with CKD. Clin. J. Am. Soc. Nephrol. 9, 344–353 (2014).

    Article  CAS  PubMed  Google Scholar 

  50. Hill, K. M. et al. Oral calcium carbonate affects calcium but not phosphorus balance in stage 3-4 chronic kidney disease. Kidney Int. 83, 959–966 (2013).

    Article  CAS  PubMed  Google Scholar 

  51. Isakova, T. et al. Fibroblast growth factor 23 is elevated before parathyroid hormone and phosphate in chronic kidney disease. Kidney Int. 79, 1370–1378 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Lindberg, K. et al. The kidney is the principal organ mediating klotho effects. J. Am. Soc. Nephrol. 25, 2169–2175 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Kuro-o, M. et al. Mutation of the mouse klotho gene leads to a syndrome resembling ageing. Nature 390, 45–51 (1997).

    Article  CAS  PubMed  Google Scholar 

  54. Nakatani, T., Ohnishi, M. & Razzaque, M. S. Inactivation of klotho function induces hyperphosphatemia even in presence of high serum fibroblast growth factor 23 levels in a genetically engineered hypophosphatemic (Hyp) mouse model. FASEB J. 23, 3702–3711 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Wolf, M. & White, K. E. Coupling fibroblast growth factor 23 production and cleavage: iron deficiency, rickets, and kidney disease. Curr. Opin. Nephrol. Hypertens. 23, 411–419 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Ito, N. et al. Regulation of FGF23 expression in IDG-SW3 osteocytes and human bone by pro-inflammatory stimuli. Mol. Cell. Endocrinol. 399, 208–218 (2015).

    Article  CAS  PubMed  Google Scholar 

  57. Haussler, M. R. et al. Molecular mechanisms of vitamin D action. Calcif. Tissue Int. 92, 77–98 (2013).

    Article  CAS  PubMed  Google Scholar 

  58. Kaneko, I. et al. FGF23 gene regulation by 1,25-dihydroxyvitamin D: opposing effects in adipocytes and osteocytes. J. Endocrinol. 226, 155–166 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Barthel, T. K. et al. 1,25-Dihydroxyvitamin D3/VDR-mediated induction of FGF23 as well as transcriptional control of other bone anabolic and catabolic genes that orchestrate the regulation of phosphate and calcium mineral metabolism. J. Steroid Biochem. Mol. Biol. 103, 381–388 (2007).

    Article  CAS  PubMed  Google Scholar 

  60. Lanske, B. & Razzaque, M. S. Molecular interactions of FGF23 and PTH in phosphate regulation. Kidney Int. 86, 1072–1074 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Lavi-Moshayoff, V., Wasserman, G., Meir, T., Silver, J. & Naveh-Many, T. PTH increases FGF23 gene expression and mediates the high-FGF23 levels of experimental kidney failure: a bone parathyroid feedback loop. Am. J. Physiol. Ren. Physiol. 299, F882–F889 (2010).

    Article  CAS  Google Scholar 

  62. Xiao, L., Esliger, A. & Hurley, M. M. Nuclear fibroblast growth factor 2 (FGF2) isoforms inhibit bone marrow stromal cell mineralization through FGF23/FGFR/MAPK in vitro. J. Bone Miner. Res. 28, 35–45 (2013).

    Article  CAS  PubMed  Google Scholar 

  63. Smith, R. C. et al. Circulating αKlotho influences phosphate handling by controlling FGF23 production. J. Clin. Invest. 122, 4710–4715 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Riminucci, M. et al. FGF-23 in fibrous dysplasia of bone and its relationship to renal phosphate wasting. J. Clin. Invest. 112, 683–692 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Yamashita, T., Yoshioka, M. & Itoh, N. Identification of a novel fibroblast growth factor, FGF-23, preferentially expressed in the ventrolateral thalamic nucleus of the brain. Biochem. Biophys. Res. Commun. 277, 494–498 (2000).

    Article  CAS  PubMed  Google Scholar 

  66. Stubbs, J. R. et al. Role of hyperphosphatemia and 1,25-dihydroxyvitamin D in vascular calcification and mortality in fibroblastic growth factor 23 null mice. J. Am. Soc. Nephrol. 18, 2116–2124 (2007).

    Article  CAS  PubMed  Google Scholar 

  67. Sitara, D. et al. Homozygous ablation of fibroblast growth factor-23 results in hyperphosphatemia and impaired skeletogenesis, and reverses hypophosphatemia in Phex-deficient mice. Matrix Biol. 23, 421–432 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Liu, S. et al. Pathogenic role of Fgf23 in Hyp mice. Am. J. Physiol. Endocrinol. Metab. 291, E38–E49 (2006).

    Article  CAS  PubMed  Google Scholar 

  69. Liu, S. et al. Regulation of fibroblastic growth factor 23 expression but not degradation by PHEX. J. Biol. Chem. 278, 37419–37426 (2003).

    Article  CAS  PubMed  Google Scholar 

  70. The HYP consortium. A gene (PEX) with homologies to endopeptidases is mutated in patients with X-linked hypophosphatemic rickets. Nat. Genet. 11, 130–136 (1995).

    Article  Google Scholar 

  71. Kato, K. et al. Polypeptide GalNAc-transferase T3 and familial tumoral calcinosis. secretion of fibroblast growth factor 23 requires O-glycosylation. J. Biol. Chem. 281, 18370–18377 (2006).

    Article  CAS  PubMed  Google Scholar 

  72. Shimada, T. et al. Mutant FGF-23 responsible for autosomal dominant hypophosphatemic rickets is resistant to proteolytic cleavage and causes hypophosphatemia in vivo. Endocrinology 143, 3179–3182 (2002).

    Article  CAS  PubMed  Google Scholar 

  73. Ichikawa, S. et al. Genetic rescue of glycosylation-deficient Fgf23 in the Galnt3 knockout mouse. Endocrinology 155, 3891–3898 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Tagliabracci, V. S. et al. Dynamic regulation of FGF23 by Fam20C phosphorylation, GalNAc-T3 glycosylation, and furin proteolysis. Proc. Natl Acad. Sci. USA 111, 5520–5525 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Yamazaki, Y. et al. Increased circulatory level of biologically active full-length FGF-23 in patients with hypophosphatemic rickets/osteomalacia. J. Clin. Endocrinol. Metab. 87, 4957–4960 (2002).

    Article  CAS  PubMed  Google Scholar 

  76. White, K. E. et al. Autosomal-dominant hypophosphatemic rickets (ADHR) mutations stabilize FGF-23. Kidney Int. 60, 2079–2086 (2001).

    Article  CAS  PubMed  Google Scholar 

  77. Wang, X. et al. Inactivation of a novel FGF23 regulator, FAM20C, leads to hypophosphatemic rickets in mice. PLOS Genet. 8, e1002708 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Rafaelsen, S. H. et al. Exome sequencing reveals FAM20c mutations associated with fibroblast growth factor 23-related hypophosphatemia, dental anomalies, and ectopic calcification. J. Bone Miner. Res. 28, 1378–1385 (2013).

    Article  CAS  PubMed  Google Scholar 

  79. Smith, E. R., Cai, M. M., McMahon, L. P. & Holt, S. G. Biological variability of plasma intact and C-terminal FGF23 measurements. J. Clin. Endocrinol. Metab. 97, 3357–3365 (2012).

    Article  CAS  PubMed  Google Scholar 

  80. Bergwitz, C. et al. Defective O-glycosylation due to a novel homozygous S129P mutation is associated with lack of fibroblast growth factor 23 secretion and tumoral calcinosis. J. Clin. Endocrinol. Metab. 94, 4267–4274 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Yancovitch, A. et al. Novel mutations in GALNT3 causing hyperphosphatemic familial tumoral calcinosis. J. Bone Miner. Metab. 29, 621–625 (2011).

    Article  PubMed  Google Scholar 

  82. Shimada, T. et al. Circulating fibroblast growth factor 23 in patients with end-stage renal disease treated by peritoneal dialysis is intact and biologically active. J. Clin. Endocrinol. Metab. 95, 578–585 (2010).

    Article  CAS  PubMed  Google Scholar 

  83. Malluche, H. H., Langub, M. C. & Monier-Faugere, M. C. The role of bone biopsy in clinical practice and research. Kidney Int. Suppl. 73, S20–S25 (1999).

    Article  CAS  PubMed  Google Scholar 

  84. Burnett, S. M. et al. Regulation of C-terminal and intact FGF-23 by dietary phosphate in men and women. J. Bone Miner. Res. 21, 1187–1196 (2006).

    Article  CAS  PubMed  Google Scholar 

  85. Durham, B. H., Joseph, F., Bailey, L. M. & Fraser, W. D. The association of circulating ferritin with serum concentrations of fibroblast growth factor-23 measured by three commercial assays. Ann. Clin. Biochem. 44, 463–466 (2007).

    Article  CAS  PubMed  Google Scholar 

  86. Imel, E. A. et al. Sensitivity of fibroblast growth factor 23 measurements in tumor-induced osteomalacia. J. Clin. Endocrinol. Metab. 91, 2055–2061 (2006).

    Article  CAS  PubMed  Google Scholar 

  87. Lopez, A., Cacoub, P., Macdougall, I. C. & Peyrin-Biroulet, L. Iron deficiency anaemia. Lancet 387, 907–916 (2016).

    Article  CAS  PubMed  Google Scholar 

  88. Camaschella, C. Iron-deficiency anemia. N. Engl. J. Med. 373, 485–486 (2015).

    CAS  PubMed  Google Scholar 

  89. Kassebaum, N. J. et al. A systematic analysis of global anemia burden from 1990 to 2010. Blood 123, 615–624 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. McLean, E., Cogswell, M., Egli, I., Wojdyla, D. & de Benoist, B. Worldwide prevalence of anaemia, WHO vitamin and mineral nutrition information system, 1993-2005. Public Health Nutr. 12, 444–454 (2009).

    Article  PubMed  Google Scholar 

  91. Imel, E. A. et al. Serum fibroblast growth factor 23, serum iron and bone mineral density in premenopausal women. Bone 86, 98–105 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Ali, F. N., Josefson, J., Mendez, A. J., Mestan, K. & Wolf, M. Cord blood ferritin and fibroblast growth factor-23 levels in neonates. J. Clin. Endocrinol. Metab. 101, 1673–1679 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Rousseau, A. F., Souberbielle, J. C., Delanaye, P., Damas, P. & Cavalier, E. Fibroblast growth factor 23 in acute burn patients: novel insights from an intact-form assay. Burns 42, 1082–1087 (2016).

    Article  Google Scholar 

  94. di Giuseppe, R. et al. Potential predictors of plasma fibroblast growth factor 23 concentrations: cross-sectional analysis in the EPIC-Germany study. PLOS ONE 10, e0133580 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  95. Imel, E. A. et al. Iron modifies plasma FGF23 differently in autosomal dominant hypophosphatemic rickets and healthy humans. J. Clin. Endocrinol. Metab. 96, 3541–3549 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Eisenga, M. F. et al. C-terminal fibroblast growth factor 23, iron deficiency, and mortality in renal transplant recipients. J. Am. Soc. Nephrol. 28, 3639–3646 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Eser, B. et al. Fibroblast growth factor is associated to left ventricular mass index, anemia and low values of transferrin saturation. Nefrologia 35, 465–472 (2015).

    Article  PubMed  Google Scholar 

  98. Honda, H. et al. High fibroblast growth factor 23 levels are associated with decreased ferritin levels and increased intravenous iron doses in hemodialysis patients. PLOS ONE 12, e0176984 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  99. Lewerin, C. et al. Low serum iron is associated with high serum intact FGF23 in elderly men: the Swedish MrOS study. Bone 98, 1–8 (2017).

    Article  CAS  PubMed  Google Scholar 

  100. Hanudel, M. R. et al. Effects of dietary iron intake and chronic kidney disease on fibroblast growth factor 23 metabolism in wild-type and hepcidin knockout mice. Am. J. Physiol. Ren. Physiol. 311, F1369–F1377 (2016).

    Article  Google Scholar 

  101. Girelli, D., Nemeth, E. & Swinkels, D. W. Hepcidin in the diagnosis of iron disorders. Blood 127, 2809–2813 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Weiss, G., Ganz, T. & Goodnough, L. T. Anemia of inflammation. Blood 133, 40–50 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Sato, H. et al. Serum fibroblast growth factor 23 (FGF23) in patients with rheumatoid arthritis. Intern. Med. 55, 121–126 (2016).

    Article  CAS  PubMed  Google Scholar 

  104. Hanks, L. J., Casazza, K., Judd, S. E., Jenny, N. S. & Gutierrez, O. M. Associations of fibroblast growth factor-23 with markers of inflammation, insulin resistance and obesity in adults. PLOS ONE 10, e0122885 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  105. El-Hodhod, M. A., Hamdy, A. M., Abbas, A. A., Moftah, S. G. & Ramadan, A. A. Fibroblast growth factor 23 contributes to diminished bone mineral density in childhood inflammatory bowel disease. BMC Gastroenterol. 12, 44 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Manghat, P. et al. Fibroblast growth factor-23 is associated with C-reactive protein, serum phosphate and bone mineral density in chronic kidney disease. Osteoporos. Int. 21, 1853–1861 (2010).

    Article  CAS  PubMed  Google Scholar 

  107. Han, X., Xiao, Z. & Quarles, L. D. Membrane and integrative nuclear fibroblastic growth factor receptor (FGFR) regulation of FGF-23. J. Biol. Chem. 290, 10447–10459 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Yamazaki, M. et al. Interleukin-1-induced acute bone resorption facilitates the secretion of fibroblast growth factor 23 into the circulation. J. Bone Miner. Metab. 33, 342–354 (2015).

    Article  CAS  PubMed  Google Scholar 

  109. Jelkmann, W. Molecular biology of erythropoietin. Intern. Med. 43, 649–659 (2004).

    Article  CAS  PubMed  Google Scholar 

  110. Rabadi, S., Udo, I., Leaf, D. E., Waikar, S. S. & Christov, M. Acute blood loss stimulates fibroblast growth factor 23 production. Am. J. Physiol. Ren. Physiol. 314, F132–F139 (2018).

    Article  CAS  Google Scholar 

  111. Agoro, R. et al. Inhibition of fibroblast growth factor 23 (FGF23) signaling rescues renal anemia. FASEB J. 32, 3752–3764 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Daryadel, A. et al. Erythropoietin stimulates fibroblast growth factor 23 (FGF23) in mice and men. Pflugers Arch. 470, 1569–1582 (2018).

    Article  CAS  PubMed  Google Scholar 

  113. Flamme, I., Ellinghaus, P., Urrego, D. & Kruger, T. FGF23 expression in rodents is directly induced via erythropoietin after inhibition of hypoxia inducible factor proline hydroxylase. PLOS ONE 12, e0186979 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  114. Haase, V. H. Regulation of erythropoiesis by hypoxia-inducible factors. Blood Rev. 27, 41–53 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Huang, L. E., Gu, J., Schau, M. & Bunn, H. F. Regulation of hypoxia-inducible factor 1alpha is mediated by an O2-dependent degradation domain via the ubiquitin-proteasome pathway. Proc. Natl Acad. Sci. USA 95, 7987–7992 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Zhang, Q. et al. The hypoxia-inducible factor-1alpha activates ectopic production of fibroblast growth factor 23 in tumor-induced osteomalacia. Bone Res. 4, 16011 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  117. Fukumoto, S. Targeting fibroblast growth factor 23 signaling with antibodies and inhibitors, is there a rationale? Front. Endocrinol. 9, 48 (2018).

    Article  Google Scholar 

  118. Goetz, R. et al. Isolated C-terminal tail of FGF23 alleviates hypophosphatemia by inhibiting FGF23-FGFR-Klotho complex formation. Proc. Natl Acad. Sci. USA 107, 407–412 (2010).

    Article  CAS  PubMed  Google Scholar 

  119. Econs, M. J. & McEnery, P. T. Autosomal dominant hypophosphatemic rickets/osteomalacia: clinical characterization of a novel renal phosphate-wasting disorder. J. Clin. Endocrinol. Metab. 82, 674–681 (1997).

    Article  CAS  PubMed  Google Scholar 

  120. Kapelari, K., Kohle, J., Kotzot, D. & Hogler, W. Iron supplementation associated with loss of phenotype in autosomal dominant hypophosphatemic rickets. J. Clin. Endocrinol. Metab. 100, 3388–3392 (2015).

    Article  CAS  PubMed  Google Scholar 

  121. Carpenter, T. O. et al. Burosumab therapy in children with X-linked hypophosphatemia. N. Engl. J. Med. 378, 1987–1998 (2018).

    Article  CAS  PubMed  Google Scholar 

  122. Roberts, M. A. et al. Effects of intravenous iron on fibroblast growth factor 23 (FGF23) in haemodialysis patients: a randomized controlled trial. BMC Nephrol. 17, 177 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  123. Deger, S. M. et al. The effects of iron on FGF23-mediated Ca-P metabolism in CKD patients. Clin. Exp. Nephrol. 17, 416–423 (2013).

    Article  CAS  PubMed  Google Scholar 

  124. Braithwaite, V., Prentice, A. M., Doherty, C. & Prentice, A. FGF23 is correlated with iron status but not with inflammation and decreases after iron supplementation: a supplementation study. Int. J. Pediatr. Endocrinol. 2012, 27 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  125. Fukao, W. et al. Oral versus intravenous iron supplementation for the treatment of iron deficiency anemia in patients on maintenance hemodialysis-effect on fibroblast growth factor-23 metabolism. J. Ren. Nutr. 28, 270–277, (2018).

    Article  CAS  PubMed  Google Scholar 

  126. Yamamoto, S., Okada, Y., Mori, H., Fukumoto, S. & Tanaka, Y. Fibroblast growth factor 23-related osteomalacia caused by the prolonged administration of saccharated ferric oxide. Intern. Med. 51, 2375–2378 (2012).

    Article  PubMed  Google Scholar 

  127. Schouten, B. J., Hunt, P. J., Livesey, J. H., Frampton, C. M. & Soule, S. G. FGF23 elevation and hypophosphatemia after intravenous iron polymaltose: a prospective study. J. Clin. Endocrinol. Metab. 94, 2332–2337 (2009).

    Article  CAS  PubMed  Google Scholar 

  128. Yamamoto, S. et al. Iatrogenic osteomalacia: report of two cases. J. UOEH 35, 25–31 (2013).

    Article  PubMed  Google Scholar 

  129. Takeda, Y. et al. Effect of intravenous saccharated ferric oxide on serum FGF23 and mineral metabolism in hemodialysis patients. Am. J. Nephrol. 33, 421–426 (2011).

    Article  CAS  PubMed  Google Scholar 

  130. Shimizu, Y. et al. Hypophosphatemia induced by intravenous administration of saccharated ferric oxide: another form of FGF23-related hypophosphatemia. Bone 45, 814–816 (2009).

    Article  CAS  PubMed  Google Scholar 

  131. Prats, M. et al. Effect of ferric carboxymaltose on serum phosphate and C-terminal FGF23 levels in non-dialysis chronic kidney disease patients: post-hoc analysis of a prospective study. BMC Nephrol. 14, 167 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Bishay, R. H., Ganda, K. & Seibel, M. J. Long-term iron polymaltose infusions associated with hypophosphataemic osteomalacia: a report of two cases and review of the literature. Ther. Adv. Endocrinol. Metab. 8, 14–19 (2017).

    Article  CAS  PubMed  Google Scholar 

  133. Klein, K., Asaad, S., Econs, M. & Rubin, J. E. Severe FGF23-based hypophosphataemic osteomalacia due to ferric carboxymaltose administration. BMJ Case Rep. https://doi.org/10.1136/bcr-2017-222851 (2018).

  134. Huang, L. L. et al. A controlled study of the effects of ferric carboxymaltose on bone and haematinic biomarkers in chronic kidney disease and pregnancy. Nephrol. Dial. Transplant. 33, 1628–1635 (2017).

    Google Scholar 

  135. Silver, J. & Naveh-Many, T. FGF-23 and secondary hyperparathyroidism in chronic kidney disease. Nat. Rev. Nephrol. 9, 641–649 (2013).

    Article  CAS  PubMed  Google Scholar 

  136. Gravesen, E., Hofman-Bang, J., Mace, M. L., Lewin, E. & Olgaard, K. High dose intravenous iron, mineral homeostasis and intact FGF23 in normal and uremic rats. BMC Nephrol. 14, 281 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  137. Larsson, T., Nisbeth, U., Ljunggren, O., Juppner, H. & Jonsson, K. B. Circulating concentration of FGF-23 increases as renal function declines in patients with chronic kidney disease, but does not change in response to variation in phosphate intake in healthy volunteers. Kidney Int. 64, 2272–2279 (2003).

    Article  CAS  PubMed  Google Scholar 

  138. Viaene, L. et al. Residual renal function is an independent determinant of serum FGF-23 levels in dialysis patients. Nephrol. Dial. Transplant. 27, 2017–2022 (2012).

    Article  CAS  PubMed  Google Scholar 

  139. Isakova, T. et al. Effects of dietary phosphate restriction and phosphate binders on FGF23 levels in CKD. Clin. J. Am. Soc. Nephrol. 8, 1009–1018 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Isakova, T. & Wolf, M. S. FGF23 or PTH: which comes first in CKD? Kidney Int. 78, 947–949 (2010).

    Article  CAS  PubMed  Google Scholar 

  141. Christov, M. et al. Plasma FGF23 levels increase rapidly after acute kidney injury. Kidney Int. 84, 776–785 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Richter, B., Haller, J., Haffner, D. & Leifheit-Nestler, M. Klotho modulates FGF23-mediated NO synthesis and oxidative stress in human coronary artery endothelial cells. Pflugers Arch. 468, 1621–1635 (2016).

    Article  CAS  PubMed  Google Scholar 

  143. Murali, S. K., Andrukhova, O., Clinkenbeard, E. L., White, K. E. & Erben, R. G. Excessive osteocytic Fgf23 secretion contributes to pyrophosphate accumulation and mineralization defect in Hyp mice. PLOS Biol. 14, e1002427 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Both authors researched data for the article, made substantial contributions to discussions of the content, and wrote, reviewed and edited the manuscript before submission.

Corresponding author

Correspondence to Myles Wolf.

Ethics declarations

Competing interests

D.E. declares no competing interests. M.W. has served as a consultant to Akebia, AMAG, Amgen, Ardelyx, DiaSorin, Luitpold and Pharmacosmos.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Phosphatonin

A collective term for phosphate-regulating factors, including FGF23.

Vitamin D-resistant hypophosphataemic rickets

A class of diseases characterized by low serum phosphate, rickets and resistance to treatment with vitamin D.

Tumour-induced osteomalacia

(TIO). A disease caused by extraosseous FGF23 production by tumour cells, which results in severe hypophosphataemia and osteomalacia.

Iron economy

Regulation of serum iron levels and total body iron stores.

Autosomal dominant hypophosphatemic rickets

(ADHR). An inherited form of hypophosphataemic rickets caused by a mutation in the FGF23 cleavage recognition site, which results in excess FGF23 due to impaired cleavage.

Absorption

The transport of nutrients, including phosphate and calcium, from the intestinal lumen into circulation.

Tumoural calcinosis

A disease caused by a mutation in GALNT3, which results in excess FGF23 cleavage, functional FGF23 deficiency, hyperphosphataemia and diffuse metastatic calcification.

Autosomal recessive hypophosphataemic rickets

(ARHR). An inherited form of hypophosphataemic rickets that can be caused by mutations in the DMP1 gene (type 1) or the ENPP1 gene (type 2), which results in FGF23 excess.

Acute-phase reactant

A circulating factor that increases in response to inflammation.

Resorption

Degradation of bone that releases calcium and phosphate into the circulation.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Edmonston, D., Wolf, M. FGF23 at the crossroads of phosphate, iron economy and erythropoiesis. Nat Rev Nephrol 16, 7–19 (2020). https://doi.org/10.1038/s41581-019-0189-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41581-019-0189-5

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing