Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Co-transcriptional gene regulation in eukaryotes and prokaryotes

Abstract

Many steps of RNA processing occur during transcription by RNA polymerases. Co-transcriptional activities are deemed commonplace in prokaryotes, in which the lack of membrane barriers allows mixing of all gene expression steps, from transcription to translation. In the past decade, an extraordinary level of coordination between transcription and RNA processing has emerged in eukaryotes. In this Review, we discuss recent developments in our understanding of co-transcriptional gene regulation in both eukaryotes and prokaryotes, comparing methodologies and mechanisms, and highlight striking parallels in how RNA polymerases interact with the machineries that act on nascent RNA. The development of RNA sequencing and imaging techniques that detect transient transcription and RNA processing intermediates has facilitated discoveries of transcription coordination with splicing, 3′-end cleavage and dynamic RNA folding and revealed physical contacts between processing machineries and RNA polymerases. Such studies indicate that intron retention in a given nascent transcript can prevent 3′-end cleavage and cause transcriptional readthrough, which is a hallmark of eukaryotic cellular stress responses. We also discuss how coordination between nascent RNA biogenesis and transcription drives fundamental aspects of gene expression in both prokaryotes and eukaryotes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Spatial organization of gene expression machineries and co-transcriptional processes in prokaryotes and eukaryotes.
Fig. 2: Splicing progression measurement through RNA polymerase II position or time.
Fig. 3: Interplay between RNA processing and transcription by RNA polymerase II.
Fig. 4: Splicing outcomes involving transcriptional readthrough and/or stress.

Similar content being viewed by others

References

  1. Miller, O. L. Jr, Hamkalo, B. A. & Thomas, C. A. Jr. Visualization of bacterial genes in action. Science 169, 392–395 (1970).

    Article  PubMed  Google Scholar 

  2. Cai, H. & Luse, D. S. Transcription initiation by RNA polymerase II in vitro. Properties of preinitiation, initiation, and elongation complexes. J. Biol. Chem. 262, 298–304 (1987).

    Article  CAS  PubMed  Google Scholar 

  3. Mougey, E. B. et al. The terminal balls characteristic of eukaryotic rRNA transcription units in chromatin spreads are rRNA processing complexes. Genes Dev. 7, 1609–1619 (1993).

    Article  CAS  PubMed  Google Scholar 

  4. Dragon, F. et al. A large nucleolar U3 ribonucleoprotein required for 18S ribosomal RNA biogenesis. Nature 417, 967–970 (2002).

    Article  CAS  PubMed  Google Scholar 

  5. Beyer, A. L. & Osheim, Y. N. Splice site selection, rate of splicing, and alternative splicing on nascent transcripts. Genes Dev. 2, 754–765 (1988).

    Article  CAS  PubMed  Google Scholar 

  6. Osheim, Y. N., Miller, O. L. Jr. & Beyer, A. L. RNP particles at splice junction sequences on Drosophila chorion transcripts. Cell 43, 143–151 (1985).

    Article  CAS  PubMed  Google Scholar 

  7. Schärfen, L. & Neugebauer, K. M. Transcription regulation through nascent RNA folding. J. Mol. Biol. 433, 166975 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Salvail, H. & Breaker, R. R. Riboswitches. Curr. Biol. 33, R343–R348 (2023).

    Article  CAS  PubMed  Google Scholar 

  9. Spitale, R. C. & Incarnato, D. Probing the dynamic RNA structurome and its functions. Nat. Rev. Genet. 24, 178–196 (2023).

    Article  CAS  PubMed  Google Scholar 

  10. Tan, D., Marzluff, W. F., Dominski, Z. & Tong, L. Structure of histone mRNA stem-loop, human stem-loop binding protein, and 3′hExo ternary complex. Science 339, 318–321 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Saldi, T., Fong, N. & Bentley, D. L. Transcription elongation rate affects nascent histone pre-mRNA folding and 3′ end processing. Genes Dev. 32, 297–308 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Johnson, G. E., Lalanne, J. B., Peters, M. L. & Li, G. W. Functionally uncoupled transcription-translation in Bacillus subtilis. Nature 585, 124–128 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Zhu, M., Mu, H., Han, F., Wang, Q. & Dai, X. Quantitative analysis of asynchronous transcription-translation and transcription processivity in Bacillus subtilis under various growth conditions. iScience 24, 103333 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Vargas-Blanco, D. A. & Shell, S. S. Regulation of mRNA stability during bacterial stress responses. Front. Microbiol. 11, 2111 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Herzel, L., Stanley, J. A., Yao, C. C. & Li, G. W. Ubiquitous mRNA decay fragments in E. coli redefine the functional transcriptome. Nucleic Acids Res. 50, 5029–5046 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Hör, J., Gorski, S. A. & Vogel, J. Bacterial RNA biology on a genome scale. Mol. Cell 70, 785–799 (2018).

    Article  PubMed  Google Scholar 

  17. Lalanne, J. B. et al. Evolutionary convergence of pathway-specific enzyme expression stoichiometry. Cell 173, 749–761.e38 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Sharma, C. M. et al. The primary transcriptome of the major human pathogen Helicobacter pylori. Nature 464, 250–255 (2010).

    Article  CAS  PubMed  Google Scholar 

  19. Dar, D. et al. Term-seq reveals abundant ribo-regulation of antibiotics resistance in bacteria. Science 352, aad9822 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Mejía-Almonte, C. et al. Redefining fundamental concepts of transcription initiation in bacteria. Nat. Rev. Genet. 21, 699–714 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Landick, R. Transcriptional pausing as a mediator of bacterial gene regulation. Annu. Rev. Microbiol. 75, 291–314 (2021).

    Article  CAS  PubMed  Google Scholar 

  22. Rogalska, M. E., Vivori, C. & Valcárcel, J. Regulation of pre-mRNA splicing: roles in physiology and disease, and therapeutic prospects. Nat. Rev. Genet. 24, 251–269 (2023).

    Article  CAS  PubMed  Google Scholar 

  23. Shenasa, H. & Bentley, D. L. Pre-mRNA splicing and its cotranscriptional connections. Trends Genet. 39, 672–685 (2023).

    Article  CAS  PubMed  Google Scholar 

  24. Marasco, L. E. & Kornblihtt, A. R. The physiology of alternative splicing. Nat. Rev. Mol. Cell Biol. 24, 242–254 (2023).

    Article  CAS  PubMed  Google Scholar 

  25. Mitschka, S. & Mayr, C. Context-specific regulation and function of mRNA alternative polyadenylation. Nat. Rev. Mol. Cell Biol. 23, 779–796 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Weixlbaumer, A., Grünberger, F., Werner, F. & Grohmann, D. Coupling of transcription and translation in Archaea: cues from the bacterial world. Front. Microbiol. 12, 661827 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Bernstein, J. A., Khodursky, A. B., Lin, P. H., Lin-Chao, S. & Cohen, S. N. Global analysis of mRNA decay and abundance in Escherichia coli at single-gene resolution using two-color fluorescent DNA microarrays. Proc. Natl Acad. Sci. USA 99, 9697–9702 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Chen, H., Shiroguchi, K., Ge, H. & Xie, X. S. Genome-wide study of mRNA degradation and transcript elongation in Escherichia coli. Mol. Syst. Biol. 11, 781 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Moffitt, J. R., Pandey, S., Boettiger, A. N., Wang, S. & Zhuang, X. Spatial organization shapes the turnover of a bacterial transcriptome. eLife 5, e13065 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Proshkin, S., Rahmouni, A. R., Mironov, A. & Nudler, E. Cooperation between translating ribosomes and RNA polymerase in transcription elongation. Science 328, 504–508 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Vogel, U. & Jensen, K. F. The RNA chain elongation rate in Escherichia coli depends on the growth rate. J. Bacteriol. 176, 2807–2813 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Zhu, M., Mori, M., Hwa, T. & Dai, X. Disruption of transcription-translation coordination in Escherichia coli leads to premature transcriptional termination. Nat. Microbiol. 4, 2347–2356 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Gowrishankar, J. & Harinarayanan, R. Why is transcription coupled to translation in bacteria? Mol. Microbiol. 54, 598–603 (2004).

    Article  CAS  PubMed  Google Scholar 

  34. Iost, I. & Dreyfus, M. The stability of Escherichia coli lacZ mRNA depends upon the simultaneity of its synthesis and translation. EMBO J. 14, 3252–3261 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Blaha, G. M. & Wade, J. T. Transcription-translation coupling in bacteria. Annu. Rev. Genet. 56, 187–205 (2022).

    Article  CAS  PubMed  Google Scholar 

  36. Burmann, B. M. et al. A NusE:NusG complex links transcription and translation. Science 328, 501–504 (2010).

    Article  CAS  PubMed  Google Scholar 

  37. Irastortza-Olaziregi, M. & Amster-Choder, O. Coupled transcription-translation in prokaryotes: an old couple with new surprises. Front. Microbiol. 11, 624830 (2020).

    Article  PubMed  Google Scholar 

  38. O’Reilly, F. J. et al. In-cell architecture of an actively transcribing-translating expressome. Science 369, 554–557 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Louca, S., Mazel, F., Doebeli, M. & Parfrey, L. W. A census-based estimate of Earth’s bacterial and archaeal diversity. PloS Biol. 17, e3000106 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Iyer, S., Le, D., Park, B. R. & Kim, M. Distinct mechanisms coordinate transcription and translation under carbon and nitrogen starvation in Escherichia coli. Nat. Microbiol. 3, 741–748 (2018).

    Article  CAS  PubMed  Google Scholar 

  41. Vogel, U., Sørensen, M., Pedersen, S., Jensen, K. F. & Kilstrup, M. Decreasing transcription elongation rate in Escherichia coli exposed to amino acid starvation. Mol. Microbiol. 6, 2191–2200 (1992).

    Article  CAS  PubMed  Google Scholar 

  42. Chen, M. & Fredrick, K. Measures of single- versus multiple-round translation argue against a mechanism to ensure coupling of transcription and translation. Proc. Natl Acad. Sci. USA 115, 10774–10779 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Pani, B. & Nudler, E. Bacterial histones unveiled. Nat. Microbiol. 8, 1939–1941 (2023).

    Article  CAS  PubMed  Google Scholar 

  44. Hocher, A. et al. Histones with an unconventional DNA-binding mode in vitro are major chromatin constituents in the bacterium Bdellovibrio bacteriovorus. Nat. Microbiol. 8, 2006–2019 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Woldringh, C. L. The role of co-transcriptional translation and protein translocation (transertion) in bacterial chromosome segregation. Mol. Microbiol. 45, 17–29 (2002).

    Article  CAS  PubMed  Google Scholar 

  46. Bakshi, S., Choi, H. & Weisshaar, J. C. The spatial biology of transcription and translation in rapidly growing Escherichia coli. Front. Microbiol. 6, 636 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Gray, W. T. et al. Nucleoid size scaling and intracellular organization of translation across bacteria. Cell 177, 1632–1648.e20 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Al-Husini, N. et al. BR-bodies provide selectively permeable condensates that stimulate mRNA decay and prevent release of decay intermediates. Mol. Cell 78, 670–682.e8 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Sanamrad, A. et al. Single-particle tracking reveals that free ribosomal subunits are not excluded from the Escherichia coli nucleoid. Proc. Natl Acad. Sci. USA 111, 11413–11418 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Stracy, M. et al. Live-cell superresolution microscopy reveals the organization of RNA polymerase in the bacterial nucleoid. Proc. Natl Acad. Sci. USA 112, E4390–E4399 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Trinquier, A., Durand, S., Braun, F. & Condon, C. Regulation of RNA processing and degradation in bacteria. Biochim. Biophys. Acta Gene Regul. Mech. 1863, 194505 (2020).

    Article  CAS  PubMed  Google Scholar 

  52. Roberts, J. W. Mechanisms of bacterial transcription termination. J. Mol. Biol. 431, 4030–4039 (2019).

    Article  CAS  PubMed  Google Scholar 

  53. You, L. et al. Structural basis for intrinsic transcription termination. Nature 613, 783–789 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Said, N. et al. Steps toward translocation-independent RNA polymerase inactivation by terminator ATPase ρ. Science 371, eabd1673 (2021).

    Article  CAS  PubMed  Google Scholar 

  55. Molodtsov, V., Wang, C., Firlar, E., Kaelber, J. T. & Ebright, R. H. Structural basis of Rho-dependent transcription termination. Nature 614, 367–374 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Rashid, F. & Berger, J. Protein structure terminates doubt about how transcription stops. Nature 614, 237–238 (2023).

    Article  CAS  PubMed  Google Scholar 

  57. Kang, J. Y., Mishanina, T. V., Landick, R. & Darst, S. A. Mechanisms of transcriptional pausing in bacteria. J. Mol. Biol. 431, 4007–4029 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Vasilyev, N., Gao, A. & Serganov, A. Noncanonical features and modifications on the 5′-end of bacterial sRNAs and mRNAs. Wiley Interdiscip. Rev. RNA 10, e1509 (2019).

    Article  PubMed  Google Scholar 

  59. Koslover, D. J. et al. The crystal structure of the Escherichia coli RNase E apoprotein and a mechanism for RNA degradation. Structure 16, 1238–1244 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Richards, J. & Belasco, J. G. Obstacles to scanning by RNase E govern bacterial mRNA lifetimes by hindering access to distal cleavage sites. Mol. Cell 74, 284–295.e5 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Dar, D. & Sorek, R. Extensive reshaping of bacterial operons by programmed mRNA decay. PloS Genet. 14, e1007354 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  62. DeLoughery, A., Lalanne, J. B., Losick, R. & Li, G. W. Maturation of polycistronic mRNAs by the endoribonuclease RNase Y and its associated Y-complex in Bacillus subtilis. Proc. Natl Acad. Sci. USA 115, E5585–E5594 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Holmqvist, E. et al. Global RNA recognition patterns of post-transcriptional regulators Hfq and CsrA revealed by UV crosslinking in vivo. EMBO J. 35, 991–1011 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Doamekpor, S. K., Sharma, S., Kiledjian, M. & Tong, L. Recent insights into noncanonical 5′ capping and decapping of RNA. J. Biol. Chem. 298, 102171 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Jiao, X. et al. 5′ End nicotinamide adenine dinucleotide cap in human cells promotes RNA decay through DXO-mediated deNADding. Cell 168, 1015–1027.e1010 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Bird, J. G. et al. The mechanism of RNA 5′ capping with NAD+, NADH and desphospho-CoA. Nature 535, 444–447 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Cahová, H., Winz, M. L., Höfer, K., Nübel, G. & Jäschke, A. NAD captureSeq indicates NAD as a bacterial cap for a subset of regulatory RNAs. Nature 519, 374–377 (2015).

    Article  PubMed  Google Scholar 

  68. Julius, C. & Yuzenkova, Y. Noncanonical RNA-capping: discovery, mechanism, and physiological role debate. Wiley Interdiscip. Rev. RNA 10, e1512 (2019).

    Article  PubMed  Google Scholar 

  69. Vvedenskaya, I. O. et al. CapZyme-Seq comprehensively defines promoter-sequence determinants for RNA 5′ capping with NAD+. Mol. Cell 70, 553–564.e9 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Dar, D. & Sorek, R. High-resolution RNA 3′-ends mapping of bacterial Rho-dependent transcripts. Nucleic Acids Res. 46, 6797–6805 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Kim, S. & Jacobs-Wagner, C. Effects of mRNA degradation and site-specific transcriptional pausing on protein expression noise. Biophys. J. 114, 1718–1729 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Yan, B., Boitano, M., Clark, T. A. & Ettwiller, L. SMRT-Cappable-seq reveals complex operon variants in bacteria. Nat. Commun. 9, 3676 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Bohne, A. V. The nucleoid as a site of rRNA processing and ribosome assembly. Front. Plant Sci. 5, 257 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Saito, K., Green, R. & Buskirk, A. R. Translational initiation in E. coli occurs at the correct sites genome-wide in the absence of mRNA-rRNA base-pairing. eLife 9, e55002 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Wee, L. M. et al. A trailing ribosome speeds up RNA polymerase at the expense of transcript fidelity via force and allostery. Cell 186, 1244–1262.e34 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Hao, Z. et al. Pre-termination transcription complex: structure and function. Mol. Cell 81, 281–292.e8 (2021).

    Article  CAS  PubMed  Google Scholar 

  77. Murayama, Y. et al. Structural basis of the transcription termination factor Rho engagement with transcribing RNA polymerase from Thermus thermophilus. Sci. Adv. 9, eade7093 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Hao, Z., Svetlov, V. & Nudler, E. Rho-dependent transcription termination: a revisionist view. Transcription 12, 171–181 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Song, E. et al. Transcriptional pause extension benefits the stand-by rather than catch-up Rho-dependent termination. Nucleic Acids Res. 51, 2778–2789 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Song, E. et al. Rho-dependent transcription termination proceeds via three routes. Nat. Commun. 13, 1663 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Mandell, Z. F. et al. Comprehensive transcription terminator atlas for Bacillus subtilis. Nat. Microbiol. 7, 1918–1931 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Mandell, Z. F., Zemba, D. & Babitzke, P. Factor-stimulated intrinsic termination: getting by with a little help from some friends. Transcription 13, 96–108 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Durand, S. & Condon, C. RNases and helicases in gram-positive bacteria. Microbiol. Spectr. https://doi.org/10.1128/microbiolspec.RWR-0003-2017 (2018).

  84. Mohanty, B. K. & Kushner, S. R. Enzymes involved in posttranscriptional RNA metabolism in gram-negative bacteria. Microbiol. Spectr. https://doi.org/10.1128/microbiolspec.RWR-0011-2017 (2018).

  85. Li, R., Zhang, Q., Li, J. & Shi, H. Effects of cooperation between translating ribosome and RNA polymerase on termination efficiency of the Rho-independent terminator. Nucleic Acids Res. 44, 2554–2563 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  86. Brandt, F. et al. The native 3D organization of bacterial polysomes. Cell 136, 261–271 (2009).

    Article  CAS  PubMed  Google Scholar 

  87. Saito, K. et al. Ribosome collisions induce mRNA cleavage and ribosome rescue in bacteria. Nature 603, 503–508 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Rodgers, M. L., O’Brien, B. & Woodson, S. A. Small RNAs and Hfq capture unfolded RNA target sites during transcription. Mol. Cell 83, 1489–1501.e5 (2023).

    Article  CAS  PubMed  Google Scholar 

  89. Machado de Amorim, A. & Chakrabarti, S. Assembly of multicomponent machines in RNA metabolism: a common theme in mRNA decay pathways. Wiley Interdiscip. Rev. RNA 13, e1684 (2022).

    Article  CAS  PubMed  Google Scholar 

  90. Keiler, K. C. Mechanisms of ribosome rescue in bacteria. Nat. Rev. Microbiol. 13, 285–297 (2015).

    Article  CAS  PubMed  Google Scholar 

  91. Kavita, K. & Breaker, R. R. Discovering riboswitches: the past and the future. Trends Biochem. Sci. 48, 119–141 (2023).

    Article  CAS  PubMed  Google Scholar 

  92. Zhang, Y. & Gross, C. A. Cold shock response in bacteria. Annu. Rev. Genet. 55, 377–400 (2021).

    Article  CAS  PubMed  Google Scholar 

  93. Buchser, R., Sweet, P., Anantharaman, A. & Contreras, L. RNAs as sensors of oxidative stress in bacteria. Annu. Rev. Chem. Biomol. Eng. 14, 265–281 (2023).

    Article  CAS  PubMed  Google Scholar 

  94. McManus, C. J. & Graveley, B. R. RNA structure and the mechanisms of alternative splicing. Curr. Opin. Genet. Dev. 21, 373–379 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Buratti, E. & Baralle, F. E. Influence of RNA secondary structure on the pre-mRNA splicing process. Mol. Cell Biol. 24, 10505–10514 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Wachter, A. Riboswitch-mediated control of gene expression in eukaryotes. RNA Biol. 7, 67–76 (2010).

    Article  CAS  PubMed  Google Scholar 

  97. Martinez, N. M. et al. Pseudouridine synthases modify human pre-mRNA co-transcriptionally and affect pre-mRNA processing. Mol. Cell 82, 645–659.e9 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Zhou, K. I. et al. Regulation of co-transcriptional pre-mRNA splicing by m6A through the low-complexity protein hnRNPG. Mol. Cell 76, 70–81.e79 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Haussmann, I. U. et al. m6A potentiates Sxl alternative pre-mRNA splicing for robust Drosophila sex determination. Nature 540, 301–304 (2016).

    Article  CAS  PubMed  Google Scholar 

  100. Alpert, T., Herzel, L. & Neugebauer, K. M. Perfect timing: splicing and transcription rates in living cells. Wiley Interdiscip. Rev. RNA https://doi.org/10.1002/wrna.1401 (2017).

  101. Neugebauer, K. M. Nascent RNA and the coordination of splicing with transcription. Cold Spring Harb. Perspect. Biol. 11, a032227 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Carrillo Oesterreich, F. et al. Splicing of nascent RNA coincides with intron exit from RNA polymerase II. Cell 165, 372–381 (2016).

    Article  CAS  Google Scholar 

  103. Herzel, L., Straube, K. & Neugebauer, K. M. Long-read sequencing of nascent RNA reveals coupling among RNA processing events. Genome Res. 28, 1008–1019 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Zhang, M. Q. Statistical features of human exons and their flanking regions. Hum. Mol. Genet. 7, 919–932 (1998).

    Article  CAS  PubMed  Google Scholar 

  105. Reimer, K. A., Mimoso, C. A., Adelman, K. & Neugebauer, K. M. Co-transcriptional splicing regulates 3′ end cleavage during mammalian erythropoiesis. Mol. Cell 81, 998–1012.e7 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Sousa-Luís, R. et al. POINT technology illuminates the processing of polymerase-associated intact nascent transcripts. Mol. Cell 81, 1935–1950.e6 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  107. Prudêncio, P., Savisaar, R., Rebelo, K., Martinho, R. G. & Carmo-Fonseca, M. Transcription and splicing dynamics during early Drosophila development. RNA 28, 139–161 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  108. Zeng, Y. et al. Profiling lariat intermediates reveals genetic determinants of early and late co-transcriptional splicing. Mol. Cell 82, 4681–4699.e8 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Wan, Y. et al. Dynamic imaging of nascent RNA reveals general principles of transcription dynamics and stochastic splice site selection. Cell 184, 2878–2895.e20 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Gildea, M. A., Dwyer, Z. W. & Pleiss, J. A. Transcript-specific determinants of pre-mRNA splicing revealed through in vivo kinetic analyses of the 1st and 2nd chemical steps. Mol. Cell 82, 2967–2981.e6 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Drexler, H. L., Choquet, K. & Churchman, L. S. Splicing kinetics and coordination revealed by direct nascent RNA sequencing through nanopores. Mol. Cell 77, 985–998.e8 (2020).

    Article  CAS  PubMed  Google Scholar 

  112. Drexler, H. L. et al. Revealing nascent RNA processing dynamics with nano-COP. Nat. Protoc. 16, 1343–1375 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Singh, J. & Padgett, R. A. Rates of in situ transcription and splicing in large human genes. Nat. Struct. Mol. Biol. 16, 1128–1133 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Altieri, J. A. C. & Hertel, K. J. The influence of 4-thiouridine labeling on pre-mRNA splicing outcomes. PloS ONE 16, e0257503 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Alfonso-Gonzalez, C. et al. Sites of transcription initiation drive mRNA isoform selection. Cell 186, 2438–2455.e22 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Fiszbein, A., Krick, K. S., Begg, B. E. & Burge, C. B. Exon-mediated activation of transcription starts. Cell 179, 1551–1565.e17 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Uriostegui-Arcos, M., Mick, S. T., Shi, Z., Rahman, R. & Fiszbein, A. Splicing activates transcription from weak promoters upstream of alternative exons. Nat. Commun. 14, 3435 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Bergfort, A. & Neugebauer, K. M. The promoter as a trip navigator: guiding alternative polyadenylation site destinations. Mol. Cell 83, 2395–2397 (2023).

    Article  CAS  PubMed  Google Scholar 

  119. Cramer, P., Pesce, C. G., Baralle, F. E. & Kornblihtt, A. R. Functional association between promoter structure and transcript alternative splicing. Proc. Natl Acad. Sci. USA 94, 11456–11460 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Schor, I. E., Rascovan, N., Pelisch, F., Alló, M. & Kornblihtt, A. R. Neuronal cell depolarization induces intragenic chromatin modifications affecting NCAM alternative splicing. Proc. Natl Acad. Sci. USA 106, 4325–4330 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Saldi, T., Cortazar, M. A., Sheridan, R. M. & Bentley, D. L. Coupling of RNA polymerase II transcription elongation with pre-mRNA splicing. J. Mol. Biol. 428, 2623–2635 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Godoy Herz, M. A. et al. Light regulates plant alternative splicing through the control of transcriptional elongation. Mol. Cell 73, 1066–1074.e3 (2019).

    Article  CAS  PubMed  Google Scholar 

  123. Muñoz, M. J. et al. DNA damage regulates alternative splicing through inhibition of RNA polymerase II elongation. Cell 137, 708–720 (2009).

    Article  PubMed  Google Scholar 

  124. Pandey, M., Stormo, G. D. & Dutcher, S. K. Alternative splicing during the Chlamydomonas reinhardtii cell cycle. G3 10, 3797–3810 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Berget, S. M. Exon recognition in vertebrate splicing. J. Biol. Chem. 270, 2411–2414 (1995).

    Article  CAS  PubMed  Google Scholar 

  126. de la Mata, M., Lafaille, C. & Kornblihtt, A. R. First come, first served revisited: factors affecting the same alternative splicing event have different effects on the relative rates of intron removal. RNA 16, 904–912 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  127. Tang, A. D. et al. Full-length transcript characterization of SF3B1 mutation in chronic lymphocytic leukemia reveals downregulation of retained introns. Nat. Commun. 11, 1438 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Foord, C. et al. The variables on RNA molecules: concert or cacophony? Answers in long-read sequencing. Nat. Methods 20, 20–24 (2023).

    Article  CAS  PubMed  Google Scholar 

  129. Choquet, K. et al. Pre-mRNA splicing order is predetermined and maintains splicing fidelity across multi-intronic transcripts. Nat. Struct. Mol. Biol. 30, 1064–1076 (2023).

    Article  CAS  PubMed  Google Scholar 

  130. Melcák, I. & Raska, I. Structural organization of the pre-mRNA splicing commitment: a hypothesis. J. Struct. Biol. 117, 189–194 (1996).

    Article  PubMed  Google Scholar 

  131. Desterro, J., Bak-Gordon, P. & Carmo-Fonseca, M. Targeting mRNA processing as an anticancer strategy. Nat. Rev. Drug Discov. 19, 112–129 (2020).

    Article  CAS  PubMed  Google Scholar 

  132. Elkon, R., Ugalde, A. P. & Agami, R. Alternative cleavage and polyadenylation: extent, regulation and function. Nat. Rev. Genet. 14, 496–506 (2013).

    Article  CAS  PubMed  Google Scholar 

  133. Boreikaitė, V. & Passmore, L. A. 3′-End processing of eukaryotic mRNA: machinery, regulation, and impact on gene expression. Annu. Rev. Biochem. 92, 199–225 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  134. Zhang, Z., Bae, B., Cuddleston, W. H. & Miura, P. Coordination of alternative splicing and alternative polyadenylation revealed by targeted long read sequencing. Nat. Commun. 14, 5506 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Sfaxi, R. et al. Post-transcriptional polyadenylation site cleavage maintains 3′-end processing upon DNA damage. EMBO J. 42, e112358 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Geisberg, J. V., Moqtaderi, Z. & Struhl, K. The transcriptional elongation rate regulates alternative polyadenylation in yeast. eLife 9, e59810 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Goering, R. et al. LABRAT reveals association of alternative polyadenylation with transcript localization, RNA binding protein expression, transcription speed, and cancer survival. BMC Genom. 22, 476 (2021).

    Article  CAS  Google Scholar 

  138. Yague-Sanz, C. et al. Nutrient-dependent control of RNA polymerase II elongation rate regulates specific gene expression programs by alternative polyadenylation. Genes Dev. 34, 883–897 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Geisberg, J. V. et al. Nucleotide-level linkage of transcriptional elongation and polyadenylation. eLife 11, e83153 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Carminati, M., Rodríguez-Molina, J. B., Manav, M. C., Bellini, D. & Passmore, L. A. A direct interaction between CPF and RNA Pol II links RNA 3′ end processing to transcription. Mol. Cell 83, 4461–4478.e13 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Jenal, M. et al. The poly(A)-binding protein nuclear 1 suppresses alternative cleavage and polyadenylation sites. Cell 149, 538–553 (2012).

    Article  CAS  PubMed  Google Scholar 

  142. Lee, S. H. et al. Widespread intronic polyadenylation inactivates tumour suppressor genes in leukaemia. Nature 561, 127–131 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Berg, M. G. et al. U1 snRNP determines mRNA length and regulates isoform expression. Cell 150, 53–64 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. So, B. R. et al. A complex of U1 snRNP with cleavage and polyadenylation factors controls telescripting, regulating mRNA transcription in human cells. Mol. Cell 76, 590–599.e4 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Mimoso, C. A. & Adelman, K. U1 snRNP increases RNA Pol II elongation rate to enable synthesis of long genes. Mol. Cell 83, 1264–1279.e10 (2023).

    Article  CAS  PubMed  Google Scholar 

  146. Oktaba, K. et al. ELAV links paused Pol II to alternative polyadenylation in the Drosophila nervous system. Mol. Cell 57, 341–348 (2015).

    Article  CAS  PubMed  Google Scholar 

  147. Rambout, X. et al. PGC-1α senses the CBC of pre-mRNA to dictate the fate of promoter-proximally paused RNAPII. Mol. Cell 83, 186–202.e11 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Wang, R., Zheng, D., Wei, L., Ding, Q. & Tian, B. Regulation of intronic polyadenylation by PCF11 impacts mRNA expression of long genes. Cell Rep. 26, 2766–2778.e6 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Kriner, M. A., Sevostyanova, A. & Groisman, E. A. Learning from the leaders: gene regulation by the transcription termination factor Rho. Trends Biochem. Sci. 41, 690–699 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. De Crombrugghe, B., Adhya, S., Gottesman, M. A. X. & Pastan, I. R. A. Effect of Rho on transcription of bacterial operons. Nat. N. Biol. 241, 260–264 (1973).

    Article  Google Scholar 

  151. Zhang, S. et al. Structure of a transcribing RNA polymerase II-U1 snRNP complex. Science 371, 305–309 (2021).

    Article  CAS  PubMed  Google Scholar 

  152. Dye, M. J., Gromak, N. & Proudfoot, N. J. Exon tethering in transcription by RNA polymerase II. Mol. Cell 21, 849–859 (2006).

    Article  CAS  PubMed  Google Scholar 

  153. Fong, N., Ohman, M. & Bentley, D. L. Fast ribozyme cleavage releases transcripts from RNA polymerase II and aborts co-transcriptional pre-mRNA processing. Nat. Struct. Mol. Biol. 16, 916–922 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Plaschka, C., Lin, P. C., Charenton, C. & Nagai, K. Prespliceosome structure provides insights into spliceosome assembly and regulation. Nature 559, 419–422 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Nojima, T. et al. RNA polymerase II phosphorylated on CTD serine 5 interacts with the spliceosome during co-transcriptional splicing. Mol. Cell 72, 369–379.e4 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Harlen, K. M. et al. Comprehensive RNA polymerase II interactomes reveal distinct and varied roles for each phospho-CTD residue. Cell Rep. 15, 2147–2158 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Alpert, T., Straube, K., Carrillo Oesterreich, F., Herzel, L. & Neugebauer, K. M. Widespread transcriptional readthrough caused by Nab2 depletion leads to chimeric transcripts with retained introns. Cell Rep. 33, 108324 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Couvillion, M. et al. Transcription elongation is finely tuned by dozens of regulatory factors. eLife 11, e78944 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Hluchý, M. et al. CDK11 regulates pre-mRNA splicing by phosphorylation of SF3B1. Nature 609, 829–834 (2022).

    Article  PubMed  Google Scholar 

  160. Chiu, A. C. et al. Transcriptional pause sites delineate stable nucleosome-associated premature polyadenylation suppressed by U1 snRNP. Mol. Cell 69, 648–663.e7 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Zamft, B., Bintu, L., Ishibashi, T. & Bustamante, C. Nascent RNA structure modulates the transcriptional dynamics of RNA polymerases. Proc. Natl Acad. Sci. USA 109, 8948–8953 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Turowski, T. W. et al. Nascent transcript folding plays a major role in determining RNA polymerase elongation rates. Mol. Cell 79, 488–503.e11 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Vlaming, H., Mimoso, C. A., Field, A. R., Martin, B. J. E. & Adelman, K. Screening thousands of transcribed coding and non-coding regions reveals sequence determinants of RNA polymerase II elongation potential. Nat. Struct. Mol. Biol. 29, 613–620 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Fong, N., Sheridan, R. M., Ramachandran, S. & Bentley, D. L. The pausing zone and control of RNA polymerase II elongation by Spt5: implications for the pause-release model. Mol. Cell 82, 3632–3645.e4 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Schwartz, S., Meshorer, E. & Ast, G. Chromatin organization marks exon-intron structure. Nat. Struct. Mol. Biol. 16, 990–995 (2009).

    Article  CAS  PubMed  Google Scholar 

  166. Hodges, C., Bintu, L., Lubkowska, L., Kashlev, M. & Bustamante, C. Nucleosomal fluctuations govern the transcription dynamics of RNA polymerase II. Science 325, 626–628 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Bieberstein, N. I., Carrillo Oesterreich, F., Straube, K. & Neugebauer, K. M. First exon length controls active chromatin signatures and transcription. Cell Rep. 2, 62–68 (2012).

    Article  CAS  PubMed  Google Scholar 

  168. Fuchs, G. et al. 4sUDRB-seq: measuring genomewide transcriptional elongation rates and initiation frequencies within cells. Genome Biol. 15, R69 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  169. Sheridan, R. M., Fong, N., D’Alessandro, A. & Bentley, D. L. Widespread backtracking by RNA Pol II is a major effector of gene activation, 5′ pause release, termination, and transcription elongation rate. Mol. Cell 73, 107–118.e4 (2019).

    Article  CAS  PubMed  Google Scholar 

  170. Carrillo Oesterreich, F., Preibisch, S. & Neugebauer, K. M. Global analysis of nascent RNA reveals transcriptional pausing in terminal exons. Mol. Cell 40, 571–581 (2010).

    Article  CAS  PubMed  Google Scholar 

  171. Mayer, A. et al. Native elongating transcript sequencing reveals human transcriptional activity at nucleotide resolution. Cell 161, 541–554 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Chathoth, K. T., Barrass, J. D., Webb, S. & Beggs, J. D. A splicing-dependent transcriptional checkpoint associated with prespliceosome formation. Mol. Cell 53, 779–790 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Alexander, R. D. et al. RiboSys, a high-resolution, quantitative approach to measure the in vivo kinetics of pre-mRNA splicing and 3′-end processing in Saccharomyces cerevisiae. RNA 16, 2570–2580 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Li, M. Calculating the most likely intron splicing orders in S. pombe, fruit fly, Arabidopsis thaliana, and humans. BMC Bioinform. 21, 478 (2020).

    Article  Google Scholar 

  175. Gohr, A., Iñiguez, L. P., Torres-Méndez, A., Bonnal, S. & Irimia, M. Insplico: effective computational tool for studying splicing order of adjacent introns genome-wide with short and long RNA-seq reads. Nucleic Acids Res. 51, e56 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Kim, S. W. et al. Widespread intra-dependencies in the removal of introns from human transcripts. Nucleic Acids Res. 45, 9503–9513 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Deng, Y., Shi, J., Ran, Y., Xiang, A. P. & Yao, C. A potential mechanism underlying U1 snRNP inhibition of the cleavage step of mRNA 3′ processing. Biochem. Biophys. Res. Commun. 530, 196–202 (2020).

    Article  CAS  PubMed  Google Scholar 

  178. Singh, G. et al. The cellular EJC interactome reveals higher-order mRNP structure and an EJC-SR protein nexus. Cell 151, 750–764 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Pacheco-Fiallos, B. et al. mRNA recognition and packaging by the human transcription-export complex. Nature 616, 828–835 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Zhu, Y. et al. Molecular mechanisms for CFIm-mediated regulation of mRNA alternative polyadenylation. Mol. Cell 69, 62–74.e4 (2018).

    Article  CAS  PubMed  Google Scholar 

  181. Müller-McNicoll, M. et al. SR proteins are NXF1 adaptors that link alternative RNA processing to mRNA export. Genes Dev. 30, 553–566 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  182. Hossain, M. A. et al. Posttranscriptional regulation of Gcr1 expression and activity is crucial for metabolic adjustment in response to glucose availability. Mol. Cell 62, 346–358 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Martin Anduaga, A. et al. Thermosensitive alternative splicing senses and mediates temperature adaptation in Drosophila. eLife 8, e44642 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  184. Haltenhof, T. et al. A conserved kinase-based body-temperature sensor globally controls alternative splicing and gene expression. Mol. Cell 78, 57–69.e4 (2020).

    Article  CAS  PubMed  Google Scholar 

  185. Neumann, A. et al. Alternative splicing coupled mRNA decay shapes the temperature-dependent transcriptome. EMBO Rep. 21, e51369 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Preußner, M. et al. Body temperature cycles control rhythmic alternative splicing in mammals. Mol. Cell 67, 433–446.e4 (2017).

    Article  PubMed  Google Scholar 

  187. Meyer, M., Plass, M., Pérez-Valle, J., Eyras, E. & Vilardell, J. Deciphering 3′ss selection in the yeast genome reveals an RNA thermosensor that mediates alternative splicing. Mol. Cell 43, 1033–1039 (2011).

    Article  CAS  PubMed  Google Scholar 

  188. Gahura, O., Hammann, C., Valentová, A., Půta, F. & Folk, P. Secondary structure is required for 3′ splice site recognition in yeast. Nucleic Acids Res. 39, 9759–9767 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Broft, P., Rosenkranz, R. R. E., Schleiff, E., Hengesbach, M. & Schwalbe, H. Structural analysis of temperature-dependent alternative splicing of HsfA2 pre-mRNA from tomato plants. RNA Biol. 19, 266–278 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Lin, J., Shi, J., Zhang, Z., Zhong, B. & Zhu, Z. Plant AFC2 kinase desensitizes thermomorphogenesis through modulation of alternative splicing. iScience 25, 104051 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Rosa-Mercado, N. A. & Steitz, J. A. Who let the DoGs out? — biogenesis of stress-induced readthrough transcripts. Trends Biochem. Sci. 47, 206–217 (2022).

    Article  CAS  PubMed  Google Scholar 

  192. Vilborg, A., Passarelli, M. C., Yario, T. A., Tycowski, K. T. & Steitz, J. A. Widespread inducible transcription downstream of human genes. Mol. Cell 59, 449–461 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Grosso, A. R. et al. Pervasive transcription read-through promotes aberrant expression of oncogenes and RNA chimeras in renal carcinoma. eLife 4, e09214 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  194. Rutkowski, A. J. et al. Widespread disruption of host transcription termination in HSV-1 infection. Nat. Commun. 6, 7126 (2015).

    Article  PubMed  Google Scholar 

  195. Rosa-Mercado, N. A. et al. Hyperosmotic stress alters the RNA polymerase II interactome and induces readthrough transcription despite widespread transcriptional repression. Mol. Cell 81, 502–513.e4 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Hadar, S., Meller, A., Saida, N. & Shalgi, R. Stress-induced transcriptional readthrough into neighboring genes is linked to intron retention. iScience 25, 105543 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Morgan, M., Shiekhattar, R., Shilatifard, A. & Lauberth, S. M. It’s a DoG-eat-DoG world — altered transcriptional mechanisms drive downstream-of-gene (DoG) transcript production. Mol. Cell 82, 1981–1991 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Vilborg, A. et al. Comparative analysis reveals genomic features of stress-induced transcriptional readthrough. Proc. Natl Acad. Sci. USA 114, E8362–E8371 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Urso, S. J., Sathaseevan, A., Brent Derry, W. & Lamitina, T. Regulation of the hypertonic stress response by the 3′ mRNA cleavage and polyadenylation complex. Genetics 224, iyad051 (2023).

    Article  PubMed  Google Scholar 

  200. Nevins, J. R. & Darnell, J. E. Jr. Steps in the processing of Ad2 mRNA: poly(A)+ nuclear sequences are conserved and poly(A) addition precedes splicing. Cell 15, 1477–1493 (1978).

    Article  CAS  PubMed  Google Scholar 

  201. Workman, R. E. et al. Nanopore native RNA sequencing of a human poly(A) transcriptome. Nat. Methods 16, 1297–1305 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Boutz, P. L., Bhutkar, A. & Sharp, P. A. Detained introns are a novel, widespread class of post-transcriptionally spliced introns. Genes Dev. 29, 63–80 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  203. Liu, Z. et al. In vivo nuclear RNA structurome reveals RNA-structure regulation of mRNA processing in plants. Genome Biol. 22, 11 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Kumar, J. et al. Quantitative prediction of variant effects on alternative splicing in MAPT using endogenous pre-messenger RNA structure probing. eLife 11, e73888 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Tomezsko, P. J. et al. Determination of RNA structural diversity and its role in HIV-1 RNA splicing. Nature 582, 438–442 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. McNulty, R. et al. Probe-based bacterial single-cell RNA sequencing predicts toxin regulation. Nat. Microbiol. 8, 934–945 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Homberger, C., Hayward, R. J., Barquist, L. & Vogel, J. Improved bacterial single-cell RNA-Seq through automated MATQ-seq and Cas9-based removal of rRNA reads. mBio 14, e0355722 (2023).

    Article  PubMed  Google Scholar 

  208. Ma, P. et al. Bacterial droplet-based single-cell RNA-seq reveals antibiotic-associated heterogeneous cellular states. Cell 186, 877–891.e14 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Kuchina, A. et al. Microbial single-cell RNA sequencing by split-pool barcoding. Science 371, eaba5257 (2021).

    Article  CAS  PubMed  Google Scholar 

  210. Blattman, S. B., Jiang, W., Oikonomou, P. & Tavazoie, S. Prokaryotic single-cell RNA sequencing by in situ combinatorial indexing. Nat. Microbiol. 5, 1192–1201 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Imdahl, F., Vafadarnejad, E., Homberger, C., Saliba, A.-E. & Vogel, J. Single-cell RNA-sequencing reports growth-condition-specific global transcriptomes of individual bacteria. Nat. Microbiol. 5, 1202–1206 (2020).

    Article  CAS  PubMed  Google Scholar 

  212. Brennan, M. A. & Rosenthal, A. Z. Single-cell RNA sequencing elucidates the structure and organization of microbial communities. Front. Microbiol. 12, 713128 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  213. Herzel, L., Ottoz, D. S. M., Alpert, T. & Neugebauer, K. M. Splicing and transcription touch base: co-transcriptional spliceosome assembly and function. Nat. Rev. Mol. Cell Biol. 18, 637–650 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Guo, Y. E. et al. Pol II phosphorylation regulates a switch between transcriptional and splicing condensates. Nature 572, 543–548 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Carpousis, A. J., Campo, N., Hadjeras, L. & Hamouche, L. Compartmentalization of RNA degradosomes in bacteria controls accessibility to substrates and ensures concerted degradation of mRNA to nucleotides. Annu. Rev. Microbiol. 76, 533–552 (2022).

    Article  CAS  PubMed  Google Scholar 

  216. Montero Llopis, P. et al. Spatial organization of the flow of genetic information in bacteria. Nature 466, 77–81 (2010).

    Article  PubMed  Google Scholar 

  217. Nandana, V. & Schrader, J. M. Roles of liquid-liquid phase separation in bacterial RNA metabolism. Curr. Opin. Microbiol. 61, 91–98 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  218. Bandyra, K. J., Bouvier, M., Carpousis, A. J. & Luisi, B. F. The social fabric of the RNA degradosome. Biochim. Biophys. Acta 1829, 514–522 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Valkenburg, J. A. & Woldringh, C. L. Phase separation between nucleoid and cytoplasm in Escherichia coli as defined by immersive refractometry. J. Bacteriol. 160, 1151–1157 (1984).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. Abbondanzieri, E. A. & Meyer, A. S. More than just a phase: the search for membraneless organelles in the bacterial cytoplasm. Curr. Genet. 65, 691–694 (2019).

    Article  CAS  PubMed  Google Scholar 

  221. Milo, R. & Phillips, R. Cell Biology by the Numbers 1st edn (Garland Science, 2015).

  222. Bakshi, S., Siryaporn, A., Goulian, M. & Weisshaar, J. C. Superresolution imaging of ribosomes and RNA polymerase in live Escherichia coli cells. Mol. Microbiol. 85, 21–38 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. Barrass, J. D. et al. Transcriptome-wide RNA processing kinetics revealed using extremely short 4tU labeling. Genome Biol. 16, 282 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  224. Bedi, K. et al. Co-transcriptional splicing efficiencies differ within genes and between cell types. RNA 27, 829–840 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  225. Coulon, A. et al. Kinetic competition during the transcription cycle results in stochastic RNA processing. eLife 3, e03939 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  226. Eser, P. et al. Determinants of RNA metabolism in the Schizosaccharomyces pombe genome. Mol. Syst. Biol. 12, 857 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  227. Görnemann, J., Kotovic, K. M., Hujer, K. & Neugebauer, K. M. Cotranscriptional spliceosome assembly occurs in a stepwise fashion and requires the cap binding complex. Mol. Cell 19, 53–63 (2005).

    Article  PubMed  Google Scholar 

  228. Huranová, M. et al. The differential interaction of snRNPs with pre-mRNA reveals splicing kinetics in living cells. J. Cell Biol. 191, 75–86 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  229. Lacadie, S. A. & Rosbash, M. Cotranscriptional spliceosome assembly dynamics and the role of U1 snRNA:5′ss base pairing in yeast. Mol. Cell 19, 65–75 (2005).

    Article  CAS  PubMed  Google Scholar 

  230. Lacadie, S. A., Tardiff, D. F., Kadener, S. & Rosbash, M. In vivo commitment to yeast cotranscriptional splicing is sensitive to transcription elongation mutants. Genes Dev. 20, 2055–2066 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  231. Martin, R. M., Rino, J., Carvalho, C., Kirchhausen, T. & Carmo-Fonseca, M. Live-cell visualization of pre-mRNA splicing with single-molecule sensitivity. Cell Rep. 4, 1144–1155 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  232. Rabani, M. et al. Metabolic labeling of RNA uncovers principles of RNA production and degradation dynamics in mammalian cells. Nat. Biotechnol. 29, 436–442 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  233. Rabani, M. et al. High-resolution sequencing and modeling identifies distinct dynamic RNA regulatory strategies. Cell 159, 1698–1710 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  234. Schmidt, U. et al. Real-time imaging of cotranscriptional splicing reveals a kinetic model that reduces noise: implications for alternative splicing regulation. J. Cell Biol. 193, 819–829 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  235. Tardiff, D. F. & Rosbash, M. Arrested yeast splicing complexes indicate stepwise snRNP recruitment during in vivo spliceosome assembly. RNA 12, 968–979 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  236. Windhager, L. et al. Ultrashort and progressive 4sU-tagging reveals key characteristics of RNA processing at nucleotide resolution. Genome Res. 22, 2031–2042 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  237. Zeisel, A. et al. Coupled pre-mRNA and mRNA dynamics unveil operational strategies underlying transcriptional responses to stimuli. Mol. Syst. Biol. 7, 529 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  238. Wilson, K. S. & von Hippel, P. H. Transcription termination at intrinsic terminators: the role of the RNA hairpin. Proc. Natl Acad. Sci. USA 92, 8793–8797 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  239. Watters, K. E., Strobel, E. J., Yu, A. M., Lis, J. T. & Lucks, J. B. Cotranscriptional folding of a riboswitch at nucleotide resolution. Nat. Struct. Mol. Biol. 23, 1124–1131 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  240. Incarnato, D. et al. In vivo probing of nascent RNA structures reveals principles of cotranscriptional folding. Nucleic Acids Res. 45, 9716–9725 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  241. Yu, A. M. et al. Computationally reconstructing cotranscriptional RNA folding from experimental data reveals rearrangement of non-native folding intermediates. Mol. Cell 81, 870–883.e10 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  242. Wang, X. W., Liu, C. X., Chen, L. L. & Zhang, Q. C. RNA structure probing uncovers RNA structure-dependent biological functions. Nat. Chem. Biol. 17, 755–766 (2021).

    Article  CAS  PubMed  Google Scholar 

  243. Zubradt, M. et al. DMS-MaPseq for genome-wide or targeted RNA structure probing in vivo. Nat. Methods 14, 75–82 (2017).

    Article  CAS  PubMed  Google Scholar 

  244. Siegfried, N. A., Busan, S., Rice, G. M., Nelson, J. A. & Weeks, K. M. RNA motif discovery by SHAPE and mutational profiling (SHAPE-MaP). Nat. Methods 11, 959–965 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  245. Carlile, T. M. et al. Pseudouridine profiling reveals regulated mRNA pseudouridylation in yeast and human cells. Nature 515, 143–146 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  246. Dai, Q. et al. Quantitative sequencing using BID-seq uncovers abundant pseudouridines in mammalian mRNA at base resolution. Nat. Biotechnol. 41, 344–354 (2023).

    Article  CAS  PubMed  Google Scholar 

  247. Lewis, C. J. T., Pan, T. & Kalsotra, A. RNA modifications and structures cooperate to guide RNA–protein interactions. Nat. Rev. Mol. Cell Biol. 18, 202–210 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  248. Begik, O., Mattick, J. S. & Novoa, E. M. Exploring the epitranscriptome by native RNA sequencing. RNA 28, 1430–1439 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  249. Stephenson, W. et al. Direct detection of RNA modifications and structure using single-molecule nanopore sequencing. Cell Genom. 2, 100097 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  250. Sun, L. et al. RNA structure maps across mammalian cellular compartments. Nat. Struct. Mol. Biol. 26, 322–330 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  251. Saldi, T., Riemondy, K., Erickson, B. & Bentley, D. L. Alternative RNA structures formed during transcription depend on elongation rate and modify RNA processing. Mol. Cell 81, 1789–1801.e5 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  252. Stark, R., Grzelak, M. & Hadfield, J. RNA sequencing: the teenage years. Nat. Rev. Genet. 20, 631–656 (2019).

    Article  CAS  PubMed  Google Scholar 

  253. Eid, J. et al. Real-time DNA sequencing from single polymerase molecules. Science 323, 133–138 (2009).

    Article  CAS  PubMed  Google Scholar 

  254. Wang, Y., Zhao, Y., Bollas, A., Wang, Y. & Au, K. F. Nanopore sequencing technology, bioinformatics and applications. Nat. Biotechnol. 39, 1348–1365 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  255. Mikheenko, A., Prjibelski, A. D., Joglekar, A. & Tilgner, H. U. Sequencing of individual barcoded cDNAs using Pacific Biosciences and Oxford Nanopore Technologies reveals platform-specific error patterns. Genome Res. 32, 726–737 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  256. Grünberger, F., Ferreira-Cerca, S. & Grohmann, D. Nanopore sequencing of RNA and cDNA molecules in Escherichia coli. RNA 28, 400–417 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  257. Al Kadi, M. et al. Direct RNA sequencing unfolds the complex transcriptome of Vibrio parahaemolyticus. mSystems 6, e0099621 (2021).

    Article  PubMed  Google Scholar 

  258. Ju, X., Li, D. & Liu, S. Full-length RNA profiling reveals pervasive bidirectional transcription terminators in bacteria. Nat. Microbiol. 4, 1907–1918 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  259. Reimer, K. A. & Neugebauer, K. M. Preparation of mammalian nascent RNA for long read sequencing. Curr. Protoc. Mol. Biol. 133, e128 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  260. Nojima, T., Gomes, T., Carmo-Fonseca, M. & Proudfoot, N. J. Mammalian NET-seq analysis defines nascent RNA profiles and associated RNA processing genome-wide. Nat. Protoc. 11, 413–428 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  261. Nojima, T. et al. Mammalian NET-seq reveals genome-wide nascent transcription coupled to RNA processing. Cell 161, 526–540 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  262. Martins, S. B. et al. Spliceosome assembly is coupled to RNA polymerase II dynamics at the 3′ end of human genes. Nat. Struct. Mol. Biol. 18, 1115–1123 (2011).

    Article  CAS  PubMed  Google Scholar 

  263. Janicki, S. M. et al. From silencing to gene expression: real-time analysis in single cells. Cell 116, 683–698 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  264. Shav-Tal, Y. et al. Dynamics of single mRNPs in nuclei of living cells. Science 304, 1797–1800 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  265. Leidescher, S. et al. Spatial organization of transcribed eukaryotic genes. Nat. Cell Biol. 24, 327–339 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  266. Barutcu, A. R. et al. Systematic mapping of nuclear domain-associated transcripts reveals speckles and lamina as hubs of functionally distinct retained introns. Mol. Cell 82, 1035–1052.e9 (2022).

    Article  CAS  PubMed  Google Scholar 

  267. Tammer, L. et al. Gene architecture directs splicing outcome in separate nuclear spatial regions. Mol. Cell 82, 1021–1034.e8 (2022).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank J. Steitz for her many insightful comments on the manuscript and N. Said for the helpful discussions. The authors are grateful for the support from the National Institutes of Health (R01 GM112766 and R01 GM140735 to K.M.N). The contents of this article are solely the responsibility of the authors and do not necessarily represent the official views of the NIH. M.S. is a recipient of a Gruber Science Fellowship, J.G. is a recipient of an NIH F31 predoctoral fellowship (F31NS129248), and L.S. is a recipient of a predoctoral fellowship from the American Heart Association (908949).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to researching data for the article, writing, editing and artwork. M.S., L.H. and K.M.N. contributed to the conceptualization and additional editing of the manuscript.

Corresponding authors

Correspondence to Lydia Herzel or Karla M. Neugebauer.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Molecular Cell Biology thanks Maria Carmo-Fonseca and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

3′ splice sites

The 3′-most sequence of each intron, which, along with the polypyrimidine tract is recognized by U2AF.

5′ splice site

The 5′-most sequence of each intron, harbouring approximately 6 nt complementarity to the 5′ end of U1 snRNA, thereby enabling its binding for intron identification and, later during splicing, interactions with U6 snRNA.

Alternative cleavage and polyadenylation

(APA). Use of alternative polyadenylation sites to generate transcript isoforms from the same gene, which can give rise to protein isoforms with distinct C-termini or contribute to transcript regulation through changes to 3′ untranslated regions.

Alternative splicing

(AS). The process of generating multiple mRNA isoforms from a single gene by using different combinations of splice sites, for example, intron retention, exon skipping, and alternative 5′ splice site or 3′ splice site usage.

Backtracking

Transcription pausing through diffusive movement of RNA polymerase along template DNA, maintained by feeding nascent RNA through a channel at the front of the enzyme.

Branchpoint

Short cis-regulatory element containing an adenine base that is involved in lariat formation during the first step of pre-mRNA splicing; resides within the 3′ portion of the intron, usually near and upstream of another cis-regulatory element, the polypyrimidine tract.

cis-Elements required for translation initiation

For most coding sequences in bacteria, these are the Shine–Dalgarno sequence, an A-rich sequence upstream of the start codon, and the start codon itself.

Cleavage and polyadenylation

(CPA). Endonucleolytic cleavage followed by polyadenylation of the transcript by the CPC while Pol II continues transcription until termination downstream.

Cleavage and polyadenylation complex

(CPC). Macromolecular protein complex that binds to cis-regulatory elements involved in 3′-end formation of eukaryotic mRNAs and facilitates its coupling to Pol II.

Degradosome

Protein complex containing RNA degradation enzymes such as endonucleases and exonucleases, helicases and often also metabolic enzymes.

Exon definition

Definition of the 3′ splice site of the intron upstream of a short exon and of the 5′ splice sites of the intron downstream of the same short exon, usually through the binding of exon sequences by splicing factors.

Exon junction complex

(EJC). Macromolecular protein complex that forms at exon–exon junctions after splicing is completed and regulates post-transcriptional processes.

Intrinsic transcription terminators

RNA stem–loops associated with A-tracts and U-tracts in nascent RNA that cause transcription termination of bacterial RNA polymerase.

Nascent elongating transcript sequencing

(NET-seq). A method that sequences the 3′ end of all RNAs that co-purify with RNA polymerase, thereby indicating the position of all RNA polymerase holoenzymes that have initiated transcription.

Nucleoid

Part of the bacterial cell plasm that contains most of the genomic DNA, nucleoid-associated structural proteins and components of the gene expression and replication machinery.

Polyadenylation site

The signal for polyadenylation (AAUAAA in humans) is read by the cleavage and polyadenylation specificity factor (CPSF), upon which the cleavage and CPC is assembled and which releases the nascent transcript from the polymerase and polyadenylates it.

Polypyrimidine tract

An approximately 15–20-nt-long region of pre-mRNA located near the 3′ end of introns that is rich in pyrimidine bases (that is, cytosine and uracil) and promotes spliceosome assembly by serving as a binding site for the spliceosome component U2AF.

Polypyrimidine tract-binding protein

(PTB). A protein that binds to polypyrimidine tracts within introns and negatively regulates pre-mRNA splicing.

Precision run-on sequencing

(PRO-eq). A method that determines the density of elongating RNA polymerases through the addition of a single biotinylated nucleotide (or BrUTP), which can be used to select the nascent RNA, obtain short reads and map the 3′-end and polymerase position.

Recursive splicing

A process by which a long intron is removed in multiple smaller pieces rather than as a single unit.

Rho

Bacterial homohexameric RNA helicase and chaperone whose binding to nascent RNAs, often between not-closely trailing ribosomes and the RNA polymerase, can lead to transcription termination.

Runaway transcription

Transcript elongation is substantially faster than translation and, thus, the RNA polymerase outpaces ribosomes, generating ‘slack’ of nascent RNA in between the two molecular machines. First experimentally detected in B. subtilis, it also tends to occur in other bacteria.

Serine–arginine-rich proteins

A family of protein splicing regulators that contain one or two RNA-recognition motifs and a serine–arginine-rich domain.

Small RNA

(sRNA). Regulatory short RNAs (<200 nt) in bacteria that can affect all steps of prokaryotic gene expression, including secondary-structure formation.

Spliceosomes

Multi-megadalton molecular machines composed of the small nuclear ribonucleoproteins U1, U2, U4, U5 and U6 and of associated proteins, which catalyse the removal of introns from pre-mRNA.

Tight transcription–translation coupling

The first translating ribosome on nascent RNA is closely trailing the RNA polymerase, possibly even physically interacting with it; tight coupling has been the core model for co-transcriptional translation and is based on work in E. coli.

Transcription polarity

Decline (5′ to 3′) of RNA signal across operons caused by transcription termination within operons at varying sites, for example, through Rho-dependent termination.

Transient transcriptome sequencing

(TT-seq). A method that detects newly synthesized RNA by metabolic incorporation of 4sU in live cells and focusing on the proportion of transcripts that have been synthesized in the labelling period.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shine, M., Gordon, J., Schärfen, L. et al. Co-transcriptional gene regulation in eukaryotes and prokaryotes. Nat Rev Mol Cell Biol (2024). https://doi.org/10.1038/s41580-024-00706-2

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41580-024-00706-2

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing