Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Mechanisms and functions of protein S-acylation

Abstract

Over the past two decades, protein S-acylation (often referred to as S-palmitoylation) has emerged as an important regulator of vital signalling pathways. S-Acylation is a reversible post-translational modification that involves the attachment of a fatty acid to a protein. Maintenance of the equilibrium between protein S-acylation and deacylation has demonstrated profound effects on various cellular processes, including innate immunity, inflammation, glucose metabolism and fat metabolism, as well as on brain and heart function. This Review provides an overview of current understanding of S-acylation and deacylation enzymes, their spatiotemporal regulation by sophisticated multilayered mechanisms, and their influence on protein function, cellular processes and physiological pathways. Furthermore, we examine how disruptions in protein S-acylation are associated with a broad spectrum of diseases from cancer to autoinflammatory disorders and neurological conditions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: S-Acylation enzymes and cycles.
Fig. 2: Consequences of protein S-acylation.
Fig. 3: S-Acylation and innate immunity.
Fig. 4: Effect of S-acylation on physiological pathways.

Similar content being viewed by others

References

  1. Deribe, Y. L., Pawson, T. & Dikic, I. Post-translational modifications in signal integration. Nat. Struct. Mol. Biol. 17, 666–672 (2010).

    Article  CAS  PubMed  Google Scholar 

  2. Beltrao, P., Bork, P., Krogan, N. J. & van Noort, V. Evolution and functional cross-talk of protein post-translational modifications. Mol. Syst. Biol. 9, 714 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Keenan, E. K., Zachman, D. K. & Hirschey, M. D. Discovering the landscape of protein modifications. Mol. Cell 81, 1868–1878 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Anwar, M. U. & van der Goot, F. G. Refining S-acylation: structure, regulation, dynamics, and therapeutic implications. J. Cell Biol. 222, e202307103 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Jiang, H. et al. Protein lipidation: occurrence, mechanisms, biological functions, and enabling technologies. Chem. Rev. 118, 919–988 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Chen, B., Sun, Y., Niu, J., Jarugumilli, G. K. & Wu, X. Protein lipidation in cell signaling and diseases: function, regulation, and therapeutic opportunities. Cell Chem. Biol. 25, 817–831 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Leonard, T. A., Loose, M. & Martens, S. The membrane surface as a platform that organizes cellular and biochemical processes. Dev. Cell 58, 1315–1332 (2023).

    Article  CAS  PubMed  Google Scholar 

  8. Wenzel, E. M., Elfmark, L. A., Stenmark, H. & Raiborg, C. ER as master regulator of membrane trafficking and organelle function. J. Cell Biol. 221, e202205135 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Muszbek, L., Haramura, G., Cluette-Brown, J. E., Van Cott, E. M. & Laposata, M. The pool of fatty acids covalently bound to platelet proteins by thioester linkages can be altered by exogenously supplied fatty acids. Lipids 34, S331–S337 (1999).

    Article  CAS  PubMed  Google Scholar 

  10. Lin, H. Protein cysteine palmitoylation in immunity and inflammation. FEBS J. 288, 7043–7059 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Main, A. & Fuller, W. Protein S-palmitoylation: advances and challenges in studying a therapeutically important lipid modification. FEBS J. 289, 861–882 (2022).

    Article  CAS  PubMed  Google Scholar 

  12. Puthenveetil, R., Gómez-Navarro, N. & Banerjee, A. Access and utilization of long chain fatty acyl-CoA by zDHHC protein acyltransferases. Curr. Opin. Struct. Biol. 77, 102463 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Shang, S., Liu, J. & Hua, F. Protein acylation: mechanisms, biological functions and therapeutic targets. Signal. Transduct. Target. Ther. 7, 396 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Blanc, M., David, F. P. A. & van der Goot, F. G. in Protein Lipidation: Methods and Protocols (ed. Linder, M. E.) 203–214 (Springer, 2019).

  15. Mesquita, F. S., Abrami, L., Samurkas, A. & van der Goot, F. G. S-Acylation: an orchestrator of the life cycle and function of membrane proteins. FEBS J. 291, 45–56 (2024).

    Article  CAS  PubMed  Google Scholar 

  16. Ladygina, N., Martin, B. R. & Altman, A. Dynamic palmitoylation and the role of DHHC proteins in T cell activation and anergy. Adv. Immunol. 109, 1–44 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ko, P.-J. & Dixon, S. J. Protein palmitoylation and cancer. EMBO Rep. 19, e46666 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Zhou, B., Hao, Q., Liang, Y. & Kong, E. Protein palmitoylation in cancer: molecular functions and therapeutic potential. Mol. Oncol. 17, 3–26 (2023).

    Article  CAS  PubMed  Google Scholar 

  19. Feng, C., Zhang, L., Chang, X., Qin, D. & Zhang, T. Regulation of post-translational modification of PD-L1 and advances in tumor immunotherapy. Front. Immunol. 14, 1230135 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Sanders, S. S. et al. Curation of the mammalian palmitoylome indicates a pivotal role for palmitoylation in diseases and disorders of the nervous system and cancers. PLOS Comput. Biol. 11, e1004405 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Fraser, N. J., Howie, J., Wypijewski, K. J. & Fuller, W. Therapeutic targeting of protein S-acylation for the treatment of disease. Biochem. Soc. Trans. 48, 281–290 (2019).

    Article  Google Scholar 

  22. Ramzan, F., Abrar, F., Mishra, G. G., Liao, L. M. Q. & Martin, D. D. O. Lost in traffic: consequences of altered palmitoylation in neurodegeneration. Front. Physiol. 14, 1166125 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Greaves, J. et al. Molecular basis of fatty acid selectivity in the zDHHC family of S-acyltransferases revealed by click chemistry. Proc. Natl Acad. Sci. USA 114, E1365–E1374 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Bartels, D. J., Mitchell, D. A., Dong, X. & Deschenes, R. J. Erf2, a novel gene product that affects the localization and palmitoylation of Ras2 in Saccharomyces cerevisiae. Mol. Cell Biol. 19, 6775–6787 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Lobo, S., Greentree, W. K., Linder, M. E. & Deschenes, R. J. Identification of a Ras palmitoyltransferase in Saccharomyces cerevisiae. J. Biol. Chem. 277, 41268–41273 (2002).

    Article  CAS  PubMed  Google Scholar 

  26. Roth, A. F., Feng, Y., Chen, L. & Davis, N. G. The yeast DHHC cysteine-rich domain protein Akr1p is a palmitoyl transferase. J. Cell Biol. 159, 23–28 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Smotrys, J. E., Schoenfish, M. J., Stutz, M. A. & Linder, M. E. The vacuolar DHHC-CRD protein Pfa3p is a protein acyltransferase for Vac8p. J. Cell Biol. 170, 1091–1099 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Martin, B. R., Wang, C., Adibekian, A., Tully, S. E. & Cravatt, B. F. Global profiling of dynamic protein palmitoylation. Nat. Methods 9, 84–89 (2012).

    Article  CAS  Google Scholar 

  29. Fukata, M., Fukata, Y., Adesnik, H., Nicoll, R. A. & Bredt, D. S. Identification of PSD-95 palmitoylating enzymes. Neuron 44, 987–996 (2004).

    Article  CAS  PubMed  Google Scholar 

  30. Politis, E. G., Roth, A. F. & Davis, N. G. Transmembrane topology of the protein palmitoyl transferase Akr1. J. Biol. Chem. 280, 10156–10163 (2005).

    Article  CAS  PubMed  Google Scholar 

  31. Rana, M. S. et al. Fatty acyl recognition and transfer by an integral membrane S-acyltransferase. Science 359, eaao6326 (2018). This work presents the first structure of a ZDHHC enzyme, which reveals that the acyl chain length is defined by a long hydrophobic pocket and suggests that specific drugs could target different ZDHHCs.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Stix, R., Lee, C.-J., Faraldo-Gómez, J. D. & Banerjee, A. Structure and mechanism of DHHC protein acyltransferases. J. Mol. Biol. 432, 4983–4998 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Gottlieb, C. D. & Linder, M. E. Structure and function of DHHC protein S-acyltransferases. Biochem. Soc. Trans. 45, 923–928 (2017).

    Article  CAS  PubMed  Google Scholar 

  34. Gottlieb, C. D., Zhang, S. & Linder, M. E. The cysteine-rich domain of the DHHC3 palmitoyltransferase is palmitoylated and contains tightly bound zinc. J. Biol. Chem. 290, 29259–29269 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. González Montoro, A., Quiroga, R., Maccioni, H. J. F. & Valdez Taubas, J. A novel motif at the C-terminus of palmitoyltransferases is essential for Swf1 and Pfa3 function in vivo. Biochem. J. 419, 301–308 (2009).

    Article  PubMed  Google Scholar 

  36. Lemonidis, K., Sanchez-Perez, M. C. & Chamberlain, L. H. Identification of a novel sequence motif recognized by the ankyrin repeat domain of zDHHC17/13 S-acyltransferases. J. Biol. Chem. 290, 21939–21950 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Abrami, L. et al. Identification and dynamics of the human ZDHHC16–ZDHHC6 palmitoylation cascade. eLife 6, e27826 (2017). This work presents evidence for coordination between ZDHHCs in S-acylation cascades, such that one acyltransferase controls the function of the next in the pathway.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Howie, J. et al. Substrate recognition by the cell surface palmitoyl transferase DHHC5. Proc. Natl Acad. Sci. USA 111, 17534–17539 (2014).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  39. Malgapo, M. I. P. & Linder, M. E. Substrate recruitment by zDHHC protein acyltransferases. Open. Biol. 11, 210026 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Lee, C.-J. et al. Bivalent recognition of fatty acyl-CoA by a human integral membrane palmitoyltransferase. Proc. Natl Acad. Sci. USA 119, e2022050119 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Jennings, B. C. & Linder, M. E. DHHC protein S-acyltransferases use similar ping-pong kinetic mechanisms but display different acyl-CoA specificities. J. Biol. Chem. 287, 7236–7245 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Lakkaraju, A. K. et al. Palmitoylated calnexin is a key component of the ribosome–translocon complex. EMBO J. 31, 1823–1835 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Tian, L., McClafferty, H., Knaus, H.-G., Ruth, P. & Shipston, M. J. Distinct acyl protein transferases and thioesterases control surface expression of calcium-activated potassium channels. J. Biol. Chem. 287, 14718–14725 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Wild, A. R. et al. Exploring the expression patterns of palmitoylating and de-palmitoylating enzymes in the mouse brain using the curated RNA-seq database BrainPalmSeq. eLife 11, e75804 (2022). This compendium paper describes BrainPalmSeq, an interactive online tool that enables visualization of the expression patterns for S-acylating proteins in the central nervous system.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Hein, M. Y. et al. A human interactome in three quantitative dimensions organized by stoichiometries and abundances. Cell 163, 712–723 (2015).

    Article  CAS  PubMed  Google Scholar 

  46. Bekker-Jensen, D. B. et al. An optimized shotgun strategy for the rapid generation of comprehensive human proteomes. Cell Syst. 4, 587–599.e4 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Gorleku, O. A., Barns, A.-M., Prescott, G. R., Greaves, J. & Chamberlain, L. H. Endoplasmic reticulum localization of DHHC palmitoyltransferases mediated by lysine-based sorting signals. J. Biol. Chem. 286, 39573–39584 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Abrami, L. et al. Palmitoylated acyl protein thioesterase APT2 deforms membranes to extract substrate acyl chains. Nat. Chem. Biol. 17, 438–447 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Zhou, Q. et al. The ER-associated protein ZDHHC1 is a positive regulator of DNA virus-triggered, MITA/STING-dependent innate immune signaling. Cell Host Microbe 16, 450–461 (2014).

    Article  CAS  PubMed  Google Scholar 

  50. Sandoz, P. A. et al. Dynamics of CLIMP-63 S-acylation control ER morphology. Nat. Commun. 14, 264 (2023).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  51. Cheng, L.-C. et al. Comparative membrane proteomics reveals diverse cell regulators concentrated at the nuclear envelope. Life Sci. Alliance https://doi.org/10.26508/lsa.202301998 (2023).

  52. Mesquita, F. S. et al. S-Acylation controls SARS-CoV-2 membrane lipid organization and enhances infectivity. Dev. Cell 56, 2790–2807.e8 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Ohno, Y., Kihara, A., Sano, T. & Igarashi, Y. Intracellular localization and tissue-specific distribution of human and yeast DHHC cysteine-rich domain-containing proteins. Biochim. Biophys. Acta 1761, 474–483 (2006).

    Article  CAS  PubMed  Google Scholar 

  54. Korycka, J. et al. Human DHHC proteins: a spotlight on the hidden player of palmitoylation. Eur. J. Cell Biol. 91, 107–117 (2012).

    Article  CAS  PubMed  Google Scholar 

  55. Solis, G. P. et al. Local and substrate-specific S-palmitoylation determines subcellular localization of Gαo. Nat. Commun. 13, 2072 (2022).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  56. Noritake, J. et al. Mobile DHHC palmitoylating enzyme mediates activity-sensitive synaptic targeting of PSD-95. J. Cell Biol. 186, 147–160 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Brigidi, G. S., Santyr, B., Shimell, J., Jovellar, B. & Bamji, S. X. Activity-regulated trafficking of the palmitoyl-acyl transferase DHHC5. Nat. Commun. 6, 8200 (2015).

    Article  PubMed  ADS  Google Scholar 

  58. Puthenveetil, R. et al. Orthogonal enzyme–substrate design strategy for discovery of human protein palmitoyltransferase substrates. J. Am. Chem. Soc. 145, 22287–22292 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Ocasio, C. A. et al. A palmitoyl transferase chemical–genetic system to map ZDHHC-specific S-acylation. Nat. Biotechnol. https://doi.org/10.1038/s41587-023-02030-0 (2024).

  60. Kordyukova, L. V., Serebryakova, M. V., Baratova, L. A. & Veit, M. S-Acylation of the hemagglutinin of influenza viruses: mass spectrometry reveals site-specific attachment of stearic acid to a transmembrane cysteine. J. Virol. 82, 9288–9292 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Nůsková, H. et al. Competition for cysteine acylation by C16:0 and C18:0 derived lipids is a global phenomenon in the proteome. J. Biol. Chem. 299, 105088 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Lemonidis, K., Gorleku, O. A., Sanchez-Perez, M. C., Grefen, C. & Chamberlain, L. H. The Golgi S-acylation machinery comprises zDHHC enzymes with major differences in substrate affinity and S-acylation activity. Mol. Biol. Cell 25, 3870–3883 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Ernst, A. M. et al. S-Palmitoylation sorts membrane cargo for anterograde transport in the Golgi. Dev. Cell 47, 479–493.e7 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Zhang, M. et al. A STAT3 palmitoylation cycle promotes TH17 differentiation and colitis. Nature 586, 434–439 (2020).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  65. Verardi, R., Kim, J.-S., Ghirlando, R. & Banerjee, A. Structural basis for substrate recognition by the ankyrin repeat domain of human DHHC17 palmitoyltransferase. Structure 25, 1337–1347.e6 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Lemonidis, K., MacLeod, R., Baillie, G. S. & Chamberlain, L. H. Peptide array-based screening reveals a large number of proteins interacting with the ankyrin-repeat domain of the zDHHC17 S-acyltransferase. J. Biol. Chem. 292, 17190–17202 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Li, Y. et al. DHHC5 interacts with PDZ domain 3 of post-synaptic density-95 (PSD-95) protein and plays a role in learning and memory. J. Biol. Chem. 285, 13022–13031 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Salaun, C., Tomkinson, N. C. O. & Chamberlain, L. H. The endoplasmic reticulum-localized enzyme zDHHC6 mediates S-acylation of short transmembrane constructs from multiple type I and II membrane proteins. J. Biol. Chem. 299, 105201 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Komaniecki, G. et al. Astrocyte elevated gene-1 Cys75 S-palmitoylation by ZDHHC6 regulates its biological activity. Biochemistry 62, 543–553 (2023).

    Article  CAS  PubMed  Google Scholar 

  70. Salaun, C., Locatelli, C., Zmuda, F., Cabrera González, J. & Chamberlain, L. H. Accessory proteins of the zDHHC family of S-acylation enzymes. J. Cell Sci. 133, jcs251819 (2020).

    Article  CAS  PubMed  Google Scholar 

  71. Nguyen, P. L., Greentree, W. K., Kawate, T. & Linder, M. E. GCP16 stabilizes the DHHC9 subfamily of protein acyltransferases through a conserved C-terminal cysteine motif. Front. Physiol. 14, 1167094 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Swarthout, J. T. et al. DHHC9 and GCP16 constitute a human protein fatty acyltransferase with specificity for H- and N-Ras. J. Biol. Chem. 280, 31141–31148 (2005).

    Article  CAS  PubMed  Google Scholar 

  73. Yang, A. et al. Regulation of RAS palmitoyltransferases by accessory proteins and palmitoylation. Nat. Struct. Biol. https://doi.org/10.1038/s41594-023-01183-5 (2024).

    Article  Google Scholar 

  74. Ko, P.-J. et al. A ZDHHC5–GOLGA7 protein acyltransferase complex promotes nonapoptotic cell death. Cell Chem. Biol. 26, 1716–1724.e9 (2019).

    Article  CAS  PubMed  Google Scholar 

  75. Woodley, K. T. & Collins, M. O. S-Acylated Golga7b stabilises DHHC5 at the plasma membrane to regulate cell adhesion. EMBO Rep. 20, e47472 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Plain, F. et al. Control of protein palmitoylation by regulating substrate recruitment to a zDHHC-protein acyltransferase. Commun. Biol. 3, 411 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Zmuda, F. & Chamberlain, L. H. Regulatory effects of post-translational modifications on zDHHC S-acyltransferases. J. Biol. Chem. 295, 14640–14652 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Woodley, K. T. & Collins, M. O. Regulation and function of the palmitoyl-acyltransferase ZDHHC5. FEBS J. 288, 6623–6634 (2021).

    Article  CAS  PubMed  Google Scholar 

  79. Chen, S. et al. Palmitoylation-dependent activation of MC1R prevents melanomagenesis. Nature 549, 399–403 (2017). This work presents initial evidence for therapeutic applications of targeting protein S-acylation (and deacylation).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  80. Abazari, D., Wild, A. R., Qiu, T., Dickinson, B. C. & Bamji, S. X. Activity-dependent post-translational regulation of palmitoylating and depalmitoylating enzymes in the hippocampus. J. Cell Sci. 136, jcs260629 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Chen, S. et al. Targeting MC1R depalmitoylation to prevent melanomagenesis in redheads. Nat. Commun. 10, 877 (2019).

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  82. Yang, W., Di Vizio, D., Kirchner, M., Steen, H. & Freeman, M. R. Proteome scale characterization of human S-acylated proteins in lipid raft-enriched and non-raft membranes. Mol. Cell Proteom. 9, 54–70 (2010).

    Article  CAS  Google Scholar 

  83. Collins, M. O., Woodley, K. T. & Choudhary, J. S. Global, site-specific analysis of neuronal protein S-acylation. Sci. Rep. 7, 4683 (2017).

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  84. Puthenveetil, R. et al. S-Acylation of SARS-CoV-2 spike protein: mechanistic dissection, in vitro reconstitution and role in viral infectivity. J. Biol. Chem. 297, 101112 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. S. Mesquita, F. et al. SARS-CoV-2 hijacks a cell damage response, which induces transcription of a more efficient spike S-acyltransferase. Nat. Commun. 14, 7302 (2023). This work presents first evidence for transcriptional regulation of different ZDHHC enzyme isoforms.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  86. Lan, T., Delalande, C. & Dickinson, B. C. Inhibitors of DHHC family proteins. Curr. Opin. Chem. Biol. 65, 118–125 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Webb, Y., Hermida-Matsumoto, L. & Resh, M. D. Inhibition of protein palmitoylation, raft localization, and T cell signaling by 2-bromopalmitate and polyunsaturated fatty acids. J. Biol. Chem. 275, 261–270 (2000).

    Article  CAS  PubMed  Google Scholar 

  88. Davda, D. et al. Profiling targets of the irreversible palmitoylation inhibitor 2-bromopalmitate. ACS Chem. Biol. 8, 1912–1917 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Pedro, M. P. et al. 2-Bromopalmitate reduces protein deacylation by inhibition of acyl-protein thioesterase enzymatic activities. PLoS ONE 8, e75232 (2013).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  90. Azizi, S.-A., Delalande, C., Lan, T., Qiu, T. & Dickinson, B. C. Charting the chemical space of acrylamide-based inhibitors of zDHHC20. ACS Med. Chem. Lett. 13, 1648–1654 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Azizi, S.-A. et al. Development of an acrylamide-based inhibitor of protein S-acylation. ACS Chem. Biol. 16, 1546–1556 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Azizi, S.-A., Qiu, T., Brookes, N. E. & Dickinson, B. C. Regulation of ERK2 activity by dynamic S-acylation. Cell Rep. 42, 113135 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Qiu, T., Azizi, S.-A., Brookes, N., Lan, T. & Dickinson, B. C. A high-throughput fluorescent turn-on assay for inhibitors of DHHC family proteins. ACS Chem. Biol. 17, 2018–2023 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Salaun, C. et al. Development of a novel high-throughput screen for the identification of new inhibitors of protein S-acylation. J. Biol. Chem. 298, 102469 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Won, S. J., Kit, M. C. S. & Martin, B. R. Protein depalmitoylases. Crit. Rev. Biochem. Mol. Biol. 53, 83–98 (2018).

    Article  CAS  PubMed  Google Scholar 

  96. Lin, D. T. S., Davis, N. G. & Conibear, E. Targeting the Ras palmitoylation/depalmitoylation cycle in cancer. Biochem. Soc. Trans. 45, 913–921 (2017).

    Article  CAS  PubMed  Google Scholar 

  97. Bellizzi, J. J. et al. The crystal structure of palmitoyl protein thioesterase 1 and the molecular basis of infantile neuronal ceroid lipofuscinosis. Proc. Natl Acad. Sci. USA 97, 4573–4578 (2000).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  98. Won, S. J. et al. Molecular mechanism for isoform-selective inhibition of acyl protein thioesterases 1 and 2 (APT1 and APT2). ACS Chem. Biol. 11, 3374–3382 (2016). This work presents the molecular understanding of the selectivity of two specific inhibitors of deacylation: ML348 and ML349.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Devedjiev, Y., Dauter, Z., Kuznetsov, S. R., Jones, T. L. Z. & Derewenda, Z. S. Crystal structure of the human acyl protein thioesterase I from a single X-ray data set to 1.5 Å. Structure 8, 1137–1146 (2000).

    Article  CAS  PubMed  Google Scholar 

  100. Cao, Y. et al. ABHD10 is an S-depalmitoylase affecting redox homeostasis through peroxiredoxin-5. Nat. Chem. Biol. 15, 1232–1240 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Lin, D. T. S. & Conibear, E. ABHD17 proteins are novel protein depalmitoylases that regulate N-Ras palmitate turnover and subcellular localization. eLife 4, e11306 (2015). This work identifies ABHD17 proteins as deacylation enzymes.

    Article  PubMed  PubMed Central  Google Scholar 

  102. Yokoi, N. et al. Identification of PSD-95 depalmitoylating enzymes. J. Neurosci. 36, 6431–6444 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Remsberg, J. R. et al. ABHD17 regulation of plasma membrane palmitoylation and N-Ras-dependent cancer growth. Nat. Chem. Biol. 17, 856–864 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Wepy, J. A. et al. Lysophospholipases cooperate to mediate lipid homeostasis and lysophospholipid signaling. J. Lipid Res. 60, 360–374 (2019).

    Article  CAS  PubMed  Google Scholar 

  105. Thomas, G., Brown, A. L. & Brown, J. M. In vivo metabolite profiling as a means to identify uncharacterized lipase function: recent success stories within the α/β hydrolase domain (ABHD) enzyme family. Biochim. Biophys. Acta 1841, 1097–1101 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Parkkari, T. et al. Discovery of triterpenoids as reversible inhibitors of α/β-hydrolase domain containing 12 (ABHD12). PLoS ONE 9, e98286 (2014).

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  107. Martin, B. R. & Cravatt, B. F. Large-scale profiling of protein palmitoylation in mammalian cells. Nat. Methods 6, 135–138 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Xu, J. et al. Sequence analysis and structure prediction of ABHD16A and the roles of the ABHD family members in human disease. Open. Biol. 8, 180017 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  109. Kathayat, R. S. et al. Active and dynamic mitochondrial S-depalmitoylation revealed by targeted fluorescent probes. Nat. Commun. 9, 334 (2018). This work presents evidence for the mitochondrial localization and activity of APT1.

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  110. Koster, K. P. & Yoshii, A. Depalmitoylation by palmitoyl-protein thioesterase 1 in neuronal health and degeneration. Front. Synaptic Neurosci. 11, 25 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Speck, S. L. et al. Hepatic palmitoyl-proteomes and acyl-protein thioesterase protein proximity networks link lipid modification and mitochondria. Cell Rep. 42, 113389 (2023).

    Article  CAS  PubMed  Google Scholar 

  112. Vartak, N. et al. The autodepalmitoylating activity of APT maintains the spatial organization of palmitoylated membrane proteins. Biophys. J. 106, 93–105 (2014).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  113. Kong, E. et al. Dynamic palmitoylation links cytosol-membrane shuttling of acyl-protein thioesterase-1 and acyl-protein thioesterase-2 with that of proto-oncogene H-Ras product and growth-associated protein-43. J. Biol. Chem. 288, 9112–9125 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Sadeghi, R. S. et al. Wnt5a signaling induced phosphorylation increases APT1 activity and promotes melanoma metastatic behavior. eLife 7, e34362 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  115. Amara, N., Foe, I. T., Onguka, O., Garland, M. & Bogyo, M. Synthetic fluorogenic peptides reveal dynamic substrate specificity of depalmitoylases. Cell Chem. Biol. 26, 35–47.e7 (2019).

    Article  CAS  PubMed  Google Scholar 

  116. Wild, A. R. et al. CellPalmSeq: a curated RNAseq database of palmitoylating and de-palmitoylating enzyme expression in human cell types and laboratory cell lines. Front. Physiol. 14, 1110550 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  117. Sada, R. et al. Dynamic palmitoylation controls the microdomain localization of the DKK1 receptors CKAP4 and LRP6. Sci. Signal. 12, eaat9519 (2019).

    Article  CAS  PubMed  Google Scholar 

  118. Dekker, F. J. et al. Small-molecule inhibition of APT1 affects Ras localization and signaling. Nat. Chem. Biol. 6, 449–456 (2010).

    Article  CAS  PubMed  Google Scholar 

  119. Adibekian, A. et al. Characterization of a selective, reversible inhibitor of lysophospholipase 1 (LYPLA1). in Probe Reports from the NIH Molecular Libraries Program (NCBI, 2010).

  120. Adibekian, A. et al. Characterization of a selective, reversible inhibitor of lysophospholipase 2 (LYPLA2). in Probe Reports from the NIH Molecular Libraries Program (NCBI, 2010).

  121. Kathayat, R. S., Elvira, P. D. & Dickinson, B. C. A fluorescent probe for cysteine depalmitoylation reveals dynamic APT signaling. Nat. Chem. Biol. 13, 150–152 (2017).

    Article  CAS  PubMed  Google Scholar 

  122. Dong, G. et al. Palmitoylation couples insulin hypersecretion with β cell failure in diabetes. Cell Metab. 35, 332–344.e7 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Wei, X. et al. Endothelial palmitoylation cycling coordinates vessel remodeling in peripheral artery disease. Circ. Res. 127, 249–265 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Zingler, P. et al. Palmitoylation is required for TNF-R1 signaling. Cell Commun. Signal. 17, 90 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  125. Beck, M. W., Kathayat, R. S., Cham, C. M., Chang, E. B. & Dickinson, B. C. Michael addition-based probes for ratiometric fluorescence imaging of protein S-depalmitoylases in live cells and tissues. Chem. Sci. 8, 7588–7592 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Azizi, S.-A., Kathayat, R. S. & Dickinson, B. C. Activity-based sensing of S-depalmitoylases: chemical technologies and biological discovery. Acc. Chem. Res. 52, 3029–3038 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Linder, M. E. & Deschenes, R. J. Palmitoylation: policing protein stability and traffic. Nat. Rev. Mol. Cell Biol. 8, 74–84 (2007).

    Article  CAS  PubMed  Google Scholar 

  128. Cadwallader, K. A., Paterson, H., Macdonald, S. G. & Hancock, J. F. N-Terminally myristoylated Ras proteins require palmitoylation or a polybasic domain for plasma membrane localization. Mol. Cell Biol. 14, 4722–4730 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Levental, I., Lingwood, D., Grzybek, M., Coskun, Ü. & Simons, K. Palmitoylation regulates raft affinity for the majority of integral raft proteins. Proc. Natl Acad. Sci. USA 107, 22050–22054 (2010).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  130. Levental, I. & Lyman, E. Regulation of membrane protein structure and function by their lipid nano-environment. Nat. Rev. Mol. Cell Biol. 24, 107–122 (2023).

    Article  CAS  PubMed  Google Scholar 

  131. Lorent, J. H. et al. Structural determinants and functional consequences of protein affinity for membrane rafts. Nat. Commun. 8, 1219 (2017).

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  132. Cassinelli, S. et al. Palmitoylation of voltage-gated ion channels. Int. J. Mol. Sci. 23, 9357 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Pei, Z., Xiao, Y., Meng, J., Hudmon, A. & Cummins, T. R. Cardiac sodium channel palmitoylation regulates channel availability and myocyte excitability with implications for arrhythmia generation. Nat. Commun. 7, 12035 (2016).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  134. Bosmans, F., Milescu, M. & Swartz, K. J. Palmitoylation influences the function and pharmacology of sodium channels. Proc. Natl Acad. Sci. USA 108, 20213–20218 (2011).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  135. Kuo, C.-W. S. et al. Palmitoylation of the pore-forming subunit of CaV1.2 controls channel voltage sensitivity and calcium transients in cardiac myocytes. Proc. Natl Acad. Sci. USA 120, e2207887120 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Greaves, J. & Chamberlain, L. H. Palmitoylation-dependent protein sorting. J. Cell Biol. 176, 249–254 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Abrami, L., Kunz, B., Iacovache, I. & van der Goot, F. G. Palmitoylation and ubiquitination regulate exit of the Wnt signaling protein LRP6 from the endoplasmic reticulum. Proc. Natl Acad. Sci. USA 105, 5384–5389 (2008).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  138. Perrody, E. et al. Ubiquitin-dependent folding of the Wnt signaling coreceptor LRP6. eLife 5, e19083 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  139. Wang, J. et al. ARF6 plays a general role in targeting palmitoylated proteins from the Golgi to the plasma membrane. J. Cell Sci. 136, jcs261319 (2023).

    Article  CAS  PubMed  Google Scholar 

  140. Thorne, R. F. et al. Palmitoylation of CD36/FAT regulates the rate of its post-transcriptional processing in the endoplasmic reticulum. Biochim. Biophys. Acta 1803, 1298–1307 (2010).

    Article  CAS  PubMed  Google Scholar 

  141. Jansen, M. & Beaumelle, B. How palmitoylation affects trafficking and signaling of membrane receptors. Biol. Cell 114, 61–72 (2022).

    Article  CAS  PubMed  Google Scholar 

  142. Percherancier, Y. et al. Palmitoylation-dependent control of degradation, life span, and membrane expression of the CCR5 receptor. J. Biol. Chem. 276, 31936–31944 (2001).

    Article  CAS  PubMed  Google Scholar 

  143. Abrami, L., Leppla, S. H. & van der Goot, F. G. Receptor palmitoylation and ubiquitination regulate anthrax toxin endocytosis. J. Cell Biol. 172, 309–320 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Jeyifous, O. et al. Palmitoylation regulates glutamate receptor distributions in postsynaptic densities through control of PSD95 conformation and orientation. Proc. Natl Acad. Sci. USA 113, E8482–E8491 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Acconcia, F. et al. Palmitoylation-dependent estrogen receptor α membrane localization: regulation by 17β-estradiol. Mol. Biol. Cell 16, 231–237 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Greaves, J., Prescott, G. R., Gorleku, O. A. & Chamberlain, L. H. The fat controller: roles of palmitoylation in intracellular protein trafficking and targeting to membrane microdomains [Review]. Mol. Membr. Biol. 26, 67–79 (2009).

    Article  CAS  PubMed  Google Scholar 

  147. Sardar, A., Dewangan, N., Panda, B., Bhowmick, D. & Tarafdar, P. K. Lipid and lipidation in membrane fusion. J. Membr. Biol. 255, 691–703 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Daniotti, J. L., Pedro, M. P. & Valdez Taubas, J. The role of S-acylation in protein trafficking. Traffic 18, 699–710 (2017).

    Article  CAS  PubMed  Google Scholar 

  149. Gök, C., Robertson, A. D. & Fuller, W. Insulin-induced palmitoylation regulates the Cardiac Na+/Ca2+ exchanger NCX1. Cell Calcium 104, 102567 (2022).

    Article  PubMed  Google Scholar 

  150. Kadry, Y. A., Lee, J.-Y. & Witze, E. S. Regulation of EGFR signalling by palmitoylation and its role in tumorigenesis. Open. Biol. 11, 210033 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Ross, E. M. Protein modification: palmitoylation in G-protein signaling pathways. Curr. Biol. 5, 107–109 (1995).

    Article  CAS  PubMed  Google Scholar 

  152. Chen, J. J., Marsden, A. N., Scott, C. A., Akimzhanov, A. M. & Boehning, D. DHHC5 mediates β-adrenergic signaling in cardiomyocytes by targeting Gα proteins. Biophys. J. 118, 826–835 (2020).

    Article  CAS  PubMed  ADS  Google Scholar 

  153. Tewari, R., Shayahati, B., Fan, Y. & Akimzhanov, A. M. T cell receptor-dependent S-acylation of ZAP-70 controls activation of T cells. J. Biol. Chem. 296, 100311 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Kodakandla, G. et al. Dynamic S-acylation of the ER-resident protein stromal interaction molecule 1 (STIM1) is required for store-operated Ca2+ entry. J. Biol. Chem. 298, 102303 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Carreras-Sureda, A. et al. S-Acylation by ZDHHC20 targets ORAI1 channels to lipid rafts for efficient Ca2+ signaling by Jurkat T cell receptors at the immune synapse. eLife 10, e72051 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. West, S. J. et al. S-Acylation of Orai1 regulates store-operated Ca2+ entry. J. Cell Sci. 135, jcs258579 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  157. Zareba-Koziol, M. et al. Stress-induced changes in the S-palmitoylation and S-nitrosylation of synaptic proteins. Mol. Cell Proteom. 18, 1916–1938 (2019).

    Article  Google Scholar 

  158. Lennicke, C. & Cochemé, H. M. Redox metabolism: ROS as specific molecular regulators of cell signaling and function. Mol. Cell 81, 3691–3707 (2021).

    Article  CAS  PubMed  Google Scholar 

  159. Humphries, F. et al. Succination inactivates gasdermin D and blocks pyroptosis. Science 369, 1633–1637 (2020).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  160. Hu, X., Lin, Z., Wang, Z. & Zhou, Q. Emerging role of PD-L1 modification in cancer immunotherapy. Am. J. Cancer Res. 11, 3832–3840 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  161. Wu, X. et al. Targeting protein modifications in metabolic diseases: molecular mechanisms and targeted therapies. Sig Transduct. Target. Ther. 8, 220 (2023).

    Article  CAS  Google Scholar 

  162. Sardjono, C. T. et al. Palmitoylation at Cys595 is essential for PECAM-1 localisation into membrane microdomains and for efficient PECAM-1-mediated cytoprotection. Thromb. Haemost. 96, 756–766 (2006).

    Article  CAS  PubMed  Google Scholar 

  163. Aramsangtienchai, P., Spiegelman, N. A., Cao, J. & Lin, H. S-Palmitoylation of junctional adhesion molecule C regulates its tight junction localization and cell migration. J. Biol. Chem. 292, 5325–5334 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Sharma, C., Rabinovitz, I. & Hemler, M. E. Palmitoylation by DHHC3 is critical for the function, expression, and stability of integrin α6β4. Cell. Mol. Life Sci. 69, 2233–2244 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Oda, Y. et al. The extracellular domain of angulin-1 and palmitoylation of its cytoplasmic region are required for angulin-1 assembly at tricellular contacts. J. Biol. Chem. 295, 4289–4302 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Van Itallie, C. M., Gambling, T. M., Carson, J. L. & Anderson, J. M. Palmitoylation of claudins is required for efficient tight-junction localization. J. Cell Scie 118, 1427–1436 (2005).

    Article  Google Scholar 

  167. Özkan, N. E. et al. Cell cycle-dependent palmitoylation of protocadherin 7 by ZDHHC5 promotes successful cytokinesis. J. Cell Sci. 136, jcs260266 (2023).

    Article  PubMed  Google Scholar 

  168. Fang, C.-T. et al. Inhibition of acetyl-CoA carboxylase impaired tubulin palmitoylation and induced spindle abnormalities. Cell Death Discov. 9, 4 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Steinberg, S. F. & Brunton, L. L. Compartmentation of G protein-coupled signaling pathways in cardiac myocytes. Annu. Rev. Pharmacol. Toxicol. 41, 751–773 (2001).

    Article  CAS  PubMed  Google Scholar 

  170. Dikic, I. & Elazar, Z. Mechanism and medical implications of mammalian autophagy. Nat. Rev. Mol. Cell Biol. 19, 349–364 (2018).

    Article  CAS  PubMed  Google Scholar 

  171. Mizushima, N. A brief history of autophagy from cell biology to physiology and disease. Nat. Cell Biol. 20, 521–527 (2018).

    Article  CAS  PubMed  Google Scholar 

  172. Pohl, C. & Dikic, I. Cellular quality control by the ubiquitin-proteasome system and autophagy. Science 366, 818–822 (2019).

    Article  CAS  PubMed  ADS  Google Scholar 

  173. Lin, Z. et al. The lipid basis of cell death and autophagy. Autophagy https://doi.org/10.1080/15548627.2023.2259732 (2023).

  174. Lemarié, F. L., Sanders, S. S., Nguyen, Y., Martin, D. D. O. & Hayden, M. R. Full-length huntingtin is palmitoylated at multiple sites and post-translationally myristoylated following caspase-cleavage. Front. Physiol. 14, 1086112 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  175. Blaustein, M. et al. Akt is S-palmitoylated: a new layer of regulation for Akt. Front. Cell Dev. Biol. 9, 626404 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  176. Sanders, S. S., De Simone, F. I. & Thomas, G. M. mTORC1 signaling is palmitoylation-dependent in hippocampal neurons and non-neuronal cells and involves dynamic palmitoylation of LAMTOR1 and mTOR. Front. Cell Neurosci. 13, 115 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Abrar, F. et al. Reduced S-acylation of SQSTM1/p62 in Huntington disease is associated with impaired autophagy. Preprint at bioRxiv https://doi.org/10.1101/2023.10.11.561600 (2023).

  178. Huang, X. et al. S-Acylation of p62 promotes p62 droplet recruitment into autophagosomes in mammalian autophagy. Mol. Cell 83, 3485–3501.e11 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Chamberlain, L. H., Shipston, M. J. & Gould, G. W. Regulatory effects of protein S-acylation on insulin secretion and insulin action. Open. Biol. 11, 210017 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Prentki, M., Peyot, M.-L., Masiello, P. & Madiraju, S. R. M. Nutrient-induced metabolic stress, adaptation, detoxification, and toxicity in the pancreatic β-cell. Diabetes 69, 279–290 (2020).

    Article  CAS  PubMed  Google Scholar 

  181. Dennis, K. M. J. H. & Heather, L. C. Post-translational palmitoylation of metabolic proteins. Front. Physiol. 14, 1122895 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  182. Glatz, J. C. & Luiken, J. F. P. Dynamic role of the transmembrane glycoprotein CD36 (SR-B2) in cellular fatty acid uptake and utilization. J. Lipid Res. 59, 1084–1093 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Wang, J. et al. DHHC4 and DHHC5 facilitate fatty acid uptake by palmitoylating and targeting CD36 to the plasma membrane. Cell Rep. 26, 209–221.e5 (2019).

    Article  PubMed  Google Scholar 

  184. Yang, S. et al. KLF10 promotes nonalcoholic steatohepatitis progression through transcriptional activation of zDHHC7. EMBO Rep. 23, e54229 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Meiler, S. et al. Selenoprotein K is required for palmitoylation of CD36 in macrophages: implications in foam cell formation and atherogenesis. J. Leukoc. Biol. 93, 771–780 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Zhang, Y. et al. Oxidized high-density lipoprotein promotes CD36 palmitoylation and increases lipid uptake in macrophages. J. Biol. Chem. 298, 102000 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. van Oort, M. M. et al. Insulin-induced translocation of CD36 to the plasma membrane is reversible and shows similarity to that of GLUT4. Biochim. Biophys. Acta 1781, 61–71 (2008).

    Article  PubMed  Google Scholar 

  188. Hao, J.-W. et al. CD36 facilitates fatty acid uptake by dynamic palmitoylation-regulated endocytosis. Nat. Commun. 11, 4765 (2020).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  189. Ren, W., Sun, Y. & Du, K. Glut4 palmitoylation at Cys223 plays a critical role in Glut4 membrane trafficking. Biochem. Biophys. Res. Commun. 460, 709–714 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Du, K., Murakami, S., Sun, Y., Kilpatrick, C. L. & Luscher, B. DHHC7 palmitoylates glucose transporter 4 (Glut4) and regulates Glut4 membrane translocation. J. Biol. Chem. 292, 2979–2991 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Ren, W., Sun, Y. & Du, K. DHHC17 palmitoylates ClipR-59 and modulates ClipR-59 association with the plasma membrane. Mol. Cell Biol. 33, 4255–4265 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Xiong, W. et al. Metformin alleviates inflammation through suppressing FASN-dependent palmitoylation of Akt. Cell Death Dis. 12, 934 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Sun, Y. & Du, K. DHHC17 is a new regulator of AMPK signaling. Mol. Cell Biol. 42, e0013122 (2022).

    Article  PubMed  Google Scholar 

  194. Das, T., Yount, J. S. & Hang, H. C. Protein S-palmitoylation in immunity. Open. Biol. 11, 200411 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Kim, Y.-C. et al. Toll-like receptor mediated inflammation requires FASN-dependent MYD88 palmitoylation. Nat. Chem. Biol. 15, 907–916 (2019).

    Article  CAS  PubMed  Google Scholar 

  196. Utsumi, T. et al. Transmembrane TNF (pro-TNF) is palmitoylated. FEBS Lett. 500, 1–6 (2001).

    Article  CAS  PubMed  Google Scholar 

  197. Fan, Y. et al. Targeting LYPLAL1-mediated cGAS depalmitoylation enhances the response to anti-tumor immunotherapy. Mol. Cell 83, 3520–3532.e7 (2023).

    Article  CAS  PubMed  Google Scholar 

  198. Shi, C. et al. ZDHHC18 negatively regulates cGAS-mediated innate immunity through palmitoylation. EMBO J. 41, e109272 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Mukai, K. et al. Activation of STING requires palmitoylation at the Golgi. Nat. Commun. 7, 11932 (2016).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  200. Haag, S. M. et al. Targeting STING with covalent small-molecule inhibitors. Nature 559, 269–273 (2018). This work identifies compounds that specifically target S-acylated Cys in STING as selective inhibitors of targeted S-acylation.

    Article  CAS  PubMed  ADS  Google Scholar 

  201. Pandey, A., Shen, C., Feng, S. & Man, S. M. Cell biology of inflammasome activation. Trends Cell Biol. 31, 924–939 (2021).

    Article  CAS  PubMed  Google Scholar 

  202. Wang, L. et al. Palmitoylation prevents sustained inflammation by limiting NLRP3 inflammasome activation through chaperone-mediated autophagy. Mol. Cell 83, 281–297.e10 (2023).

    Article  CAS  PubMed  Google Scholar 

  203. Swanson, K. V., Deng, M. & Ting, J. P.-Y. The NLRP3 inflammasome: molecular activation and regulation to therapeutics. Nat. Rev. Immunol. 19, 477–489 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Zheng, S. et al. ZDHHC5-mediated NLRP3 palmitoylation promotes NLRP3–NEK7 interaction and inflammasome activation. Mol. Cell 83, 4570–4585.e7 (2023).

    Article  CAS  PubMed  Google Scholar 

  205. Lu, Y. et al. Palmitoylation of NOD1 and NOD2 is required for bacterial sensing. Science 366, 460–467 (2019).

    Article  CAS  PubMed  ADS  Google Scholar 

  206. Zhou, L., Zeng, H., Cui, J. & Jin, S. Palmitoylation facilitates inflammation through suppressing NOD2 degradation mediated by the selective autophagy receptor SQSTM1. Autophagy 18, 2254–2255 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Devant, P. & Kagan, J. C. Molecular mechanisms of gasdermin D pore-forming activity. Nat. Immunol. 24, 1064–1075 (2023).

    Article  CAS  PubMed  Google Scholar 

  208. Rathkey, J. K. et al. Chemical disruption of the pyroptotic pore-forming protein gasdermin D inhibits inflammatory cell death and sepsis. Sci. Immunol. 3, eaat2738 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  209. Hu, J. J. et al. FDA-approved disulfiram inhibits pyroptosis by blocking gasdermin D pore formation. Nat. Immunol. 21, 736–745 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Devant, P. et al. Gasdermin D pore-forming activity is redox-sensitive. Cell Rep. 42, 112008 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Liu, X. et al. Inflammasome-activated gasdermin D causes pyroptosis by forming membrane pores. Nature 535, 153–158 (2016).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  212. Balasubramanian, A. et al. Palmitoylation of gasdermin D directs its membrane translocation and pore formation in pyroptosis. Preprint at bioRxiv https://doi.org/10.1101/2023.02.21.529402 (2023).

  213. Du, G. et al. ROS-dependent palmitoylation is an obligate licensing modification for GSDMD pore formation. Preprint at bioRxiv https://doi.org/10.1101/2023.03.07.531538 (2023).

  214. Zhuang, Z., Gu, J., Li, B. & Yang, L. Inhibition of gasdermin D palmitoylation by disulfiram is crucial for the treatment of myocardial infarction. Transl. Res. https://doi.org/10.1016/j.trsl.2023.09.007 (2023).

    Article  PubMed  Google Scholar 

  215. Li, Y., Martin, B. R., Cravatt, B. F. & Hofmann, S. L. DHHC5 protein palmitoylates flotillin-2 and is rapidly degraded on induction of neuronal differentiation in cultured cells. J. Biol. Chem. 287, 523–530 (2012).

    Article  CAS  PubMed  Google Scholar 

  216. Sardana, S., Nederstigt, A. E. & Baggelaar, M. P. S-Palmitoylation during retinoic acid-induced neuronal differentiation of SH-SY5Y neuroblastoma cells. J. Proteome Res. 22, 2421–2435 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. Hollman, R. B. et al. The X-linked intellectual disability gene, ZDHHC9, is important for oligodendrocyte maturation and myelin formation. Preprint at bioRxiv https://doi.org/10.1101/2023.08.08.552342 (2023).

  218. Shimell, J. J. et al. The X-linked intellectual disability gene Zdhhc9 is essential for dendrite outgrowth and inhibitory synapse formation. Cell Rep. 29, 2422–2437.e8 (2019).

    Article  CAS  PubMed  Google Scholar 

  219. Shah, B. S., Shimell, J. J. & Bamji, S. X. Regulation of dendrite morphology and excitatory synapse formation by zDHHC15. J. Cell Sci. 132, jcs230052 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. Mukai, J. et al. Palmitoylation-dependent neurodevelopmental deficits in a mouse model of 22q11 microdeletion. Nat. Neurosci. 11, 1302–1310 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. Globa, A. K. & Bamji, S. X. Protein palmitoylation in the development and plasticity of neuronal connections. Curr. Opin. Neurobiol. 45, 210–220 (2017).

    Article  CAS  PubMed  Google Scholar 

  222. Brigidi, G. S. et al. Palmitoylation of δ-catenin by DHHC5 mediates activity-induced synapse plasticity. Nat. Neurosci. 17, 522–532 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. Woolfrey, K. M. et al. CaMKII regulates the depalmitoylation and synaptic removal of the scaffold protein AKAP79/150 to mediate structural long-term depression. J. Biol. Chem. 293, 1551–1567 (2018).

    Article  CAS  PubMed  Google Scholar 

  224. Woolfrey, K. M., Sanderson, J. L. & Dell’Acqua, M. L. The palmitoyl acyltransferase DHHC2 regulates recycling endosome exocytosis and synaptic potentiation through palmitoylation of AKAP79/150. J. Neurosci. 35, 442–456 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  225. Dejanovic, B. et al. Palmitoylation of gephyrin controls receptor clustering and plasticity of GABAergic synapses. PLoS Biol. 12, e1001908 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  226. Fukata, Y. & Fukata, M. Protein palmitoylation in neuronal development and synaptic plasticity. Nat. Rev. Neurosci. 11, 161–175 (2010).

    Article  CAS  PubMed  Google Scholar 

  227. Liu, H. et al. Palmitoylated Sept8-204 modulates learning and anxiety by regulating filopodia arborization and actin dynamics. Sci. Signal. 16, eadi8645 (2023).

    Article  CAS  PubMed  ADS  Google Scholar 

  228. Nasseri, G. G. et al. Synaptic activity-dependent changes in the hippocampal palmitoylome. Sci. Signal. 15, eadd2519 (2022).

    Article  CAS  PubMed  Google Scholar 

  229. Li, M.-D. et al. DHHC2 regulates fear memory formation, LTP, and AKAP150 signaling in the hippocampus. iScience 26, 107561 (2023).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  230. Hohoff, C. et al. Deficiency of the palmitoyl acyltransferase ZDHHC7 impacts brain and behavior of mice in a sex-specific manner. Brain Struct. Funct. 224, 2213–2230 (2019). This work presents evidence for a sex-specific effect of ZDHHC7 on brain anatomy, microstructure, connectivity, function and behaviour.

    Article  PubMed  Google Scholar 

  231. Petropavlovskiy, A. A., Kogut, J. A., Leekha, A., Townsend, C. A. & Sanders, S. S. A sticky situation: regulation and function of protein palmitoylation with a spotlight on the axon and axon initial segment. Neuronal Signal. 5, NS20210005 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  232. Buszka, A., Pytyś, A., Colvin, D., Włodarczyk, J. & Wójtowicz, T. S-palmitoylation of synaptic proteins in neuronal plasticity in normal and pathological brains. Cells 12, 387 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  233. Ma, Y. et al. DHHC5 facilitates oligodendrocyte development by palmitoylating and activating STAT3. Glia 70, 379–392 (2022).

    Article  CAS  PubMed  Google Scholar 

  234. Schneider, A. et al. Palmitoylation is a sorting determinant for transport to the myelin membrane. J. Cell Sci. 118, 2415–2423 (2005).

    Article  CAS  PubMed  Google Scholar 

  235. Bekhouche, B. et al. A toxic palmitoylation of Cdc42 enhances NF-κB signaling and drives a severe autoinflammatory syndrome. J. Allergy Clin. Immunol. 146, 1201–1204.e8 (2020).

    Article  CAS  PubMed  Google Scholar 

  236. Tomić, G. et al. Palmitoyl transferase ZDHHC20 promotes pancreatic cancer metastasis. Preprint at bioRxiv https://doi.org/10.1101/2023.02.08.527637 (2023).

  237. Yao, H. et al. Inhibiting PD-L1 palmitoylation enhances T-cell immune responses against tumours. Nat. Biomed. Eng. 3, 306–317 (2019).

    Article  CAS  PubMed  Google Scholar 

  238. Yang, Y. et al. Palmitoylation stabilizes PD-L1 to promote breast tumor growth. Cell Res. 29, 83–86 (2019).

    Article  PubMed  Google Scholar 

  239. Lin, Z. et al. Targeting ZDHHC9 potentiates anti-programmed death-ligand 1 immunotherapy of pancreatic cancer by modifying the tumor microenvironment. Biomed. Pharmacother. 161, 114567 (2023).

    Article  CAS  PubMed  Google Scholar 

  240. Jia, Y. et al. Pyroptosis provides new strategies for the treatment of cancer. J. Cancer 14, 140–151 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  241. Hu, L. et al. Chemotherapy-induced pyroptosis is mediated by BAK/BAX-caspase-3-GSDME pathway and inhibited by 2-bromopalmitate. Cell Death Dis. 11, 281 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  242. Krupina, K., Goginashvili, A. & Cleveland, D. W. Causes and consequences of micronuclei. Curr. Opin. Cell Biol. 70, 91–99 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  243. Xia, T., Konno, H. & Barber, G. N. Recurrent loss of STING signaling in melanoma correlates with susceptibility to viral oncolysis. Cancer Res. 76, 6747–6759 (2016).

    Article  CAS  PubMed  Google Scholar 

  244. Song, S. et al. Decreased expression of STING predicts poor prognosis in patients with gastric cancer. Sci. Rep. 7, 39858 (2017).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  245. Zhang, Z. et al. DHHC9-mediated GLUT1 S-palmitoylation promotes glioblastoma glycolysis and tumorigenesis. Nat. Commun. 12, 5872 (2021).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  246. Lemarié, F. L. et al. Rescue of aberrant huntingtin palmitoylation ameliorates mutant huntingtin-induced toxicity. Neurobiol. Dise 158, 105479 (2021).

    Article  Google Scholar 

  247. Virlogeux, A. et al. Increasing brain palmitoylation rescues behavior and neuropathology in Huntington disease mice. Sci. Adv. 7, eabb0799 (2021).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  248. Kang, R. et al. Altered regulation of striatal neuronal N-methyl-d-aspartate receptor trafficking by palmitoylation in Huntington disease mouse model. Front. Synaptic Neurosci. 11, 3 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  249. Sanders, S. S. & Hayden, M. R. Aberrant palmitoylation in Huntington disease. Biochem. Soc. Trans. 43, 205–210 (2015).

    Article  CAS  PubMed  Google Scholar 

  250. Ho, G. P. H., Wilkie, E. C., White, A. J. & Selkoe, D. J. Palmitoylation of the Parkinson’s disease-associated protein synaptotagmin-11 links its turnover to α-synuclein homeostasis. Sci. Signal. 16, eadd7220 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  251. Wu, S. et al. Unconventional secretion of α-synuclein mediated by palmitoylated DNAJC5 oligomers. eLife 12, e85837 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  252. Bhattacharyya, R., Fenn, R. H., Barren, C., Tanzi, R. E. & Kovacs, D. M. Palmitoylated APP forms dimers, cleaved by BACE1. PLoS ONE 11, e0166400 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  253. Bhattacharyya, R., Barren, C. & Kovacs, D. M. Palmitoylation of amyloid precursor protein regulates amyloidogenic processing in lipid rafts. J. Neurosci. 33, 11169–11183 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  254. Cervilla-Martínez, J. F. et al. Altered cortical palmitoylation induces widespread molecular disturbances in Parkinson’s disease. Int. J. Mol. Sci. 23, 14018 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  255. Li, W. et al. Aberrant palmitoylation caused by a ZDHHC21 mutation contributes to pathophysiology of Alzheimer’s disease. BMC Med. 21, 223 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  256. Ramos, A. K. S. et al. ZDHHC9 X-linked intellectual disability: clinical and molecular characterization. Am. J. Med. Genet. Pt A 191, 599–604 (2023).

    Article  CAS  Google Scholar 

  257. Lewis, S. A. et al. Mutation in ZDHHC15 leads to hypotonic cerebral palsy, autism, epilepsy, and intellectual disability. Neurol. Genet. 7, e602 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  258. Casellas-Vidal, D. et al. ZDHHC15 as a candidate gene for autism spectrum disorder. Am. J. Med. Genet. Pt A 191, 941–947 (2023).

    Article  CAS  Google Scholar 

  259. Zhao, Y. et al. Integrating genome-wide association study and expression quantitative trait locus study identifies multiple genes and gene sets associated with schizophrenia. Progr Neuropsychopharmacol. Biol. Psychiatry 81, 50–54 (2018).

    Article  CAS  Google Scholar 

  260. Mukai, J. et al. Evidence that the gene encoding ZDHHC8 contributes to the risk of schizophrenia. Nat. Genet. 36, 725–731 (2004).

    Article  CAS  PubMed  Google Scholar 

  261. Fukata, Y. et al. Local palmitoylation cycles define activity-regulated postsynaptic subdomains. J. Cell Biol. 202, 145–161 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  262. Jennings, B. C. et al. 2-Bromopalmitate and 2-(2-hydroxy-5-nitro-benzylidene)-benzo[b]thiophen-3-one inhibit DHHC-mediated palmitoylation in vitro. J. Lipid Res. 50, 233–242 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  263. Bononi, G., Tuccinardi, T., Rizzolio, F. & Granchi, C. α/β-Hydrolase domain (ABHD) inhibitors as new potential therapeutic options against lipid-related diseases. J. Med. Chem. 64, 9759–9785 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  264. Zhou, F., Xue, Y., Yao, X. & Xu, Y. CSS-Palm: palmitoylation site prediction with a clustering and scoring strategy (CSS). Bioinformatics 22, 894–896 (2006).

    Article  CAS  PubMed  Google Scholar 

  265. Kumari, B., Kumar, R. & Kumar, M. PalmPred: an SVM based palmitoylation prediction method using sequence profile information. PLoS ONE 9, e89246 (2014).

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  266. Ji, G. et al. Global analysis of endogenously intact S-acylated peptides reveals localization differentiation of heterogeneous lipid chains in mammalian cells. Anal. Chem. 95, 13055–13063 (2023).

    Article  CAS  PubMed  Google Scholar 

  267. Wang, Y. & Yang, W. Proteome-scale analysis of protein S-acylation comes of age. J. Proteome Res. 20, 14–26 (2021).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank T. Kawate for creating original Fig. 1d and A. R. Wild for editorial assistance. F.G.v.d.G. and F.S.M. were supported by the Swiss National Science Foundation (SNSF-31CA30_196651, SNSF-310030_192608) and by Carigest SA. B.C.D. was supported by the National Institute of General Medical Sciences of the National Institutes of Health (NIH) (R35 GM119840). S.X.B. is supported by the Canadian Institutes for Health Research Foundation Grant (FDN-159907).

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to F. Gisou van der Goot.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Molecular Cell Biology thanks Masaki Fukata, Mark Collins and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

BrainPalmSeq: https://brainpalmseq.med.ubc.ca/

CellPalmSeq: https://cellpalmseq.med.ubc.ca/

SwissPalm: https://swisspalm.org/

Supplementary information

Glossary

Acyl-CoA

(Acyl-coenzyme A). A group of coenzymes involved in fatty acid metabolism.

Dendritic spines

Small membrane protrusions that receive input from a single axon at the synapse; similar protrusions can also occur on flat membranes (dendritic shafts).

Fatty acids

Carboxylic acids with an aliphatic chain, which are either saturated or unsaturated. S-Acylation mostly adds saturated long-chain carboxylic (fatty) acids with aliphatic tails of 13–21 carbons (chemical formula CH3(CH2)nCOOH), but can also add unsaturated fatty acids such as arachidonic or oleic acids.

Hydrophobic mismatch

A situation where the length of an orthogonal transmembrane helix of a protein differs from (that is, is shorter or longer than) the thickness of a membrane.

Inflammasome

A multiprotein proteolytic complex that forms in the cytosol in response to sensing of molecules of bacterial origin or danger signals such as low potassium levels; inflammasomes cleave the precursors of IL-1β and gasdermins.

Insulin

A peptide hormone that regulates glucose homeostasis and has anabolic actions on target tissues that enable the body to build energy reserves when glucose is abundant.

Membrane contact sites

Sites of membrane juxtaposition between organelles.

mTOR

A kinase that regulates numerous cellular processes, including cell growth and proliferation, that are important in cancer.

Oligodendrocytes

Glial cells of the central nervous system whose main function is to insulate the axons of neurons by forming a myelin sheath.

Pyroptosis

A form of programmed cell death that occurs during inflammation and involves gasdermin pore formation in the cytoplasmic face of the plasma membrane.

Spike protein

The SARS-CoV-2 viral glycoprotein responsible for its characteristic crown appearance; the spike protein binds to host cells and facilitates fusion of the viral membrane with that of the infected cell.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

S. Mesquita, F., Abrami, L., Linder, M.E. et al. Mechanisms and functions of protein S-acylation. Nat Rev Mol Cell Biol (2024). https://doi.org/10.1038/s41580-024-00700-8

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41580-024-00700-8

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing