Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The molecular basis for cellular function of intrinsically disordered protein regions

Abstract

Intrinsically disordered protein regions exist in a collection of dynamic interconverting conformations that lack a stable 3D structure. These regions are structurally heterogeneous, ubiquitous and found across all kingdoms of life. Despite the absence of a defined 3D structure, disordered regions are essential for cellular processes ranging from transcriptional control and cell signalling to subcellular organization. Through their conformational malleability and adaptability, disordered regions extend the repertoire of macromolecular interactions and are readily tunable by their structural and chemical context, making them ideal responders to regulatory cues. Recent work has led to major advances in understanding the link between protein sequence and conformational behaviour in disordered regions, yet the link between sequence and molecular function is less well defined. Here we consider the biochemical and biophysical foundations that underlie how and why disordered regions can engage in productive cellular functions, provide examples of emerging concepts and discuss how protein disorder contributes to intracellular information processing and regulation of cellular function.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Intrinsically disordered regions are central to cellular function.
Fig. 2: Intrinsically disordered regions exist in ensembles dictated by protein sequence features.
Fig. 3: Intrinsically disordered region ensemble properties are context-dependent.
Fig. 4: Intrinsically disordered regions enable a range of molecular recognition modes.
Fig. 5: Intrinsically disordered regions can undergo phase separation and contribute to biomolecular condensate formation.

Similar content being viewed by others

References

  1. Dunker, A. K. et al. Intrinsically disordered protein. J. Mol. Graph. Model. 19, 26–59 (2001). Together with Wright and Dyson (1999), Uversky (2002) and Tompa (2002), this article makes the original arguments that IDRs can and do have important roles in cellular function.

    Article  CAS  PubMed  Google Scholar 

  2. Wright, P. E. & Dyson, H. J. Intrinsically unstructured proteins: re-assessing the protein structure–function paradigm. J. Mol. Biol. 293, 321–331 (1999).

    Article  CAS  PubMed  Google Scholar 

  3. van der Lee, R. et al. Classification of intrinsically disordered regions and proteins. Chem. Rev. 114, 6589–6631 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Uversky, V. N. Natively unfolded proteins: a point where biology waits for physics. Protein Sci. 11, 739–756 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Tompa, P. Intrinsically unstructured proteins. Trends Biochem. Sci. 27, 527–533 (2002).

    Article  CAS  PubMed  Google Scholar 

  6. Brodsky, S., Jana, T. & Barkai, N. Order through disorder: the role of intrinsically disordered regions in transcription factor binding specificity. Curr. Opin. Struct. Biol. 71, 110–115 (2021).

    Article  CAS  PubMed  Google Scholar 

  7. Fuxreiter, M. et al. Malleable machines take shape in eukaryotic transcriptional regulation. Nat. Chem. Biol. 4, 728–737 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Zhang, X., Bai, X.-C. & Chen, Z. J. Structures and mechanisms in the cGAS–STING innate immunity pathway. Immunity 53, 43–53 (2020).

    Article  CAS  PubMed  Google Scholar 

  9. Cuylen, S. et al. Ki-67 acts as a biological surfactant to disperse mitotic chromosomes. Nature 535, 308–312 (2016).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  10. Pelham, J. F., Dunlap, J. C. & Hurley, J. M. Intrinsic disorder is an essential characteristic of components in the conserved circadian circuit. Cell Commun. Signal. 18, 181 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Tompa, P. & Csermely, P. The role of structural disorder in the function of RNA and protein chaperones. FASEB J. 18, 1169–1175 (2004).

    Article  CAS  PubMed  Google Scholar 

  12. Altmeyer, M. et al. Liquid demixing of intrinsically disordered proteins is seeded by poly(ADP-ribose). Nat. Commun. 6, 8088 (2015).

    Article  ADS  CAS  PubMed  Google Scholar 

  13. Wright, P. E. & Dyson, H. J. Intrinsically disordered proteins in cellular signalling and regulation. Nat. Rev. Mol. Cell Biol. 16, 18–29 (2014).

    Article  Google Scholar 

  14. Payliss, B. J. et al. Phosphorylation of the DNA repair scaffold SLX4 drives folding of the SAP domain and activation of the MUS81-EME1 endonuclease. Cell Rep. 41, 111537 (2022).

    Article  CAS  PubMed  Google Scholar 

  15. Witus, S. R. et al. BRCA1/BARD1 intrinsically disordered regions facilitate chromatin recruitment and ubiquitylation. EMBO J. 42, e113565 (2023).

    Article  CAS  PubMed  Google Scholar 

  16. Yanez Orozco, I. S. et al. Identifying weak interdomain interactions that stabilize the supertertiary structure of the N-terminal tandem PDZ domains of PSD-95. Nat. Commun. 9, 3724 (2018).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  17. Watson, M. et al. Hidden multivalency in phosphatase recruitment by a disordered AKAP scaffold. J. Mol. Biol. 434, 167682 (2022).

    Article  CAS  PubMed  Google Scholar 

  18. Riback, J. A. et al. Stress-triggered phase separation is an adaptive, evolutionarily tuned response. Cell 168, 1028–1040.e19 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Feric, M. et al. Coexisting liquid phases underlie nucleolar subcompartments. Cell 165, 1686–1697 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Cermakova, K. et al. A ubiquitous disordered protein interaction module orchestrates transcription elongation. Science 374, 1113–1121 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  21. Borcherds, W. et al. Disorder and residual helicity alter p53-Mdm2 binding affinity and signaling in cells. Nat. Chem. Biol. 10, 1000–1002 (2014). This paper offers direct evidence that ensemble properties of IDRs can directly influence cellular function.

    Article  CAS  PubMed  Google Scholar 

  22. Dyla, M. & Kjaergaard, M. Intrinsically disordered linkers control tethered kinases via effective concentration. Proc. Natl Acad. Sci. USA 117, 21413–21419 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  23. Millard, P. S. et al. IDDomainSpotter: compositional bias reveals domains in long disordered protein regions — insights from transcription factors. Protein Sci. 29, 169–183 (2020).

    Article  CAS  PubMed  Google Scholar 

  24. Lotthammer, J. M., Ginell, G. M., Griffith, D., Emenecker, R. J. & Holehouse, A. S. Direct prediction of intrinsically disordered protein conformational properties from sequence. Nat. Methods (in press).

  25. Holehouse, A. S., Das, R. K., Ahad, J. N., Richardson, M. O. G. & Pappu, R. V. CIDER: resources to analyze sequence–ensemble relationships of intrinsically disordered proteins. Biophys. J. 112, 16–21 (2017).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  26. Xue, B., Dunker, A. K. & Uversky, V. N. Orderly order in protein intrinsic disorder distribution: disorder in 3500 proteomes from viruses and the three domains of life. J. Biomol. Struct. Dyn. 30, 137–149 (2012).

    Article  CAS  PubMed  Google Scholar 

  27. Cohan, M. C. & Pappu, R. V. Making the case for disordered proteins and biomolecular condensates in bacteria. Trends Biochem. Sci. 45, 668–680 (2020).

    Article  CAS  PubMed  Google Scholar 

  28. Dyson, H. J. & Wright, P. E. Equilibrium NMR studies of unfolded and partially folded proteins. Nat. Struct. Biol. 5, 499–503 (1998). Along with Wright and Dyson (1999), this perspective article makes the case that an ensemble-centric biophysical lens is crucial for understanding disordered proteins.

    Article  CAS  PubMed  Google Scholar 

  29. Mittag, T. & Forman-Kay, J. D. Atomic-level characterization of disordered protein ensembles. Curr. Opin. Struct. Biol. 17, 3–14 (2007).

    Article  CAS  PubMed  Google Scholar 

  30. Henzler-Wildman, K. & Kern, D. Dynamic personalities of proteins. Nature 450, 964–972 (2007).

    Article  ADS  CAS  PubMed  Google Scholar 

  31. Babu, M. M., Kriwacki, R. W. & Pappu, R. V. Structural biology. Versatility from protein disorder. Science 337, 1460–1461 (2012).

    Article  ADS  CAS  PubMed  Google Scholar 

  32. Lazar, T. et al. PED in 2021: a major update of the protein ensemble database for intrinsically disordered proteins. Nucleic Acids Res. 49, D404–D411 (2021).

    Article  CAS  PubMed  Google Scholar 

  33. Das, R. K., Ruff, K. M. & Pappu, R. V. Relating sequence encoded information to form and function of intrinsically disordered proteins. Curr. Opin. Struct. Biol. 32, 102–112 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Mao, A. H., Lyle, N. & Pappu, R. V. Describing sequence–ensemble relationships for intrinsically disordered proteins. Biochem. J. 449, 307–318 (2013).

    Article  CAS  PubMed  Google Scholar 

  35. Crabtree, M. D. et al. Conserved helix-flanking prolines modulate intrinsically disordered protein: target affinity by altering the lifetime of the bound complex. Biochemistry 56, 2379–2384 (2017).

    Article  CAS  PubMed  Google Scholar 

  36. Wicky, B. I. M., Shammas, S. L. & Clarke, J. Affinity of IDPs to their targets is modulated by ion-specific changes in kinetics and residual structure. Proc. Natl Acad. Sci. USA 114, 9882–9887 (2017).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  37. Dyla, M., González Foutel, N. S., Otzen, D. E. & Kjaergaard, M. The optimal docking strength for reversibly tethered kinases. Proc. Natl Acad. Sci. USA 119, e2203098119 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. González-Foutel, N. S. et al. Conformational buffering underlies functional selection in intrinsically disordered protein regions. Nat. Struct. Mol. Biol. 29, 781–790 (2022). In this study, the authors present evidence that a viral IDR linker is conserved with respect to ensemble dimensions, despite large-scale sequence and length variation.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Harmon, T. S., Holehouse, A. S., Rosen, M. K. & Pappu, R. V. Intrinsically disordered linkers determine the interplay between phase separation and gelation in multivalent proteins. eLife 6, e30294 (2017).

    Google Scholar 

  40. Huang, Q., Li, M., Lai, L. & Liu, Z. Allostery of multidomain proteins with disordered linkers. Curr. Opin. Struct. Biol. 62, 175–182 (2020).

    Article  CAS  PubMed  Google Scholar 

  41. Bugge, K. et al. Interactions by disorder — a matter of context. Front. Mol. Biosci. 7, 110 (2020). This review synthesizes a core and emerging idea in the field of disordered proteins; that IDR function is strongly influenced by context.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  42. Sturzenegger, F. et al. Transition path times of coupled folding and binding reveal the formation of an encounter complex. Nat. Commun. 9, 4708 (2018).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  43. Holmstrom, E. D., Liu, Z., Nettels, D., Best, R. B. & Schuler, B. Disordered RNA chaperones can enhance nucleic acid folding via local charge screening. Nat. Commun. 10, 2453 (2019).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  44. Cubuk, J. et al. The disordered N-terminal tail of SARS CoV-2 nucleocapsid protein forms a dynamic complex with RNA. Preprint at bioRxiv https://doi.org/10.1101/2023.02.10.527914 (2023).

    Article  Google Scholar 

  45. Stuchell-Brereton, M. D. et al. Apolipoprotein E4 has extensive conformational heterogeneity in lipid-free and lipid-bound forms. Proc. Natl Acad. Sci. USA 120, e2215371120 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Moses, D., Ginell, G. M., Holehouse, A. S. & Sukenik, S. Intrinsically disordered regions are poised to act as sensors of cellular chemistry. Trends Biochem. Sci. https://doi.org/10.1016/j.tibs.2023.08.001 (2023).

  47. Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  48. Tunyasuvunakool, K. et al. Highly accurate protein structure prediction for the human proteome. Nature 596, 590–596 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  49. Baek, M. et al. Accurate prediction of protein structures and interactions using a three-track neural network. Science 373, 871–876 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  50. Ruff, K. M. & Pappu, R. V. AlphaFold and implications for intrinsically disordered proteins. J. Mol. Biol. 433, 167208 (2021).

    Article  CAS  PubMed  Google Scholar 

  51. Necci, M., Piovesan, D., CAID Predictors, DisProt Curators & Tosatto, S. C. E. Critical assessment of protein intrinsic disorder prediction. Nat. Methods 18, 472–481 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Conte, A. D. et al. Critical assessment of protein intrinsic disorder prediction (CAID) — results of round 2. Proteins https://doi.org/10.1002/prot.26582 (2023).

    Article  PubMed  Google Scholar 

  53. Brown, C. J., Johnson, A. K., Dunker, A. K. & Daughdrill, G. W. Evolution and disorder. Curr. Opin. Struct. Biol. 21, 441–446 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Brown, C. J., Johnson, A. K. & Daughdrill, G. W. Comparing models of evolution for ordered and disordered proteins. Mol. Biol. Evol. 27, 609–621 (2010).

    Article  CAS  PubMed  Google Scholar 

  55. Zarin, T. et al. Proteome-wide signatures of function in highly diverged intrinsically disordered regions. eLife 8, e46883 (2019). This study offers a systematic assessment of how conservation in IDRs could act at the level of sequence features instead of specific linear sequence.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Cohan, M. C., Shinn, M. K., Lalmansingh, J. M. & Pappu, R. V. Uncovering non-random binary patterns within sequences of intrinsically disordered proteins. J. Mol. Biol. 434, 167373 (2022).

    Article  CAS  PubMed  Google Scholar 

  57. Martin, E. W. et al. Valence and patterning of aromatic residues determine the phase behavior of prion-like domains. Science 367, 694–699 (2020). This study provides a detailed biophysical assessment of how sequence features and ensemble properties cooperate to determine the driving forces for phase separation in low-complexity disordered regions.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  58. Beh, L. Y., Colwell, L. J. & Francis, N. J. A core subunit of Polycomb repressive complex 1 is broadly conserved in function but not primary sequence. Proc. Natl Acad. Sci. USA 109, E1063–E1071 (2012).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  59. Zarin, T., Tsai, C. N., Nguyen Ba, A. N. & Moses, A. M. Selection maintains signaling function of a highly diverged intrinsically disordered region. Proc. Natl Acad. Sci. USA 114, E1450–E1459 (2017).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  60. Tesei, G. et al. Conformational ensembles of the human intrinsically disordered proteome: bridging chain compaction with function and sequence conservation. Preprint at bioRxiv https://doi.org/10.1101/2023.05.08.539815 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Martin, E. W. et al. Sequence determinants of the conformational properties of an intrinsically disordered protein prior to and upon multisite phosphorylation. J. Am. Chem. Soc. 138, 15323–15335 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Müller-Späth, S. et al. Charge interactions can dominate the dimensions of intrinsically disordered proteins. Proc. Natl Acad. Sci. USA 107, 14609–14614 (2010). Along with Marsh and Forman-Kay (2010) and Mao et al. (2010), this paper offers direct evidence that net charge of IDRs influences global dimensions.

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  63. Marsh, J. A. & Forman-Kay, J. D. Sequence determinants of compaction in intrinsically disordered proteins. Biophys. J. 98, 2383–2390 (2010).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  64. Mao, A. H., Crick, S. L., Vitalis, A., Chicoine, C. L. & Pappu, R. V. Net charge per residue modulates conformational ensembles of intrinsically disordered proteins. Proc. Natl Acad. Sci. USA 107, 8183–8188 (2010).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  65. Das, R. K. & Pappu, R. V. Conformations of intrinsically disordered proteins are influenced by linear sequence distributions of oppositely charged residues. Proc. Natl Acad. Sci. USA 110, 13392–13397 (2013). This study is the first to systematically show that the patterning of charged residues in IDRs can be an important feature that influences ensemble behaviour.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  66. Sawle, L. & Ghosh, K. A theoretical method to compute sequence dependent configurational properties in charged polymers and proteins. J. Chem. Phys. 143, 085101 (2015).

    Article  ADS  PubMed  Google Scholar 

  67. Kulkarni, P. et al. Phosphorylation-induced conformational dynamics in an intrinsically disordered protein and potential role in phenotypic heterogeneity. Proc. Natl Acad. Sci. USA 114, E2644–E2653 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Jin, F. & Gräter, F. How multisite phosphorylation impacts the conformations of intrinsically disordered proteins. PLoS Comput. Biol. 17, e1008939 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  69. Sørensen, C. S. & Kjaergaard, M. Effective concentrations enforced by intrinsically disordered linkers are governed by polymer physics. Proc. Natl Acad. Sci. USA 116, 23124–23131 (2019).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  70. Zeng, X., Ruff, K. M. & Pappu, R. V. Competing interactions give rise to two-state behavior and switch-like transitions in charge-rich intrinsically disordered proteins. Proc. Natl Acad. Sci. USA 119, e2200559119 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Portz, B. et al. Structural heterogeneity in the intrinsically disordered RNA polymerase II C-terminal domain. Nat. Commun. 8, 15231 (2017).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  72. Bremer, A. et al. Deciphering how naturally occurring sequence features impact the phase behaviours of disordered prion-like domains. Nat. Chem. 14, 196–207 (2022).

    Article  CAS  PubMed  Google Scholar 

  73. Plevin, M. J., Bryce, D. L. & Boisbouvier, J. Direct detection of CH/pi interactions in proteins. Nat. Chem. 2, 466–471 (2010).

    Article  CAS  PubMed  Google Scholar 

  74. Crick, S. L., Jayaraman, M., Frieden, C., Wetzel, R. & Pappu, R. V. Fluorescence correlation spectroscopy shows that monomeric polyglutamine molecules form collapsed structures in aqueous solutions. Proc. Natl Acad. Sci. USA 103, 16764–16769 (2006).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  75. Holehouse, A. S., Garai, K., Lyle, N., Vitalis, A. & Pappu, R. V. Quantitative assessments of the distinct contributions of polypeptide backbone amides versus side chain groups to chain expansion via chemical denaturation. J. Am. Chem. Soc. 137, 2984–2995 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Mukhopadhyay, S., Krishnan, R., Lemke, E. A., Lindquist, S. & Deniz, A. A. A natively unfolded yeast prion monomer adopts an ensemble of collapsed and rapidly fluctuating structures. Proc. Natl Acad. Sci. USA 104, 2649–2654 (2007).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  77. Theillet, F.-X. et al. The alphabet of intrinsic disorder: I. Act like a pro: on the abundance and roles of proline residues in intrinsically disordered proteins. Intrinsically Disord. Proteins 1, e24360 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  78. Boze, H. et al. Proline-rich salivary proteins have extended conformations. Biophys. J. 99, 656–665 (2010).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  79. Gibbs, E. B. et al. Phosphorylation induces sequence-specific conformational switches in the RNA polymerase II C-terminal domain. Nat. Commun. 8, 15233 (2017).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  80. Rauscher, S., Baud, S., Miao, M., Keeley, F. W. & Pomès, R. Proline and glycine control protein self-organization into elastomeric or amyloid fibrils. Structure 14, 1667–1676 (2006).

    Article  CAS  PubMed  Google Scholar 

  81. Beveridge, R. et al. Ion mobility mass spectrometry uncovers the impact of the patterning of oppositely charged residues on the conformational distributions of intrinsically disordered proteins. J. Am. Chem. Soc. 141, 4908–4918 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Das, R. K., Huang, Y., Phillips, A. H., Kriwacki, R. W. & Pappu, R. V. Cryptic sequence features within the disordered protein p27Kip1 regulate cell cycle signaling. Proc. Natl Acad. Sci. USA 113, 5616–5621 (2016).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  83. Sherry, K. P., Das, R. K., Pappu, R. V. & Barrick, D. Control of transcriptional activity by design of charge patterning in the intrinsically disordered RAM region of the Notch receptor. Proc. Natl Acad. Sci. USA 114, E9243–E9252 (2017).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  84. Ginell, G. M., Flynn, A. J. & Holehouse, A. S. SHEPHARD: a modular and extensible software architecture for analyzing and annotating large protein datasets. Bioinformatics 39, btad488 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Iakoucheva, L. M. et al. The importance of intrinsic disorder for protein phosphorylation. Nucleic Acids Res. 32, 1037–1049 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Choy, M. S., Page, R. & Peti, W. Regulation of protein phosphatase 1 by intrinsically disordered proteins. Biochem. Soc. Trans. 40, 969–974 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Gomes, G.-N. W. et al. Conformational ensembles of an intrinsically disordered protein consistent with NMR, SAXS, and single-molecule FRET. J. Am. Chem. Soc. 142, 15697–15710 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Nash, P. et al. Multisite phosphorylation of a CDK inhibitor sets a threshold for the onset of DNA replication. Nature 414, 514–521 (2001).

    Article  ADS  CAS  PubMed  Google Scholar 

  89. Mittag, T. et al. Dynamic equilibrium engagement of a polyvalent ligand with a single-site receptor. Proc. Natl Acad. Sci. USA 105, 17772–17777 (2008).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  90. Borg, M. et al. Polyelectrostatic interactions of disordered ligands suggest a physical basis for ultrasensitivity. Proc. Natl Acad. Sci. USA 104, 9650–9655 (2007).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  91. Ruff, K. M. Predicting conformational properties of intrinsically disordered proteins from sequence. Methods Mol. Biol. 2141, 347–389 (2020).

    Article  CAS  PubMed  Google Scholar 

  92. Zarin, T. et al. Identifying molecular features that are associated with biological function of intrinsically disordered protein regions. eLife 10, e60220 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Ginell, G. M. & Holehouse, A. S. Analyzing the sequences of intrinsically disordered regions with CIDER and localCIDER. in Intrinsically Disordered Proteins: Methods and Protocols Vol. 2141 (eds Kragelund, B. B. & Skriver, K.) 103–126 (Springer, 2020).

  94. Ghosh, K., Huihui, J., Phillips, M. & Haider, A. Rules of physical mathematics govern intrinsically disordered proteins. Annu. Rev. Biophys. https://doi.org/10.1146/annurev-biophys-120221-095357 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  95. Huihui, J. & Ghosh, K. Intra-chain interaction topology can identify functionally similar intrinsically disordered proteins. Biophys. J. https://doi.org/10.1016/j.bpj.2020.11.2282 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  96. Huihui, J. & Ghosh, K. An analytical theory to describe sequence-specific inter-residue distance profiles for polyampholytes and intrinsically disordered proteins. J. Chem. Phys. 152, 161102 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  97. Franzmann, T. M. et al. Phase separation of a yeast prion protein promotes cellular fitness. Science 359, eaao5654 (2018).

    Article  PubMed  Google Scholar 

  98. Yamazaki, H., Takagi, M., Kosako, H., Hirano, T. & Yoshimura, S. H. Cell cycle-specific phase separation regulated by protein charge blockiness. Nat. Cell Biol. 24, 625–632 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Lyons, H. et al. Functional partitioning of transcriptional regulators by patterned charge blocks. Cell 186, 327–345.e28 (2023). In this paper, the authors show that specific patterning of charged residues in IDRs enables specific molecular recruitment to transcriptional condensates.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Jankowski, M. S. et al. The formation of a fuzzy complex in the negative arm regulates the robustness of the circadian clock. Preprint at bioRxiv https://doi.org/10.1101/2022.01.04.474980 (2022).

  101. Brendel, V. & Karlin, S. Association of charge clusters with functional domains of cellular transcription factors. Proc. Natl Acad. Sci. USA 86, 5698–5702 (1989).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  102. Robustelli, P., Piana, S. & Shaw, D. E. Mechanism of coupled folding-upon-binding of an intrinsically disordered protein. J. Am. Chem. Soc. 142, 11092–11101 (2020).

    Article  CAS  PubMed  Google Scholar 

  103. Das, R. K., Crick, S. L. & Pappu, R. V. N-terminal segments modulate the α-helical propensities of the intrinsically disordered basic regions of bZIP proteins. J. Mol. Biol. 416, 287–299 (2012).

    Article  CAS  PubMed  Google Scholar 

  104. Milles, S. et al. An ultraweak interaction in the intrinsically disordered replication machinery is essential for measles virus function. Sci. Adv. 4, eaat7778 (2018).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  105. Daughdrill, G. W. Disorder for dummies: functional mutagenesis of transient helical segments in disordered proteins. Methods Mol. Biol. 2141, 3–20 (2020).

    Article  CAS  PubMed  Google Scholar 

  106. Davey, N. E. The functional importance of structure in unstructured protein regions. Curr. Opin. Struct. Biol. 56, 155–163 (2019).

    Article  CAS  PubMed  Google Scholar 

  107. Zhu, J., Salvatella, X. & Robustelli, P. Small molecules targeting the disordered transactivation domain of the androgen receptor induce the formation of collapsed helical states. Nat. Commun. 13, 6390 (2022).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  108. Chhabra, Y. et al. A growth hormone receptor SNP promotes lung cancer by impairment of SOCS2-mediated degradation. Oncogene 37, 489–501 (2018).

    Article  CAS  PubMed  Google Scholar 

  109. Loening, N. M., Saravanan, S., Jespersen, N. E., Jara, K. & Barbar, E. Interplay of disorder and sequence specificity in the formation of stable dynein–dynactin complexes. Biophys. J. 119, 950–965 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  110. Clark, S. et al. Multivalency regulates activity in an intrinsically disordered transcription factor. eLife 7, e36258 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  111. Burke, K. A., Janke, A. M., Rhine, C. L. & Fawzi, N. L. Residue-by-residue view of in vitro FUS granules that bind the C-terminal domain of RNA polymerase II. Mol. Cell 60, 231–241 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Murthy, A. C. et al. Molecular interactions underlying liquid–liquid phase separation of the FUS low-complexity domain. Nat. Struct. Mol. Biol. 26, 637–648 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Murthy, A. C. et al. Molecular interactions contributing to FUS SYGQ LC-RGG phase separation and co-partitioning with RNA polymerase II heptads. Nat. Struct. Mol. Biol. 28, 923–935 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Yang, P. et al. G3BP1 is a tunable switch that triggers phase separation to assemble stress granules. Cell 181, 325–345.e28 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Guillén-Boixet, J. et al. RNA-induced conformational switching and clustering of G3BP drive stress granule assembly by condensation. Cell 181, 346–361.e17 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  116. Warner, J. B. IV et al. Monomeric huntingtin exon 1 has similar overall structural features for wild-type and pathological polyglutamine lengths. J. Am. Chem. Soc. 139, 14456–14469 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Newcombe, E. A. et al. Tadpole-like conformations of huntingtin exon 1 are characterized by conformational heterogeneity that persists regardless of polyglutamine length. J. Mol. Biol. 430, 1442–1458 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Urbanek, A. et al. Flanking regions determine the structure of the poly-glutamine in huntingtin through mechanisms common among glutamine-rich human proteins. Structure 28, 733–746.e5 (2020).

    Article  CAS  PubMed  Google Scholar 

  119. Elena-Real, C. A. et al. The structure of pathogenic huntingtin exon 1 defines the bases of its aggregation propensity. Nat. Struct. Mol. Biol. 30, 309–320 (2023).

    Article  CAS  PubMed  Google Scholar 

  120. Moses, D. et al. Revealing the hidden sensitivity of intrinsically disordered proteins to their chemical environment. J. Phys. Chem. Lett. 11, 10131–10136 (2020). In this work, the authors combine experiment, simulation and theory to examine how IDRs show sequence-dependent sensitivity to changes in the solution context.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Sørensen, C. S. & Kjaergaard, M. Measuring effective concentrations enforced by intrinsically disordered linkers. Methods Mol. Biol. 2141, 505–518 (2020).

    Article  PubMed  Google Scholar 

  122. Mateos, B. et al. Hyperphosphorylation of human osteopontin and its impact on structural dynamics and molecular recognition. Biochemistry https://doi.org/10.1021/acs.biochem.1c00050 (2021).

    Article  PubMed  Google Scholar 

  123. Dignon, G. L., Zheng, W., Best, R. B., Kim, Y. C. & Mittal, J. Relation between single-molecule properties and phase behavior of intrinsically disordered proteins. Proc. Natl Acad. Sci. USA 115, 9929–9934 (2018).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  124. Keul, N. D. et al. The entropic force generated by intrinsically disordered segments tunes protein function. Nature 563, 584–588 (2018).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  125. Busch, D. J. et al. Intrinsically disordered proteins drive membrane curvature. Nat. Commun. 6, 7875 (2015).

    Article  ADS  CAS  PubMed  Google Scholar 

  126. Borcherds, W. et al. Optimal affinity enhancement by a conserved flexible linker controls p53 mimicry in MdmX. Biophys. J. 112, 2038–2042 (2017).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  127. Kjaergaard, M. Estimation of effective concentrations enforced by complex linker architectures from conformational ensembles. Biochemistry 61, 171–182 (2022).

    Article  CAS  PubMed  Google Scholar 

  128. Martin, I. M. et al. Phosphorylation tunes elongation propensity and cohesiveness of INCENP’s intrinsically disordered region. J. Mol. Biol. 434, 167387 (2022).

    Article  CAS  PubMed  Google Scholar 

  129. Sherry, K. P., Johnson, S. E., Hatem, C. L., Majumdar, A. & Barrick, D. Effects of linker length and transient secondary structure elements in the intrinsically disordered notch RAM region on notch signaling. J. Mol. Biol. 427, 3587–3597 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Motlagh, H. N., Wrabl, J. O., Li, J. & Hilser, V. J. The ensemble nature of allostery. Nature 508, 331–339 (2014).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  131. Li, M., Cao, H., Lai, L. & Liu, Z. Disordered linkers in multidomain allosteric proteins: entropic effect to favor the open state or enhanced local concentration to favor the closed state? Protein Sci. 27, 1600–1610 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Huang, W. Y. C., Ditlev, J. A., Chiang, H.-K., Rosen, M. K. & Groves, J. T. Allosteric modulation of Grb2 recruitment to the intrinsically disordered scaffold protein, LAT, by remote site phosphorylation. J. Am. Chem. Soc. 139, 18009–18015 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Seiffert, P. et al. Orchestration of signaling by structural disorder in class 1 cytokine receptors. Cell Commun. Signal. 18, 132 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Yu, F. & Sukenik, S. Structural preferences shape the entropic force of disordered protein ensembles. J. Phys. Chem. B 127, 4235–4244 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Zeno, W. F. et al. Synergy between intrinsically disordered domains and structured proteins amplifies membrane curvature sensing. Nat. Commun. 9, 4152 (2018).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  136. Zeno, W. F. et al. Molecular mechanisms of membrane curvature sensing by a disordered protein. J. Am. Chem. Soc. 141, 10361–10371 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Halladin, D. K. et al. Entropy-driven translocation of disordered proteins through the Gram-positive bacterial cell wall. Nat. Microbiol. 6, 1055–1065 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Davey, N. E. et al. Attributes of short linear motifs. Mol. Biosyst. 8, 268–281 (2012).

    Article  CAS  PubMed  Google Scholar 

  139. Holehouse, A. S. IDPs and IDRs in biomolecular condensates. in Intrinsically Disordered Proteins (ed. Salvi, N.) Ch. 7, 209–255 (Academic Press, 2019).

  140. Posey, A. E., Holehouse, A. S. & Pappu, R. V. Phase separation of intrinsically disordered proteins. in Methods in Enzymology Vol. 611 (ed. Rhoades, E.) Ch. 1, 1–30 (Academic Press, 2018).

  141. Brangwynne, C. P., Tompa, P. & Pappu, R. V. Polymer physics of intracellular phase transitions. Nat. Phys. 11, 899–904 (2015).

    Article  CAS  Google Scholar 

  142. Duchesne, L. et al. Transport of fibroblast growth factor 2 in the pericellular matrix is controlled by the spatial distribution of its binding sites in heparan sulfate. PLoS Biol. 10, e1001361 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Kleinschmit, A. et al. Drosophila heparan sulfate 6-O endosulfatase regulates wingless morphogen gradient formation. Dev. Biol. 345, 204–214 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Yan, D. & Lin, X. Shaping morphogen gradients by proteoglycans. Cold Spring Harb. Perspect. Biol. 1, a002493 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  145. Triandafillou, C. G., Katanski, C. D., Dinner, A. R. & Drummond, D. A. Transient intracellular acidification regulates the core transcriptional heat shock response. eLife 9, e54880 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Gutierrez, J. I. et al. SWI/SNF senses carbon starvation with a pH-sensitive low-complexity sequence. eLife 11, e70344 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Soranno, A. et al. Single-molecule spectroscopy reveals polymer effects of disordered proteins in crowded environments. Proc. Natl Acad. Sci. USA 111, 4874–4879 (2014).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  148. Delarue, M. et al. mTORC1 controls phase separation and the biophysical properties of the cytoplasm by tuning crowding. Cell 174, 338–349.e20 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Battaglia, M., Olvera-Carrillo, Y., Garciarrubio, A., Campos, F. & Covarrubias, A. A. The enigmatic LEA proteins and other hydrophilins. Plant Physiol. 148, 6–24 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Boothby, T. C. & Pielak, G. J. Intrinsically disordered proteins and desiccation tolerance: elucidating functional and mechanistic underpinnings of anhydrobiosis. Bioessays 39, 1700119 (2017).

    Article  Google Scholar 

  151. Boothby, T. C. et al. Tardigrades use intrinsically disordered proteins to survive desiccation. Mol. Cell 65, 975–984.e5 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Wuttke, R. et al. Temperature-dependent solvation modulates the dimensions of disordered proteins. Proc. Natl Acad. Sci. USA 111, 5213–5218 (2014).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  153. Quiroz, F. G. & Chilkoti, A. Sequence heuristics to encode phase behaviour in intrinsically disordered protein polymers. Nat. Mater. 14, 1164–1171 (2015).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  154. Kjaergaard, M. et al. Temperature-dependent structural changes in intrinsically disordered proteins: formation of alpha-helices or loss of polyproline II? Protein Sci. 19, 1555–1564 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Jung, J.-H. et al. A prion-like domain in ELF3 functions as a thermosensor in Arabidopsis. Nature 585, 256–260 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  156. Zhu, P., Lister, C. & Dean, C. Cold-induced Arabidopsis FRIGIDA nuclear condensates for FLC repression. Nature 599, 657–661 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  157. Cuylen-Haering, S. et al. Chromosome clustering by Ki-67 excludes cytoplasm during nuclear assembly. Nature 587, 285–290 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  158. Kumar, S. & Hoh, J. H. Modulation of repulsive forces between neurofilaments by sidearm phosphorylation. Biochem. Biophys. Res. Commun. 324, 489–496 (2004).

    Article  CAS  PubMed  Google Scholar 

  159. Doncic, A. et al. Compartmentalization of a bistable switch enables memory to cross a feedback-driven transition. Cell 160, 1182–1195 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Kõivomägi, M. et al. Multisite phosphorylation networks as signal processors for Cdk1. Nat. Struct. Mol. Biol. 20, 1415–1424 (2013).

    Article  PubMed  Google Scholar 

  161. Zhou, M., Kim, J. K., Eng, G. W. L., Forger, D. B. & Virshup, D. M. A Period2 phosphoswitch regulates and temperature compensates circadian period. Mol. Cell 60, 77–88 (2015).

    Article  PubMed  Google Scholar 

  162. Bah, A. et al. Folding of an intrinsically disordered protein by phosphorylation as a regulatory switch. Nature 519, 106–109 (2015). Here the authors show that multisite phosphorylation of a disordered region can mediate intramolecular folding into a stable 3D structure, offering an example of phospho-conditional folding.

    Article  ADS  CAS  PubMed  Google Scholar 

  163. Mittal, A., Holehouse, A. S., Cohan, M. C. & Pappu, R. V. Sequence-to-conformation relationships of disordered regions tethered to folded domains of proteins. J. Mol. Biol. 430, 2403–2421 (2018).

    Article  CAS  PubMed  Google Scholar 

  164. Taneja, I. & Holehouse, A. S. Folded domain charge properties influence the conformational behavior of disordered tails. Curr. Res. Struct. Biol. 3, 216–228 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Zheng, T., Galagedera, S. K. K. & Castañeda, C. A. Previously uncharacterized interactions between the folded and intrinsically disordered domains impart asymmetric effects on UBQLN2 phase separation. Protein Sci. 30, 1467-1481 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Martin, E. W. et al. Interplay of folded domains and the disordered low-complexity domain in mediating hnRNPA1 phase separation. Nucleic Acids Res. 49, 2931–2945 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  167. Bjarnason, S. et al. DNA binding redistributes activation domain ensemble and accessibility in pioneer factor Sox2. Preprint at bioRxiv https://doi.org/10.1101/2023.06.16.545083 (2023).

    Article  Google Scholar 

  168. Farr, S. E., Woods, E. J., Joseph, J. A., Garaizar, A. & Collepardo-Guevara, R. Nucleosome plasticity is a critical element of chromatin liquid–liquid phase separation and multivalent nucleosome interactions. Nat. Commun. 12, 2883 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  169. Heidarsson, P. O. et al. Release of linker histone from the nucleosome driven by polyelectrolyte competition with a disordered protein. Nat. Chem. 14, 224–231 (2022).

    Article  CAS  PubMed  Google Scholar 

  170. Chen, Q., Yang, R., Korolev, N., Liu, C. F. & Nordenskiöld, L. Regulation of nucleosome stacking and chromatin compaction by the histone H4 N-terminal tail–H2A acidic patch interaction. J. Mol. Biol. 429, 2075–2092 (2017).

    Article  CAS  PubMed  Google Scholar 

  171. Staby, L. et al. Flanking disorder of the folded αα-hub domain from radical induced cell death1 affects transcription factor binding by ensemble redistribution. J. Mol. Biol. 433, 167320 (2021).

    Article  CAS  PubMed  Google Scholar 

  172. Staby, L. et al. Disorder in a two-domain neuronal Ca2+-binding protein regulates domain stability and dynamics using ligand mimicry. Cell. Mol. Life Sci. 78, 2263–2278 (2021).

    Article  CAS  PubMed  Google Scholar 

  173. Corless, E. I. et al. The flexible N-terminus of BchL autoinhibits activity through interaction with its [4Fe-4S] cluster and released upon ATP binding. J. Biol. Chem. 296, 100107 (2021).

    Article  CAS  PubMed  Google Scholar 

  174. Alston, J. J., Soranno, A. & Holehouse, A. S. Conserved molecular recognition by an intrinsically disordered region in the absence of sequence conservation. Preprint at bioRxiv https://doi.org/10.1101/2023.08.06.552128 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  175. Hendus-Altenburger, R. et al. A phosphorylation-motif for tuneable helix stabilisation in intrinsically disordered proteins — lessons from the sodium proton exchanger 1 (NHE1). Cell Signal. 37, 40–51 (2017).

    Article  CAS  PubMed  Google Scholar 

  176. Hendus-Altenburger, R. et al. The human Na(+)/H(+) exchanger 1 is a membrane scaffold protein for extracellular signal-regulated kinase 2. BMC Biol. 14, 31 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  177. Brown, C. J. et al. Evolutionary rate heterogeneity in proteins with long disordered regions. J. Mol. Evol. 55, 104–110 (2002).

    Article  ADS  CAS  PubMed  Google Scholar 

  178. Langstein-Skora, I. et al. Sequence- and chemical specificity define the functional landscape of intrinsically disordered regions. Preprint at bioRxiv https://doi.org/10.1101/2022.02.10.480018 (2022).

    Article  Google Scholar 

  179. Davey, N. E., Cyert, M. S. & Moses, A. M. Short linear motifs — ex nihilo evolution of protein regulation. Cell Commun. Signal. 13, 43 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  180. Sangster, A. G., Zarin, T. & Moses, A. M. Evolution of short linear motifs and disordered proteins topic: yeast as model system to study evolution. Curr. Opin. Genet. Dev. 76, 101964 (2022).

    Article  CAS  PubMed  Google Scholar 

  181. Garboczi, D. N. et al. Structure of the complex between human T-cell receptor, viral peptide and HLA-A2. Nature 384, 134–141 (1996).

    Article  ADS  CAS  PubMed  Google Scholar 

  182. Rebek, J. Jr. Model studies in molecular recognition. Science 235, 1478–1484 (1987).

    Article  ADS  CAS  PubMed  Google Scholar 

  183. Brooijmans, N. & Kuntz, I. D. Molecular recognition and docking algorithms. Annu. Rev. Biophys. Biomol. Struct. 32, 335–373 (2003).

    Article  CAS  PubMed  Google Scholar 

  184. Rogers, J. M., Wong, C. T. & Clarke, J. Coupled folding and binding of the disordered protein PUMA does not require particular residual structure. J. Am. Chem. Soc. 136, 5197–5200 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Chen, T., Song, J. & Chan, H. S. Theoretical perspectives on nonnative interactions and intrinsic disorder in protein folding and binding. Curr. Opin. Struct. Biol. 30, 32–42 (2014).

    Article  PubMed  Google Scholar 

  186. Ivarsson, Y. & Jemth, P. Affinity and specificity of motif-based protein–protein interactions. Curr. Opin. Struct. Biol. 54, 26–33 (2019).

    Article  CAS  PubMed  Google Scholar 

  187. Staller, M. V. et al. Directed mutational scanning reveals a balance between acidic and hydrophobic residues in strong human activation domains. Cell Syst. 13, 334–345.e5 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Berlow, R. B., Dyson, H. J. & Wright, P. E. Hypersensitive termination of the hypoxic response by a disordered protein switch. Nature 543, 447–451 (2017). In this study, the authors reveal how dynamic intermolecular competition coupled with disorder-driven allosteric changes can lead to complex regulatory behaviour in IDR binding.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  189. Olsen, J. G., Teilum, K. & Kragelund, B. B. Behaviour of intrinsically disordered proteins in protein–protein complexes with an emphasis on fuzziness. Cell. Mol. Life Sci. 74, 3175–3183 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Tompa, P. & Fuxreiter, M. Fuzzy complexes: polymorphism and structural disorder in protein–protein interactions. Trends Biochem. Sci. 33, 2–8 (2008).

    Article  CAS  PubMed  Google Scholar 

  191. Eick, D. & Geyer, M. The RNA polymerase II carboxy-terminal domain (CTD) code. Chem. Rev. 113, 8456–8490 (2013).

    Article  CAS  PubMed  Google Scholar 

  192. Prestel, A. et al. The PCNA interaction motifs revisited: thinking outside the PIP-box. Cell. Mol. Life Sci. 76, 4923–4943 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Follis, A. V. et al. Regulation of apoptosis by an intrinsically disordered region of Bcl-xL. Nat. Chem. Biol. 14, 458–465 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. He, F. et al. Interaction between p53 N terminus and core domain regulates specific and nonspecific DNA binding. Proc. Natl Acad. Sci. USA 116, 8859–8868 (2019).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  195. Krois, A. S., Dyson, H. J. & Wright, P. E. Long-range regulation of p53 DNA binding by its intrinsically disordered N-terminal transactivation domain. Proc. Natl Acad. Sci. USA 115, E11302–E11310 (2018).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  196. Jenuwein, T. & Allis, C. D. Translating the histone code. Science 293, 1074–1080 (2001).

    Article  CAS  PubMed  Google Scholar 

  197. Phatnani, H. P. & Greenleaf, A. L. Phosphorylation and functions of the RNA polymerase II CTD. Genes Dev. 20, 2922–2936 (2006).

    Article  CAS  PubMed  Google Scholar 

  198. Wright, P. E. & Dyson, H. J. Linking folding and binding. Curr. Opin. Struct. Biol. 19, 31–38 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Sugase, K., Dyson, H. J. & Wright, P. E. Mechanism of coupled folding and binding of an intrinsically disordered protein. Nature 447, 1021–1025 (2007).

    Article  ADS  CAS  PubMed  Google Scholar 

  200. Rogers, J. M., Steward, A. & Clarke, J. Folding and binding of an intrinsically disordered protein: fast, but not ‘diffusion-limited’. J. Am. Chem. Soc. 135, 1415–1422 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Gianni, S., Morrone, A., Giri, R. & Brunori, M. A folding-after-binding mechanism describes the recognition between the transactivation domain of c-Myb and the KIX domain of the CREB-binding protein. Biochem. Biophys. Res. Commun. 428, 205–209 (2012).

    Article  CAS  PubMed  Google Scholar 

  202. Dogan, J., Schmidt, T., Mu, X., Engström, Å. & Jemth, P. Fast association and slow transitions in the interaction between two intrinsically disordered protein domains. J. Biol. Chem. 287, 34316–34324 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Teilum, K., Olsen, J. G. & Kragelund, B. B. Globular and disordered — the non-identical twins in protein–protein interactions. Front. Mol. Biosci. 2, 40 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  204. Lazar, T., Tantos, A., Tompa, P. & Schad, E. Intrinsic protein disorder uncouples affinity from binding specificity. Protein Sci. 31, e4455 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Skriver, K., Theisen, F. F. & Kragelund, B. B. Conformational entropy in molecular recognition of intrinsically disordered proteins. Curr. Opin. Struct. Biol. 83, 102697 (2023).

    Article  CAS  PubMed  Google Scholar 

  206. O’Shea, C. et al. Structures and short linear motif of disordered transcription factor regions provide clues to the interactome of the cellular hub protein radical-induced cell death1. J. Biol. Chem. 292, 512–527 (2017).

    Article  PubMed  Google Scholar 

  207. Theisen, F. F. et al. αα-Hub coregulator structure and flexibility determine transcription factor binding and selection in regulatory interactomes. J. Biol. Chem. 298, 101963 (2022).

    Article  Google Scholar 

  208. Arai, M., Sugase, K., Dyson, H. J. & Wright, P. E. Conformational propensities of intrinsically disordered proteins influence the mechanism of binding and folding. Proc. Natl Acad. Sci. USA 112, 9614–9619 (2015).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  209. Shammas, S. L., Crabtree, M. D., Dahal, L., Wicky, B. I. M. & Clarke, J. Insights into coupled folding and binding mechanisms from kinetic studies. J. Biol. Chem. 291, 6689–6695 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Gianni, S., Dogan, J. & Jemth, P. Distinguishing induced fit from conformational selection. Biophys. Chem. 189, 33–39 (2014).

    Article  CAS  PubMed  Google Scholar 

  211. Dogan, J. & Jemth, P. Only kinetics can prove conformational selection. Biophys. J. 107, 1997–1998 (2014).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  212. Hammes, G. G., Chang, Y.-C. & Oas, T. G. Conformational selection or induced fit: a flux description of reaction mechanism. Proc. Natl Acad. Sci. USA 106, 13737–13741 (2009).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  213. Dyson, H. J. & Wright, P. E. Coupling of folding and binding for unstructured proteins. Curr. Opin. Struct. Biol. 12, 54–60 (2002).

    Article  CAS  PubMed  Google Scholar 

  214. Spolar, R. S. & Record, M. T. Jr. Coupling of local folding to site-specific binding of proteins to DNA. Science 263, 777–784 (1994).

    Article  ADS  CAS  PubMed  Google Scholar 

  215. Suarez, I. P., Burdisso, P., Benoit, M. P. M. H., Boisbouvier, J. & Rasia, R. M. Induced folding in RNA recognition by Arabidopsis thaliana DCL1. Nucleic Acids Res. 43, 6607–6619 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Vise, P. D., Baral, B., Latos, A. J. & Daughdrill, G. W. NMR chemical shift and relaxation measurements provide evidence for the coupled folding and binding of the p53 transactivation domain. Nucleic Acids Res. 33, 2061–2077 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. Lee, C. W., Martinez-Yamout, M. A., Dyson, H. J. & Wright, P. E. Structure of the p53 transactivation domain in complex with the nuclear receptor coactivator binding domain of CREB binding protein. Biochemistry 49, 9964–9971 (2010).

    Article  CAS  PubMed  Google Scholar 

  218. Elkjær, S. et al. Evolutionary fine-tuning of residual helix structure in disordered proteins manifests in complex structure and lifetime. Commun. Biol. 6, 63 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  219. Crabtree, M. D., Mendonça, C. A. T. F., Bubb, Q. R. & Clarke, J. Folding and binding pathways of BH3-only proteins are encoded within their intrinsically disordered sequence, not templated by partner proteins. J. Biol. Chem. 293, 9718–9723 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. Toto, A. et al. Molecular recognition by templated folding of an intrinsically disordered protein. Sci. Rep. 6, 21994 (2016).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  221. Longhi, S. et al. The C-terminal domain of the measles virus nucleoprotein is intrinsically disordered and folds upon binding to the C-terminal moiety of the phosphoprotein. J. Biol. Chem. 278, 18638–18648 (2003).

    Article  CAS  PubMed  Google Scholar 

  222. Demarest, S. J. et al. Mutual synergistic folding in recruitment of CBP/p300 by p160 nuclear receptor coactivators. Nature 415, 549–553 (2002).

    Article  CAS  PubMed  Google Scholar 

  223. Qin, B. Y. et al. Crystal structure of IRF-3 in complex with CBP. Structure 13, 1269–1277 (2005).

    Article  CAS  PubMed  Google Scholar 

  224. Karlsson, E. et al. Disordered regions flanking the binding interface modulate affinity between CBP and NCOA. J. Mol. Biol. 434, 167643 (2022).

    Article  CAS  PubMed  Google Scholar 

  225. Jemth, P. et al. Structure and dynamics conspire in the evolution of affinity between intrinsically disordered proteins. Sci. Adv. 4, eaau4130 (2018).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  226. Fuxreiter, M. Fold or not to fold upon binding — does it really matter? Curr. Opin. Struct. Biol. 54, 19–25 (2019).

    Article  CAS  PubMed  Google Scholar 

  227. Sharma, R., Raduly, Z., Miskei, M. & Fuxreiter, M. Fuzzy complexes: specific binding without complete folding. FEBS Lett. 589, 2533–2542 (2015).

    Article  CAS  PubMed  Google Scholar 

  228. Jiang, Y., Rossi, P. & Kalodimos, C. G. Structural basis for client recognition and activity of Hsp40 chaperones. Science 365, 1313–1319 (2019).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  229. Shi, Y. et al. Structure-based classification of tauopathies. Nature 598, 359–363 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  230. Yang, Y. et al. Cryo-EM structures of amyloid-β 42 filaments from human brains. Science 375, 167–172 (2022).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  231. Yang, Y. et al. Structures of α-synuclein filaments from human brains with Lewy pathology. Nature 610, 791–795 (2022).

    Article  ADS  CAS  PubMed  Google Scholar 

  232. Berlow, R. B., Dyson, H. J. & Wright, P. E. Multivalency enables unidirectional switch-like competition between intrinsically disordered proteins. Proc. Natl Acad. Sci. USA 119, e2117338119 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  233. Tuttle, L. M. et al. Gcn4-mediator specificity is mediated by a large and dynamic fuzzy protein–protein complex. Cell Rep. 22, 3251–3264 (2018). In this study, the authors provide biophysical characterization of fuzzy transcription factor–co-activator binding.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  234. Brzovic, P. S. et al. The acidic transcription activator Gcn4 binds the mediator subunit Gal11/Med15 using a simple protein interface forming a fuzzy complex. Mol. Cell 44, 942–953 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  235. Staller, M. V. et al. A high-throughput mutational scan of an intrinsically disordered acidic transcriptional activation domain. Cell Syst. 6, 444–455.e6 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  236. Sanborn, A. L. et al. Simple biochemical features underlie transcriptional activation domain diversity and dynamic, fuzzy binding to mediator. eLife 10, e68068 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  237. Görlich, D., Prehn, S., Laskey, R. A. & Hartmann, E. Isolation of a protein that is essential for the first step of nuclear protein import. Cell 79, 767–778 (1994).

    Article  PubMed  Google Scholar 

  238. Görlich, D. & Kutay, U. Transport between the cell nucleus and the cytoplasm. Annu. Rev. Cell Dev. Biol. 15, 607–660 (1999).

    Article  PubMed  Google Scholar 

  239. Milles, S. et al. Plasticity of an ultrafast interaction between nucleoporins and nuclear transport receptors. Cell 163, 734–745 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  240. Frey, S. & Görlich, D. A saturated FG-repeat hydrogel can reproduce the permeability properties of nuclear pore complexes. Cell 130, 512–523 (2007). This paper provides the first dissection of the sequence rules that determine what would now be referred to as biomolecular condensates, illustrating how IDRs can self-assemble into materials with biological activity.

    Article  CAS  PubMed  Google Scholar 

  241. Frey, S., Richter, R. P. & Görlich, D. FG-rich repeats of nuclear pore proteins form a three-dimensional meshwork with hydrogel-like properties. Science 314, 815–817 (2006).

    Article  ADS  CAS  PubMed  Google Scholar 

  242. Schmidt, H. B. & Görlich, D. Nup98 FG domains from diverse species spontaneously phase-separate into particles with nuclear pore-like permselectivity. eLife 4, e04251 (2015).

    Google Scholar 

  243. Buholzer, K. J. et al. Multilayered allosteric modulation of coupled folding and binding by phosphorylation, peptidyl-prolyl cis/trans isomerization, and diversity of interaction partners. J. Chem. Phys. 157, 235102 (2022).

    Article  ADS  CAS  PubMed  Google Scholar 

  244. Staller, M. V. Transcription factors perform a 2-step search of the nucleus. Genetics 222, iyac111 (2002).

    Article  Google Scholar 

  245. Schuler, B. et al. Binding without folding — the biomolecular function of disordered polyelectrolyte complexes. Curr. Opin. Struct. Biol. 60, 66–76 (2019).

    Article  PubMed  Google Scholar 

  246. Borgia, A. et al. Extreme disorder in an ultrahigh-affinity protein complex. Nature 555, 61–66 (2018). This paper provides conclusive evidence that disordered proteins can form high-affinity biomolecular complexes that remain dynamic without the acquisition of any secondary or tertiary structure or persistent contacts.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  247. Sottini, A. et al. Polyelectrolyte interactions enable rapid association and dissociation in high-affinity disordered protein complexes. Nat. Commun. 11, 5736 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  248. Galvanetto, N. et al. Extreme dynamics in a biomolecular condensate. Nature 619, 876–883 (2023). In this work, the authors combine single-molecule studies and simulations to show that intra-condensate dynamics in IDR condensates can remain fast, despite macroscopic condensate viscosity being high.

    Article  ADS  CAS  PubMed  Google Scholar 

  249. Yu, M. et al. Visualizing the disordered nuclear transport machinery in situ. Nature 617, 162–169 (2023). In this work, the authors determine the conformational behaviour of phenylalanine-glycine-repeat IDRs inside the nuclear pore complex.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  250. Frey, S. et al. Surface properties determining passage rates of proteins through nuclear pores. Cell 174, 202–217.e9 (2018).

    Article  CAS  PubMed  Google Scholar 

  251. Schneider, R., Blackledge, M. & Jensen, M. R. Elucidating binding mechanisms and dynamics of intrinsically disordered protein complexes using NMR spectroscopy. Curr. Opin. Struct. Biol. 54, 10–18 (2019).

    Article  CAS  PubMed  Google Scholar 

  252. Teilum, K., Olsen, J. G. & Kragelund, B. B. On the specificity of protein–protein interactions in the context of disorder. Biochem. J. 478, 2035–2050 (2021).

    Article  CAS  PubMed  Google Scholar 

  253. Eaton, B. E., Gold, L. & Zichi, D. A. Let’s get specific: the relationship between specificity and affinity. Chem. Biol. 2, 633–638 (1995).

    Article  CAS  PubMed  Google Scholar 

  254. Kumar, M. et al. ELM — the eukaryotic linear motif resource in 2020. Nucleic Acids Res. 48, D296–D306 (2019).

    MathSciNet  PubMed Central  Google Scholar 

  255. Tompa, P., Davey, N. E., Gibson, T. J. & Babu, M. M. A million peptide motifs for the molecular biologist. Mol. Cell 55, 161–169 (2014). This perspective article provides a clear assessment of the importance that SLiMs endow upon IDRs and their prevalence across eukaryotic proteomes.

    Article  CAS  PubMed  Google Scholar 

  256. Bruning, J. B. & Shamoo, Y. Structural and thermodynamic analysis of human PCNA with peptides derived from DNA polymerase-delta p66 subunit and flap endonuclease-1. Structure 12, 2209–2219 (2004).

    Article  CAS  PubMed  Google Scholar 

  257. Dreier, J. E. et al. A context-dependent and disordered ubiquitin-binding motif. Cell. Mol. Life Sci. 79, 484 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  258. Lee, B. J. et al. Rules for nuclear localization sequence recognition by karyopherin β2. Cell 126, 543–558 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  259. Oldfield, C. J. et al. Flexible nets: disorder and induced fit in the associations of p53 and 14-3-3 with their partners. BMC Genomics 9, S1 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  260. Davey, N. E., Simonetti, L. & Ivarsson, Y. The next wave of interactomics: mapping the SLiM-based interactions of the intrinsically disordered proteome. Curr. Opin. Struct. Biol. 80, 102593 (2023).

    Article  CAS  PubMed  Google Scholar 

  261. Hadži, S., Loris, R. & Lah, J. The sequence–ensemble relationship in fuzzy protein complexes. Proc. Natl Acad. Sci. USA 118, e2020562118 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  262. Nguyen, H. Q. et al. Quantitative mapping of protein–peptide affinity landscapes using spectrally encoded beads. eLife 8, e40499 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  263. Mihalič, F. et al. Evolution of affinity between p53 transactivation domain and MDM2 across the animal kingdom demonstrates high plasticity of motif-mediated interactions. Protein Sci. 32, e4684 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  264. Kumar, M. et al. The eukaryotic linear motif resource: 2022 release. Nucleic Acids Res. 50, D497–D508 (2022).

    Article  ADS  CAS  PubMed  Google Scholar 

  265. Davey, N. E., Shields, D. C. & Edwards, R. J. Masking residues using context-specific evolutionary conservation significantly improves short linear motif discovery. Bioinformatics 25, 443–450 (2009).

    Article  CAS  PubMed  Google Scholar 

  266. Chhabra, Y. et al. Tyrosine kinases compete for growth hormone receptor binding and regulate receptor mobility and degradation. Cell Rep. 42, 112490 (2023).

    Article  CAS  PubMed  Google Scholar 

  267. Raj, N. & Attardi, L. D. The transactivation domains of the p53 protein. Cold Spring Harb. Perspect. Med. 7, a026047 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  268. Bochkareva, E. et al. Single-stranded DNA mimicry in the p53 transactivation domain interaction with replication protein A. Proc. Natl Acad. Sci. USA 102, 15412–15417 (2005).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  269. Di Lello, P. et al. Structure of the Tfb1/p53 complex: insights into the interaction between the p62/Tfb1 subunit of TFIIH and the activation domain of p53. Mol. Cell 22, 731–740 (2006).

    Article  PubMed  Google Scholar 

  270. Miller Jenkins, L. M. et al. Characterization of the p300 Taz2–p53 TAD2 complex and comparison with the p300 Taz2–p53 TAD1 complex. Biochemistry 54, 2001–2010 (2015).

    Article  CAS  PubMed  Google Scholar 

  271. Rowell, J. P., Simpson, K. L., Stott, K., Watson, M. & Thomas, J. O. HMGB1-facilitated p53 DNA binding occurs via HMG-box/p53 transactivation domain interaction, regulated by the acidic tail. Structure 20, 2014–2024 (2012).

    Article  CAS  PubMed  Google Scholar 

  272. Lee, M.-S. et al. Solution structure of MUL1-RING domain and its interaction with p53 transactivation domain. Biochem. Biophys. Res. Commun. 516, 533–539 (2019).

    Article  CAS  PubMed  Google Scholar 

  273. Mészáros, B., Kumar, M., Gibson, T. J., Uyar, B. & Dosztányi, Z. Degrons in cancer. Sci. Signal. 10, eaak9982 (2017).

    Article  PubMed  Google Scholar 

  274. Provost, E. et al. Functional correlates of mutation of the Asp32 and Gly34 residues of beta-catenin. Oncogene 24, 2667–2676 (2005).

    Article  CAS  PubMed  Google Scholar 

  275. Olsen, J. G. et al. Checkpoint activation by Spd1: a competition-based system relying on tandem disordered PCNA binding motifs. Preprint at bioRxiv https://doi.org/10.1101/2023.05.11.540346 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  276. Meyer, K. et al. Mutations in disordered regions can cause disease by creating dileucine motifs. Cell 175, 239–253.e17 (2018).

    Article  CAS  PubMed  Google Scholar 

  277. Kliche, J. et al. Large-scale phosphomimetic screening identifies phospho-modulated motif-based protein interactions. Mol. Syst. Biol. 19, e11164 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  278. Kassa, E. et al. Evaluation of affinity-purification coupled to mass spectrometry approaches for capture of short linear motif-based interactions. Anal. Biochem. 663, 115017 (2023).

    Article  CAS  PubMed  Google Scholar 

  279. Mihalič, F. et al. Large-scale phage-based screening reveals extensive pan-viral mimicry of host short linear motifs. Nat. Commun. 14, 2409 (2023). In this study, a high-throughput analysis identified 1,712 SLiM-based virus–host interactions, in which viruses engage in molecular mimicry to subvert host programmes.

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  280. Stein, A. & Aloy, P. Contextual specificity in peptide-mediated protein interactions. PLoS ONE 3, e2524 (2008).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  281. Karlsson, E., Ottoson, C., Ye, W., Andersson, E. & Jemth, P. Intrinsically disordered flanking regions increase the affinity of a transcriptional coactivator interaction across vertebrates. Biochemistry https://doi.org/10.1021/acs.biochem.3c00285 (2023).

    Article  PubMed  Google Scholar 

  282. Siligardi, G. et al. The SH3 domain of HS1 protein recognizes lysine-rich polyproline motifs. Amino Acids 42, 1361–1370 (2012).

    Article  CAS  PubMed  Google Scholar 

  283. Palopoli, N., González Foutel, N. S., Gibson, T. J. & Chemes, L. B. Short linear motif core and flanking regions modulate retinoblastoma protein binding affinity and specificity. Protein Eng. Des. Sel. 31, 69–77 (2018).

    Article  CAS  PubMed  Google Scholar 

  284. Brodsky, S. et al. Intrinsically disordered regions direct transcription factor in vivo binding specificity. Mol. Cell 79, 459–471.e4 (2020).

    Article  CAS  PubMed  Google Scholar 

  285. Strzalka, W., Oyama, T., Tori, K. & Morikawa, K. Crystal structures of the Arabidopsis thaliana proliferating cell nuclear antigen 1 and 2 proteins complexed with the human p21 C-terminal segment. Protein Sci. 18, 1072–1080 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  286. Berlow, R. B., Martinez-Yamout, M. A., Dyson, H. J. & Wright, P. E. Role of backbone dynamics in modulating the interactions of disordered ligands with the TAZ1 domain of the CREB-binding protein. Biochemistry 58, 1354–1362 (2019).

    Article  CAS  PubMed  Google Scholar 

  287. Bhattacharyya, R. P. et al. The Ste5 scaffold allosterically modulates signaling output of the yeast mating pathway. Science 311, 822–826 (2006).

    Article  ADS  CAS  PubMed  Google Scholar 

  288. Mihalic, F. et al. Conservation of affinity rather than sequence underlies a dynamic evolution of the motif-mediated p53/MDM2 interaction in teleosts. Preprint at bioRxiv https://doi.org/10.1101/2023.08.24.554616 (2023).

    Article  Google Scholar 

  289. Benz, C. et al. Proteome-scale mapping of binding sites in the unstructured regions of the human proteome. Mol. Syst. Biol. 18, e10584 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  290. Jephthah, S., Staby, L., Kragelund, B. B. & Skepö, M. Temperature dependence of intrinsically disordered proteins in simulations: what are we missing? J. Chem. Theory Comput. 15, 2672–2683 (2019).

    Article  CAS  PubMed  Google Scholar 

  291. Cuevas-Velazquez, C. L. et al. Intrinsically disordered protein biosensor tracks the physical–chemical effects of osmotic stress on cells. Nat. Commun. 12, 5438 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  292. Moses, D. et al. Structural biases in disordered proteins are prevalent in the cell. Nat. Struct. Mol. Biol. https://doi.org/10.1038/s41594-023-01148-8 (2023). In this work, the authors use in cell ensemble FRET to show that sequence-encoded conformational biases seen in vitro persist in the cellular environment and that changes to that environment can alter ensemble properties.

    Article  Google Scholar 

  293. Klein, P., Pawson, T. & Tyers, M. Mathematical modeling suggests cooperative interactions between a disordered polyvalent ligand and a single receptor site. Curr. Biol. 13, 1669–1678 (2003).

    Article  CAS  PubMed  Google Scholar 

  294. Sparks, S., Hayama, R., Rout, M. P. & Cowburn, D. Analysis of multivalent IDP interactions: stoichiometry, affinity, and local concentration effect measurements. Methods Mol. Biol. 2141, 463–475 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  295. Rogers, J. M. et al. Interplay between partner and ligand facilitates the folding and binding of an intrinsically disordered protein. Proc. Natl Acad. Sci. USA 111, 15420–15425 (2014).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  296. Banani, S. F., Lee, H. O., Hyman, A. A. & Rosen, M. K. Biomolecular condensates: organizers of cellular biochemistry. Nat. Rev. Mol. Cell Biol. 18, 285–298 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  297. Cho, W.-K. et al. Mediator and RNA polymerase II clusters associate in transcription-dependent condensates. Science 361, 412–415 (2018).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  298. Chong, S. et al. Imaging dynamic and selective low-complexity domain interactions that control gene transcription. Science 361, eaar2555 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  299. Brangwynne, C. P. et al. Germline P granules are liquid droplets that localize by controlled dissolution/condensation. Science 324, 1729–1732 (2009).

    Article  ADS  CAS  PubMed  Google Scholar 

  300. Shin, Y. & Brangwynne, C. P. Liquid phase condensation in cell physiology and disease. Science 357, eaaf4382 (2017).

    Article  PubMed  Google Scholar 

  301. Choi, J.-M., Holehouse, A. S. & Pappu, R. V. Physical principles underlying the complex biology of intracellular phase transitions. Annu. Rev. Biophys. 49, 107–133 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  302. Dignon, G. L., Best, R. B. & Mittal, J. Biomolecular phase separation: from molecular driving forces to macroscopic properties. Annu. Rev. Phys. Chem. 71, 53–75 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  303. Berry, J., Brangwynne, C. P. & Haataja, M. Physical principles of intracellular organization via active and passive phase transitions. Rep. Prog. Phys. 81, 046601 (2018).

    Article  ADS  PubMed  Google Scholar 

  304. Mittag, T. & Pappu, R. V. A conceptual framework for understanding phase separation and addressing open questions and challenges. Mol. Cell 82, 2201–2214 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  305. Pappu, R. V., Cohen, S. R., Dar, F., Farag, M. & Kar, M. Phase transitions of associative biomacromolecules. Chem. Rev. 123, 8945–8987 (2023).

    Article  CAS  PubMed  Google Scholar 

  306. Boeynaems, S. et al. Protein phase separation: a new phase in cell biology. Trends Cell Biol. 28, 420–435 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  307. Lyon, A. S., Peeples, W. B. & Rosen, M. K. A framework for understanding the functions of biomolecular condensates across scales. Nat. Rev. Mol. Cell Biol. 22, 1–21 (2020).

    Google Scholar 

  308. Martin, E. W. & Holehouse, A. S. Intrinsically disordered protein regions and phase separation: sequence determinants of assembly or lack thereof. Emerg. Top. Life Sci. 4, 307–329 (2020).

    Article  CAS  PubMed  Google Scholar 

  309. Li, P. et al. Phase transitions in the assembly of multivalent signalling proteins. Nature 483, 336–340 (2012).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  310. Wang, J. et al. A molecular grammar governing the driving forces for phase separation of prion-like RNA binding proteins. Cell 174, 688–699.e16 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  311. Choi, J.-M., Dar, F. & Pappu, R. V. LASSI: a lattice model for simulating phase transitions of multivalent proteins. PLoS Comput. Biol. 15, e1007028 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  312. Choi, J.-M., Hyman, A. A. & Pappu, R. V. Generalized models for bond percolation transitions of associative polymers. Phys. Rev. E 102, 042403 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  313. Ginell, G. M. & Holehouse, A. S. An introduction to the stickers-and-spacers framework as applied to biomolecular condensates. Methods Mol. Biol. 2563, 95–116 (2023).

    Article  PubMed  Google Scholar 

  314. Cates, M. E. & Witten, T. A. Chain conformation and solubility of associating polymers. Macromolecules 19, 732–739 (1986).

    Article  ADS  CAS  Google Scholar 

  315. Semenov, A. N. & Rubinstein, M. Thermoreversible gelation in solutions of associative polymers. 1. Statics. Macromolecules 31, 1373–1385 (1998).

    Article  ADS  CAS  Google Scholar 

  316. Rubinstein, M. & Semenov, A. N. Thermoreversible gelation in solutions of associating polymers. 2. Linear dynamics. Macromolecules 31, 1386–1397 (1998).

    Article  ADS  CAS  Google Scholar 

  317. Rekhi, S. et al. Expanding the molecular language of protein liquid–liquid phase separation. Preprint at bioRxiv https://doi.org/10.1101/2023.03.02.530853 (2023).

    Article  Google Scholar 

  318. Holehouse, A. S., Ginell, G. M., Griffith, D. & Böke, E. Clustering of aromatic residues in prion-like domains can tune the formation, state, and organization of biomolecular condensates. Biochemistry 60, 3566–3581 (2021).

    Article  CAS  PubMed  Google Scholar 

  319. Ruff, K. M. et al. Sequence grammar underlying the unfolding and phase separation of globular proteins. Mol. Cell 82, 3193–3208.e8 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  320. Yang, Y., Jones, H. B., Dao, T. P. & Castañeda, C. A. Single amino acid substitutions in stickers, but not spacers, substantially alter UBQLN2 phase transitions and dense phase material properties. J. Phys. Chem. B 123, 3618–3629 (2019).

    Article  CAS  PubMed  Google Scholar 

  321. Farag, M. et al. Condensates formed by prion-like low-complexity domains have small-world network structures and interfaces defined by expanded conformations. Nat. Commun. 13, 7722 (2022).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  322. Abbas, M., Lipiński, W. P., Nakashima, K. K., Huck, W. T. S. & Spruijt, E. A short peptide synthon for liquid–liquid phase separation. Nat. Chem. 13, 1046–1054 (2021).

    Article  CAS  PubMed  Google Scholar 

  323. Ruff, K. M., Dar, F. & Pappu, R. V. Ligand effects on phase separation of multivalent macromolecules. Proc. Natl Acad. Sci. USA 118, e2017184118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  324. Lin, Y.-H. & Chan, H. S. Phase separation and single-chain compactness of charged disordered proteins are strongly correlated. Biophys. J. 112, 2043–2046 (2017).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  325. Banani, S. F. et al. Compositional control of phase-separated cell bodies. Cell 166, 651–663 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  326. Riback, J. A. et al. Composition-dependent thermodynamics of intracellular phase separation. Nature 581, 209–214 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  327. Elbaum-Garfinkle, S. et al. The disordered P granule protein LAF-1 drives phase separation into droplets with tunable viscosity and dynamics. Proc. Natl Acad. Sci. USA 112, 7189–7194 (2015).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  328. Hondele, M. et al. DEAD-box ATPases are global regulators of phase-separated organelles. Nature 573, 144–148 (2019).

    Article  ADS  CAS  PubMed  Google Scholar 

  329. Nott, T. J. et al. Phase transition of a disordered nuage protein generates environmentally responsive membraneless organelles. Mol. Cell 57, 936–947 (2015). This study is among the first systematic biophysical investigations into the sequence determinants of phase separation as driven by IDRs.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  330. Sankaranarayanan, M. et al. Adaptable P body physical states differentially regulate bicoid mRNA storage during early Drosophila development. Dev. Cell 56, 2886–2901.e6 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  331. Whitman, B. T., Wang, Y., Murray, C. R. A., Glover, M. J. N. & Owttrim, G. W. Liquid–liquid phase separation of the DEAD-box cyanobacterial RNA helicase redox (CrhR) into dynamic membraneless organelles in Synechocystis sp. strain PCC 6803. Appl. Environ. Microbiol. 89, e0001523 (2023).

    Article  PubMed  Google Scholar 

  332. Li, Q. et al. DEAD-box helicases modulate dicing body formation in Arabidopsis. Sci. Adv. 7, eabc6266 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  333. Iserman, C. et al. Condensation of Ded1p promotes a translational switch from housekeeping to stress protein production. Cell 181, 818–831.e19 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  334. Brady, J. P. et al. Structural and hydrodynamic properties of an intrinsically disordered region of a germ cell-specific protein on phase separation. Proc. Natl Acad. Sci. USA 114, E8194–E8203 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  335. Joseph, J. A. et al. Physics-driven coarse-grained model for biomolecular phase separation with near-quantitative accuracy. Nat. Comput. Sci. 1, 732–743 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  336. Pak, C. W. et al. Sequence determinants of intracellular phase separation by complex coacervation of a disordered protein. Mol. Cell 63, 72–85 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  337. Han, T. W. et al. Cell-free formation of RNA granules: bound RNAs identify features and components of cellular assemblies. Cell 149, 768–779 (2012).

    Article  CAS  PubMed  Google Scholar 

  338. Kato, M. et al. Cell-free formation of RNA granules: low complexity sequence domains form dynamic fibers within hydrogels. Cell 149, 753–767 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  339. Boeynaems, S. et al. Phase separation of C9orf72 dipeptide repeats perturbs stress granule dynamics. Mol. Cell 65, 1044–1055.e5 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  340. Sang, D. et al. Condensed-phase signaling can expand kinase specificity and respond to macromolecular crowding. Mol. Cell 82, 3693–3711.e10 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  341. Sridharan, S. et al. Systematic discovery of biomolecular condensate-specific protein phosphorylation. Nat. Chem. Biol. 18, 1104–1114 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  342. Milovanovic, D., Wu, Y., Bian, X. & De Camilli, P. A liquid phase of synapsin and lipid vesicles. Science 361, 604–607 (2018).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  343. Kim, T. H. et al. Phospho-dependent phase separation of FMRP and CAPRIN1 recapitulates regulation of translation and deadenylation. Science 365, 825–829 (2019).

    Article  ADS  CAS  PubMed  Google Scholar 

  344. Guo, Y. E. et al. Pol II phosphorylation regulates a switch between transcriptional and splicing condensates. Nature 572, 543–548 (2019).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  345. Nott, T. J., Craggs, T. D. & Baldwin, A. J. Membraneless organelles can melt nucleic acid duplexes and act as biomolecular filters. Nat. Chem. 8, 569–575 (2016).

    Article  CAS  PubMed  Google Scholar 

  346. Peeples, W. & Rosen, M. K. Mechanistic dissection of increased enzymatic rate in a phase-separated compartment. Nat. Chem. Biol. 17, 693–702 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  347. Klosin, A. et al. Phase separation provides a mechanism to reduce noise in cells. Science 367, 464–468 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  348. To, P. et al. Intrinsically disordered regions promote protein refoldability and facilitate retrieval from biomolecular condensates. Preprint at bioRxiv https://doi.org/10.1101/2023.06.25.546465 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  349. Lasker, K. et al. The material properties of a bacterial-derived biomolecular condensate tune biological function in natural and synthetic systems. Nat. Commun. 13, 5643 (2022).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  350. Dzuricky, M., Rogers, B. A., Shahid, A., Cremer, P. S. & Chilkoti, A. De novo engineering of intracellular condensates using artificial disordered proteins. Nat. Chem. 12, 814–825 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  351. Chen, D. et al. Integration of light and temperature sensing by liquid–liquid phase separation of phytochrome B. Mol. Cell 82, 3015–3029.e6 (2022).

    Article  CAS  PubMed  Google Scholar 

  352. Boyd-Shiwarski, C. R. et al. WNK kinases sense molecular crowding and rescue cell volume via phase separation. Cell 185, 4488–4506.e20 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  353. Wang, B. et al. Condensation of SEUSS promotes hyperosmotic stress tolerance in Arabidopsis. Nat. Chem. Biol. 18, 1361–1369 (2022).

    Article  CAS  PubMed  Google Scholar 

  354. Jalihal, A. P. et al. Multivalent proteins rapidly and reversibly phase-separate upon osmotic cell volume change. Mol. Cell 79, 978–990.e5 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  355. Dorone, Y. et al. A prion-like protein regulator of seed germination undergoes hydration-dependent phase separation. Cell 184, 4284–4298.e27 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  356. Yoo, H., Triandafillou, C. & Drummond, D. A. Cellular sensing by phase separation: using the process, not just the products. J. Biol. Chem. 294, 7151–7159 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  357. Boeynaems, S. et al. Spontaneous driving forces give rise to protein–RNA condensates with coexisting phases and complex material properties. Proc. Natl Acad. Sci. USA 116, 7889–7898 (2019).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  358. Fisher, R. S. & Elbaum-Garfinkle, S. Tunable multiphase dynamics of arginine and lysine liquid condensates. Nat. Commun. 11, 4628 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  359. Woodruff, J. B., Hyman, A. A. & Boke, E. Organization and function of non-dynamic biomolecular condensates. Trends Biochem. Sci. 43, 81–94 (2018).

    Article  CAS  PubMed  Google Scholar 

  360. Bowman, G. R. et al. A polymeric protein anchors the chromosomal origin/ParB complex at a bacterial cell pole. Cell 134, 945–955 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  361. Ellisman, M. H., McAdams, H. H. & Shapiro, L. Caulobacter PopZ forms a polar subdomain dictating sequential changes in pole composition and function. Mol. Microbiol. 76, 173–189 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  362. Lasker, K. et al. Selective sequestration of signalling proteins in a membraneless organelle reinforces the spatial regulation of asymmetry in Caulobacter crescentus. Nat. Microbiol. 5, 418–429 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  363. Sanders, D. W. et al. Competing protein–RNA interaction networks control multiphase intracellular organization. Cell 181, 306–324.e28 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  364. Bergeron-Sandoval, L.-P. et al. Endocytic proteins with prion-like domains form viscoelastic condensates that enable membrane remodeling. Proc. Natl Acad. Sci. USA 118, e2113789118 (2021).

  365. Mistry, J. et al. Pfam: the protein families database in 2021. Nucleic Acids Res. 49, D412–D419 (2021).

    Article  CAS  PubMed  Google Scholar 

  366. Plitzko, J. M., Schuler, B. & Selenko, P. Structural biology outside the box–inside the cell. Curr. Opin. Struct. Biol. 46, 110–121 (2017).

    Article  CAS  PubMed  Google Scholar 

  367. Theillet, F.-X. et al. Physicochemical properties of cells and their effects on intrinsically disordered proteins (IDPs). Chem. Rev. 114, 6661–6714 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  368. Theillet, F.-X. et al. Structural disorder of monomeric α-synuclein persists in mammalian cells. Nature 530, 45–50 (2016).

    Article  ADS  CAS  PubMed  Google Scholar 

  369. König, I. et al. Single-molecule spectroscopy of protein conformational dynamics in live eukaryotic cells. Nat. Methods 12, 773–779 (2015).

    Article  PubMed  Google Scholar 

  370. Buljan, M. et al. Alternative splicing of intrinsically disordered regions and rewiring of protein interactions. Curr. Opin. Struct. Biol. 23, 443–450 (2013).

    Article  CAS  PubMed  Google Scholar 

  371. Buljan, M. et al. Tissue-specific splicing of disordered segments that embed binding motifs rewires protein interaction networks. Mol. Cell 46, 871–883 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  372. Niklas, K. J., Bondos, S. E., Dunker, A. K. & Newman, S. A. Rethinking gene regulatory networks in light of alternative splicing, intrinsically disordered protein domains, and post-translational modifications. Front. Cell Dev. Biol. 3, 8 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  373. Zhou, J., Zhao, S. & Dunker, A. K. Intrinsically disordered proteins link alternative splicing and post-translational modifications to complex cell signaling and regulation. J. Mol. Biol. 430, 2342–2359 (2018).

    Article  CAS  PubMed  Google Scholar 

  374. Subramanian, S. & Kumar, S. Evolutionary anatomies of positions and types of disease-associated and neutral amino acid mutations in the human genome. BMC Genomics 7, 306 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  375. Vacic, V. & Iakoucheva, L. M. Disease mutations in disordered regions — exception to the rule? Mol. Biosyst. 8, 27–32 (2012).

    Article  CAS  PubMed  Google Scholar 

  376. Vacic, V. et al. Disease-associated mutations disrupt functionally important regions of intrinsic protein disorder. PLoS Comput. Biol. 8, e1002709 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  377. Tsang, B., Pritišanac, I., Scherer, S. W., Moses, A. M. & Forman-Kay, J. D. Phase separation as a missing mechanism for interpretation of disease mutations. Cell 183, 1742–1756 (2020).

    Article  CAS  PubMed  Google Scholar 

  378. Mészáros, B., Hajdu-Soltész, B., Zeke, A. & Dosztányi, Z. Mutations of intrinsically disordered protein regions can drive cancer but lack therapeutic strategies. Biomolecules 11, 381 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  379. Kim, H. J. et al. Mutations in prion-like domains in hnRNPA2B1 and hnRNPA1 cause multisystem proteinopathy and ALS. Nature 495, 467–473 (2013).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  380. Patel, A. et al. A liquid-to-solid phase transition of the ALS protein FUS accelerated by disease mutation. Cell 162, 1066–1077 (2015).

    Article  CAS  PubMed  Google Scholar 

  381. Dao, T. P. et al. Ubiquitin modulates liquid–liquid phase separation of UBQLN2 via disruption of multivalent interactions. Mol. Cell 69, 965–978.e6 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  382. Banani, S. F. et al. Genetic variation associated with condensate dysregulation in disease. Dev. Cell 57, 1776–1788.e8 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  383. Mensah, M. A. et al. Aberrant phase separation and nucleolar dysfunction in rare genetic diseases. Nature 614, 564–571 (2023).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  384. Basu, S. et al. Unblending of transcriptional condensates in human repeat expansion disease. Cell 181, 1062-1079 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  385. Gemayel, R. et al. Variable glutamine-rich repeats modulate transcription factor activity. Mol. Cell 59, 615–627 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  386. Boeynaems, S. et al. Aberrant phase separation is a common killing strategy of positively charged peptides in biology and human disease. Preprint at bioRxiv https://doi.org/10.1101/2023.03.09.531820 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  387. Chandra, B. et al. Phase separation mediates NUP98 fusion oncoprotein leukemic transformation. Cancer Discov. 12, 1152–1169 (2022).

    Article  CAS  PubMed  Google Scholar 

  388. Shirnekhi, H. K., Chandra, B. & Kriwacki, R. W. The role of phase-separated condensates in fusion oncoprotein-driven cancers. Annu. Rev. Cancer Biol. 7, 73–91 (2023).

    Article  Google Scholar 

  389. Simonetti, L., Nilsson, J., McInerney, G., Ivarsson, Y. & Davey, N. E. SLiM-binding pockets: an attractive target for broad-spectrum antivirals. Trends Biochem. Sci. 48, 420–427 (2023).

    Article  CAS  PubMed  Google Scholar 

  390. Madhu, P., Davey, N. E. & Ivarsson, Y. How viral proteins bind short linear motifs and intrinsically disordered domains. Essays Biochem. https://doi.org/10.1042/EBC20220047 (2022).

    Article  PubMed  Google Scholar 

  391. Vitalis, A. & Pappu, R. V. ABSINTH: a new continuum solvation model for simulations of polypeptides in aqueous solutions. J. Comput. Chem. 30, 673–699 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  392. Piana, S., Robustelli, P., Tan, D., Chen, S. & Shaw, D. E. Development of a force field for the simulation of single-chain proteins and protein–protein complexes. J. Chem. Theory Comput. 16, 2494–2507 (2020).

    Article  CAS  PubMed  Google Scholar 

  393. Robustelli, P., Piana, S. & Shaw, D. E. Developing a molecular dynamics force field for both folded and disordered protein states. Proc. Natl Acad. Sci. USA 115, E4758–E4766 (2018).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  394. Huang, J. et al. CHARMM36m: an improved force field for folded and intrinsically disordered proteins. Nat. Methods 14, 71–73 (2017).

    Article  CAS  PubMed  Google Scholar 

  395. Best, R. B., Zheng, W. & Mittal, J. Balanced protein–water interactions improve properties of disordered proteins and non-specific protein association. J. Chem. Theory Comput. 10, 5113–5124 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  396. Romero, P., Obradovic, Z. & Dunker, A. K. Folding minimal sequences: the lower bound for sequence complexity of globular proteins. FEBS Lett. 462, 363–367 (1999).

    Article  CAS  PubMed  Google Scholar 

  397. Romero, O. & Dunker, K. Sequence data analysis for long disordered regions prediction in the Calcineurin family. Genome Inf. Ser. Workshop Genome Inf. 8, 110–124 (1997).

    CAS  Google Scholar 

  398. Romero, P., Obradovic, Z., Kissinger, C., Villafranca, J. E. & Dunker, A. K. Identifying disordered regions in proteins from amino acid sequence. In Proc. International Conference on Neural Networks (ICNN’97), Vol. 1, 90–95 (1997).

  399. Uversky, V. N., Gillespie, J. R. & Fink, A. L. Why are ‘natively unfolded’ proteins unstructured under physiologic conditions? Proteins Struct. Funct. Bioinf. 41, 415–427 (2000).

    Article  CAS  Google Scholar 

  400. Emenecker, R. J., Griffith, D. & Holehouse, A. S. Metapredict: a fast, accurate, and easy-to-use predictor of consensus disorder and structure. Biophys. J. 120, 4312–4319 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  401. Gibbs, E. B., Cook, E. C. & Showalter, S. A. Application of NMR to studies of intrinsically disordered proteins. Arch. Biochem. Biophys. 628, 57–70 (2017).

    Article  CAS  PubMed  Google Scholar 

  402. Camacho-Zarco, A. R. et al. NMR provides unique insight into the functional dynamics and interactions of intrinsically disordered proteins. Chem. Rev. 122, 9331–9356 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  403. Schuler, B., Soranno, A., Hofmann, H. & Nettels, D. Single-molecule FRET spectroscopy and the polymer physics of unfolded and intrinsically disordered proteins. Annu. Rev. Biophys. 45, 207–231 (2016).

    Article  CAS  PubMed  Google Scholar 

  404. Brucale, M., Schuler, B. & Samorì, B. Single-molecule studies of intrinsically disordered proteins. Chem. Rev. 114, 3281–3317 (2014).

    Article  CAS  PubMed  Google Scholar 

  405. Balasubramaniam, D. & Komives, E. A. Hydrogen-exchange mass spectrometry for the study of intrinsic disorder in proteins. Biochim. Biophys. Acta 1834, 1202–1209 (2013).

    Article  CAS  PubMed  Google Scholar 

  406. Leeb, S. & Danielsson, J. Obtaining hydrodynamic radii of intrinsically disordered protein ensembles by pulsed field gradient NMR measurements. Methods Mol. Biol. 2141, 285–302 (2020).

    Article  CAS  PubMed  Google Scholar 

  407. Fuertes, G. et al. Decoupling of size and shape fluctuations in heteropolymeric sequences reconciles discrepancies in SAXS vs. FRET measurements. Proc. Natl Acad. Sci. USA 114, E6342–E6351 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  408. Kikhney, A. G. & Svergun, D. I. A practical guide to small angle X‐ray scattering (SAXS) of flexible and intrinsically disordered proteins. FEBS Lett. 589, 2570–2577 (2015).

    Article  CAS  PubMed  Google Scholar 

  409. Martin, E. W., Hopkins, J. B. & Mittag, T. Small-angle X-ray scattering experiments of monodisperse intrinsically disordered protein samples close to the solubility limit. Methods Enzymol. 646, 185–222 (2021).

    Article  CAS  PubMed  Google Scholar 

  410. Riback, J. A. et al. Innovative scattering analysis shows that hydrophobic disordered proteins are expanded in water. Science 358, 238–241 (2017).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  411. Cubuk, J., Stuchell-Brereton, M. D. & Soranno, A. The biophysics of disordered proteins from the point of view of single-molecule fluorescence spectroscopy. Essays Biochem. 66, 875–890 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  412. Chemes, L. B., Alonso, L. G., Noval, M. G. & de Prat-Gay, G. Circular dichroism techniques for the analysis of intrinsically disordered proteins and domains. Methods Mol. Biol. 895, 387–404 (2012).

    Article  CAS  PubMed  Google Scholar 

  413. Stuchfield, D. & Barran, P. Unique insights to intrinsically disordered proteins provided by ion mobility mass spectrometry. Curr. Opin. Chem. Biol. 42, 177–185 (2018).

    Article  CAS  PubMed  Google Scholar 

  414. Kassem, N. et al. Order and disorder — an integrative structure of the full-length human growth hormone receptor. Sci. Adv. 7, eabh3805 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  415. Borgia, A. et al. Consistent view of polypeptide chain expansion in chemical denaturants from multiple experimental methods. J. Am. Chem. Soc. 138, 11714–11726 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  416. Zheng, W. et al. Probing the action of chemical denaturant on an intrinsically disordered protein by simulation and experiment. J. Am. Chem. Soc. 138, 11702–11713 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  417. Naudi-Fabra, S., Tengo, M., Jensen, M. R., Blackledge, M. & Milles, S. Quantitative description of intrinsically disordered proteins using single-molecule FRET, NMR, and SAXS. J. Am. Chem. Soc. 143, 20109–20121 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  418. Clark, P. L., Plaxco, K. W. & Sosnick, T. R. Water as a good solvent for unfolded proteins: folding and collapse are fundamentally different. J. Mol. Biol. 432, 2882–2889 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  419. Best, R. B. Emerging consensus on the collapse of unfolded and intrinsically disordered proteins in water. Curr. Opin. Struct. Biol. 60, 27–38 (2020).

    Article  CAS  PubMed  Google Scholar 

  420. Guseva, S. et al. Measles virus nucleo- and phosphoproteins form liquid-like phase-separated compartments that promote nucleocapsid assembly. Sci. Adv. 6, eaaz7095 (2020). Along with Milles et al. (2018), this paper provides the biophysical basis for weak multivalent interactions that underlie how viral proteins can mediate condensate formation.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  421. Shea, J.-E., Best, R. B. & Mittal, J. Physics-based computational and theoretical approaches to intrinsically disordered proteins. Curr. Opin. Struct. Biol. 67, 219–225 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  422. Zerze, G. H., Best, R. B. & Mittal, J. Sequence- and temperature-dependent properties of unfolded and disordered proteins from atomistic simulations. J. Phys. Chem. B 119, 14622–14630 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  423. Zerze, G. H., Zheng, W., Best, R. B. & Mittal, J. Evolution of all-atom protein force fields to improve local and global properties. J. Phys. Chem. Lett. 10, 2227–2234 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  424. Piana, S., Donchev, A. G., Robustelli, P. & Shaw, D. E. Water dispersion interactions strongly influence simulated structural properties of disordered protein states. J. Phys. Chem. B 119, 5113–5123 (2015).

    Article  CAS  PubMed  Google Scholar 

  425. Huang, J. & MacKerell, A. D. Jr. Force field development and simulations of intrinsically disordered proteins. Curr. Opin. Struct. Biol. 48, 40–48 (2018).

    Article  CAS  PubMed  Google Scholar 

  426. Tesei, G., Schulze, T. K., Crehuet, R. & Lindorff-Larsen, K. Accurate model of liquid–liquid phase behavior of intrinsically disordered proteins from optimization of single-chain properties. Proc. Natl Acad. Sci. USA 118, e2111696118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  427. Palazzesi, F., Prakash, M. K., Bonomi, M. & Barducci, A. Accuracy of current all-atom force-fields in modeling protein disordered states. J. Chem. Theory Comput. 11, 2–7 (2015).

    Article  CAS  PubMed  Google Scholar 

  428. Baul, U., Chakraborty, D., Mugnai, M. L., Straub, J. E. & Thirumalai, D. Sequence effects on size, shape, and structural heterogeneity in intrinsically disordered proteins. J. Phys. Chem. B 123, 3462–3474 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  429. Dignon, G. L., Zheng, W., Kim, Y. C., Best, R. B. & Mittal, J. Sequence determinants of protein phase behavior from a coarse-grained model. PLoS Comput. Biol. 14, e1005941 (2018).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  430. Ozenne, V. et al. Flexible-meccano: a tool for the generation of explicit ensemble descriptions of intrinsically disordered proteins and their associated experimental observables. Bioinformatics 28, 1463–1470 (2012).

    Article  CAS  PubMed  Google Scholar 

  431. Tria, G., Mertens, H. D. T., Kachala, M. & Svergun, D. I. Advanced ensemble modelling of flexible macromolecules using X-ray solution scattering. IUCrJ 2, 207–217 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  432. Nodet, G. et al. Quantitative description of backbone conformational sampling of unfolded proteins at amino acid resolution from NMR residual dipolar couplings. J. Am. Chem. Soc. 131, 17908–17918 (2009).

    Article  CAS  PubMed  Google Scholar 

  433. Bottaro, S., Bengtsen, T. & Lindorff-Larsen, K. Integrating molecular simulation and experimental data: a Bayesian/maximum entropy reweighting approach. Methods Mol. Biol. 2112, 219–240 (2018).

    Article  Google Scholar 

  434. Brookes, D. H. & Head-Gordon, T. Experimental inferential structure determination of ensembles for intrinsically disordered proteins. J. Am. Chem. Soc. 138, 4530–4538 (2016).

    Article  CAS  PubMed  Google Scholar 

  435. Leung, H. T. A. et al. A rigorous and efficient method to reweight very large conformational ensembles using average experimental data and to determine their relative information content. J. Chem. Theory Comput. 12, 383–394 (2016).

    Article  CAS  PubMed  Google Scholar 

  436. Bonomi, M., Camilloni, C., Cavalli, A. & Vendruscolo, M. Metainference: a Bayesian inference method for heterogeneous systems. Sci. Adv. 2, e1501177 (2016).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  437. Zhang, O. et al. Learning to evolve structural ensembles of unfolded and disordered proteins using experimental solution data. J. Chem. Phys. 158, 174113 (2023).

    Article  ADS  CAS  PubMed  Google Scholar 

  438. Bonomi, M., Heller, G. T., Camilloni, C. & Vendruscolo, M. Principles of protein structural ensemble determination. Curr. Opin. Struct. Biol. 42, 106–116 (2017).

    Article  CAS  PubMed  Google Scholar 

  439. Thomasen, F. E. & Lindorff-Larsen, K. Conformational ensembles of intrinsically disordered proteins and flexible multidomain proteins. Biochem. Soc. Trans. 50, 541–554 (2022).

    Article  CAS  PubMed  Google Scholar 

  440. Chen, J. W., Romero, P., Uversky, V. N. & Dunker, A. K. Conservation of intrinsic disorder in protein domains and families: I. A database of conserved predicted disordered regions. J. Proteome Res. 5, 879–887 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  441. Chen, J. W., Romero, P., Uversky, V. N. & Dunker, A. K. Conservation of intrinsic disorder in protein domains and families. II. Functions of conserved disorder. J. Proteome Res. 5, 888–898 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  442. Shinn, M. K. et al. Connecting sequence features within the disordered C-terminal linker of Bacillus subtilis FtsZ to functions and bacterial cell division. Proc. Natl Acad. Sci. USA 119, e2211178119 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  443. Pancsa, R., Zsolyomi, F. & Tompa, P. Co-evolution of intrinsically disordered proteins with folded partners witnessed by evolutionary couplings. Int. J. Mol. Sci. 19, 3315 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  444. Toth-Petroczy, A. et al. Structured states of disordered proteins from genomic sequences. Cell 167, 158–170.e12 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  445. Hsu, I. S. et al. A functionally divergent intrinsically disordered region underlying the conservation of stochastic signaling. PLoS Genet. 17, e1009629 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  446. Hwang, T. et al. Native proline-rich motifs exploit sequence context to target actin-remodeling Ena/VASP protein ENAH. eLife 11, e70680 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  447. Hwang, T. et al.  A distributed residue network permits conformational binding specificity in a conserved family of actin remodelers. eLife 10, e70601 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  448. Markin, C. J. et al. Revealing enzyme functional architecture via high-throughput microfluidic enzyme kinetics. Science 373, eabf8761 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  449. Pincus, D. et al. Engineering allosteric regulation in protein kinases. Sci. Signal. 11, eaar3250 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank R. Pappu for discussions in the initial phase of writing; G. Daughdrill, A. Flynn, J. Forman-Kay, P. Jemth, A. Moses, J.G. Olsen, R. Pappu, B. Schuler, K. Skriver and S. Sukenik for valuable comments and suggestions; and S. Boeynaems for original microscopy images in Fig. 5. This work was supported by the Novo Nordisk Foundation challenge grant REPIN, rethinking protein interactions (NNF18OC0033926 to B.B.K.), by the Danish Research Councils (9040-00164B to B.B.K.), by the United States National Science Foundation (NSF) (NSF 2128068 to A.S.H.), by the US NIH (DP2 CA290639-01 to A.S.H.) and by the Human Frontiers in Science Program (RGP0015/2022 to A.S.H.).

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding authors

Correspondence to Alex S. Holehouse or Birthe B. Kragelund.

Ethics declarations

Competing interest

A.S.H. is a scientific consultant with Dewpoint Therapeutics and on the Scientific Advisory Board for Prose Foods. B.B.K. declares no conflicts of interest.

Peer review

Peer review information

Nature Reviews Molecular Cell Biology thanks Elizabeth Rhoades and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

CAID prediction portal: https://caid.idpcentral.org/submit

CIDER webserver for calculating sequence properties: http://pappulab.wustl.edu/CIDER/

Eukaryotic Linear Motif (ELM) resource: http://elm.eu.org/

Link to bioinformatic analysis referred to in this paper: https://github.com/holehouse-lab/supportingdata/tree/master/2023/holehouse_and_kragelund_2023

Metapredict disorder predictor: https://metapredict.net/

PLAAC webserver for identify prion-like domains: http://plaac.wi.mit.edu/

Supplementary information

41580_2023_673_MOESM1_ESM.mp4

Movie S1 Rendering of all-atom simulation of the hnRNPA1 IDR to illustrate the conformational heterogeneity within an atomistic ensemble57. Conformations were generated through all-atom Monte Carlo simulations, which show good agreement with experimental characterization.

Glossary

π–π interactions

Interactions mediated by delocalized π electron clouds, seen in amino acids with aromatic side chains.

Associative polymers

A class of polymer architecture in which specific regions or monomers contribute associated (attractive) interactions. See foundational work by Cate and Whitten (1986) and Semenov and Rubinstein (1998).

Conformational selection

A mode of binding in which the intrinsically disordered region binds to a partner by adopting a binding-competent conformation in the unbound ensemble, which then binds without further conformational re-arrangement. Unlike induced fit, the bound-state configuration of the intrinsically disordered region is visited in the unbound ensemble, such that the binding partner ‘selects’ a specific conformation to bind.

Deep learning

Deep learning is a branch of machine learning concerned with models that contain large numbers of parameters. It has received substantial attention owing to its ability to perform complex pattern recognition, especially for text and images. In the biological sciences, deep learning has been applied to protein structure prediction, disorder prediction and, more recently, the prediction of ensemble properties.

End-to-end distance

Also written as Re. This parameter is a measure of global ensemble dimensions and reports on the average distance between the first and last residues in the intrinsically disordered region.

Forcefields

In molecular simulations, forcefields are the set of equations and parameters used to describe the chemical physics of the molecular system of interest. All-atom forcefields used for simulating disordered proteins include ABSINTH, amber03ws, a99SB-disp, CHARMM36m and DES-Amber391,392,393,394,395.

Hydrodynamic radius

Also written as Rh. This parameter is a measure of global ensemble dimensions and reports on the radius associated with a sphere that would diffuse through the solution at the same speed the intrinsically disordered region in question would, after correcting for solution viscosity.

Induced fit

A mode of binding in which the intrinsically disordered region is templated into a specific conformation by a binding partner. Unlike conformational selection, the bound-state conformation of the intrinsically disordered region is never/rarely visited in the unbound ensemble, and the act of binding ‘induces’ this bound-state conformation.

Molecular grammar

When used in the context of intrinsically disordered regions and biomolecular condensates, this refers to the grammar of sequence features that dictate the driving forces for condensate formation and the resulting material properties.

Prion-like domains

(PLDs). A class of protein domains defined by being of low complexity (many similar amino acids) and possessing enrichment for polar amino acids (especially glutamine, asparagine, glycine and serine), often with additional aromatic residues. PLDs are defined using the PLAAC webserver with default parameters. Although PLDs have been found to phase separate, their presence should not be taken as evidence that a protein will phase separate. They are named after yeast prions, in which a PLD was originally defined.

Radius of gyration

Also written as Rg. This parameter is a measure of global ensemble dimensions and reports on the average distance between the centre of mass of the intrinsically disordered region and the individual atoms.

Sequence features

Properties of an intrinsically disordered region amino acid sequence that are determined by the composition and patterning of different amino acids. Sequence features can — by definition — be determined directly from sequence. Several commonly used sequence features can be calculated using the CIDER webserver.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Holehouse, A.S., Kragelund, B.B. The molecular basis for cellular function of intrinsically disordered protein regions. Nat Rev Mol Cell Biol 25, 187–211 (2024). https://doi.org/10.1038/s41580-023-00673-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41580-023-00673-0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing