Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Regulation and functions of non-m6A mRNA modifications

Subjects

Abstract

Nucleobase modifications are prevalent in eukaryotic mRNA and their discovery has resulted in the emergence of epitranscriptomics as a research field. The most abundant internal (non-cap) mRNA modification is N6-methyladenosine (m6A), the study of which has revolutionized our understanding of post-transcriptional gene regulation. In addition, numerous other mRNA modifications are gaining great attention because of their major roles in RNA metabolism, immunity, development and disease. In this Review, we focus on the regulation and function of non-m6A modifications in eukaryotic mRNA, including pseudouridine (Ψ), N6,2′-O-dimethyladenosine (m6Am), N1-methyladenosine (m1A), inosine, 5-methylcytidine (m5C), N4-acetylcytidine (ac4C), 2′-O-methylated nucleotide (Nm) and internal N7-methylguanosine (m7G). We highlight their regulation, distribution, stoichiometry and known roles in mRNA metabolism, such as mRNA stability, translation, splicing and export. We also discuss their biological consequences in physiological and pathological processes. In addition, we cover research techniques to further study the non-m6A mRNA modifications and discuss their potential future applications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Modifications in eukaryotic mRNA.
Fig. 2: The regulation and functions of mRNA pseudouridine modification.
Fig. 3: Region-dependent functions of adenosine-related mRNA modifications.
Fig. 4: Roles and functions of cytosine-related mRNA modifications.
Fig. 5: Distinct effectors and functions of cap and internal m7G and Nm.

Similar content being viewed by others

References

  1. Cohn, W. E. & Volkin, E. Nucleoside-5′-phosphates from ribonucleic acid. Nature 167, 483–484 (1951).

    Article  CAS  Google Scholar 

  2. Boccaletto, P. et al. MODOMICS: a database of RNA modification pathways. 2021 update. Nucleic Acids Res. 50, D231–D235 (2022).

    Article  CAS  PubMed  Google Scholar 

  3. Fu, Y., Dominissini, D., Rechavi, G. & He, C. Gene expression regulation mediated through reversible m6A RNA methylation. Nat. Rev. Genet. 15, 293–306 (2014).

    Article  CAS  PubMed  Google Scholar 

  4. He, C. Grand challenge commentary: RNA epigenetics? Nat. Chem. Biol. 6, 863–865 (2010).

    Article  CAS  PubMed  Google Scholar 

  5. Frye, M., Jaffrey, S. R., Pan, T., Rechavi, G. & Suzuki, T. RNA modifications: what have we learned and where are we headed? Nat. Rev. Genet. 17, 365–372 (2016).

    Article  CAS  PubMed  Google Scholar 

  6. Shi, H., Wei, J. & He, C. Where, when, and how: context-dependent functions of RNA methylation writers, readers, and erasers. Mol. Cell 74, 640–650 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Yang, Y., Hsu, P. J., Chen, Y. S. & Yang, Y. G. Dynamic transcriptomic m6A decoration: writers, erasers, readers and functions in RNA metabolism. Cell Res. 28, 616–624 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Peer, E., Rechavi, G. & Dominissini, D. Epitranscriptomics: regulation of mRNA metabolism through modifications. Curr. Opin. Chem. Biol. 41, 93–98 (2017).

    Article  CAS  PubMed  Google Scholar 

  9. Delaunay, S. & Frye, M. RNA modifications regulating cell fate in cancer. Nat. Cell Biol. 21, 552–559 (2019).

    Article  CAS  PubMed  Google Scholar 

  10. Dominissini, D. et al. Topology of the human and mouse m6A RNA methylomes revealed by m6A-seq. Nature 485, 201–206 (2012).

    Article  CAS  PubMed  Google Scholar 

  11. Meyer, K. D. et al. Comprehensive analysis of mRNA methylation reveals enrichment in 3′ UTRs and near stop codons. Cell 149, 1635–1646 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Li, X., Xiong, X. & Yi, C. Epitranscriptome sequencing technologies: decoding RNA modifications. Nat. Methods 14, 23–31 (2016).

    Article  PubMed  Google Scholar 

  13. Roundtree, I. A., Evans, M. E., Pan, T. & He, C. Dynamic RNA modifications in gene expression regulation. Cell 169, 1187–1200 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Harcourt, E. M., Kietrys, A. M. & Kool, E. T. Chemical and structural effects of base modifications in messenger RNA. Nature 541, 339–346 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Barbieri, I. & Kouzarides, T. Role of RNA modifications in cancer. Nat. Rev. Cancer 20, 303–322 (2020).

    Article  CAS  PubMed  Google Scholar 

  16. Moshitch-Moshkovitz, S., Dominissini, D. & Rechavi, G. The epitranscriptome toolbox. Cell 185, 764–776 (2022).

    Article  CAS  PubMed  Google Scholar 

  17. Wiener, D. & Schwartz, S. The epitranscriptome beyond m6A. Nat. Rev. Genet. 22, 119–131 (2021).

    Article  CAS  PubMed  Google Scholar 

  18. Zhang, Y., Lu, L. & Li, X. Y. Detection technologies for RNA modifications. Exp. Mol. Med. 54, 1601–1616 (2022).

    Article  CAS  PubMed  Google Scholar 

  19. Cerneckis, J., Cui, Q., He, C., Yi, C. & Shi, Y. Decoding pseudouridine: an emerging target for therapeutic development. Trends Pharmacol. Sci. 43, 522–535 (2022).

    Article  CAS  PubMed  Google Scholar 

  20. Dai, Q. et al. Quantitative sequencing using BID-seq uncovers abundant pseudouridines in mammalian mRNA at base resolution. Nat. Biotechnol. 41, 344–354 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Zhang, M. et al. Quantitative profiling of pseudouridylation landscape in the human transcriptome. Nat. Chem. Biol. https://doi.org/10.1038/s41589-023-01304-7 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Martinez, N. M. et al. Pseudouridine synthases modify human pre-mRNA co-transcriptionally and affect pre-mRNA processing. Mol. Cell 82, 645–659.e9 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Li, X., Ma, S. & Yi, C. Pseudouridine: the fifth RNA nucleotide with renewed interests. Curr. Opin. Chem. Biol. 33, 108–116 (2016).

    Article  CAS  PubMed  Google Scholar 

  24. Borchardt, E. K., Martinez, N. M. & Gilbert, W. V. Regulation and function of RNA pseudouridylation in human cells. Annu. Rev. Genet. 54, 309–336 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Li, X. et al. Chemical pulldown reveals dynamic pseudouridylation of the mammalian transcriptome. Nat. Chem. Biol. 11, 592–597 (2015).

    Article  CAS  PubMed  Google Scholar 

  26. Carlile, T. M. et al. Pseudouridine profiling reveals regulated mRNA pseudouridylation in yeast and human cells. Nature 515, 143–146 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Schwartz, S. et al. Transcriptome-wide mapping reveals widespread dynamic-regulated pseudouridylation of ncRNA and mRNA. Cell 159, 148–162 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Karijolich, J. & Yu, Y. T. Converting nonsense codons into sense codons by targeted pseudouridylation. Nature 474, 395–398 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Fernandez, I. S. et al. Unusual base pairing during the decoding of a stop codon by the ribosome. Nature 500, 107–110 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Song, J. et al. CRISPR-free, programmable RNA pseudouridylation to suppress premature termination codons. Mol. Cell 83, 139–155.e9 (2023).

    Article  CAS  PubMed  Google Scholar 

  31. Adachi, H. et al. Targeted pseudouridylation: an approach for suppressing nonsense mutations in disease genes. Mol. Cell 83, 637–651.e9 (2023).

    Article  CAS  PubMed  Google Scholar 

  32. Nakamoto, M. A., Lovejoy, A. F., Cygan, A. M. & Boothroyd, J. C. mRNA pseudouridylation affects RNA metabolism in the parasite Toxoplasma gondii. RNA 23, 1834–1849 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Belanger, F., Stepinski, J., Darzynkiewicz, E. & Pelletier, J. Characterization of hMTr1, a human Cap1 2′-O-ribose methyltransferase. J. Biol. Chem. 285, 33037–33044 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Akichika, S. et al. Cap-specific terminal N6-methylation of RNA by an RNA polymerase II-associated methyltransferase. Science 363, eaav0080 (2019).

    Article  CAS  PubMed  Google Scholar 

  35. Sun, H., Zhang, M., Li, K., Bai, D. & Yi, C. Cap-specific, terminal N6-methylation by a mammalian m6Am methyltransferase. Cell Res. 29, 80–82 (2019).

    Article  CAS  PubMed  Google Scholar 

  36. Sendinc, E. et al. PCIF1 catalyzes m6Am mRNA methylation to regulate gene expression. Mol. Cell 75, 620–630.e9 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Boulias, K. et al. Identification of the m6Am methyltransferase PCIF1 reveals the location and functions of m6Am in the transcriptome. Mol. Cell 75, 631–643.e8 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Pandey, R. R. et al. The mammalian cap-specific m6Am RNA methyltransferase PCIF1 regulates transcript levels in mouse tissues. Cell Rep. 32, 108038 (2020).

    Article  CAS  PubMed  Google Scholar 

  39. Karijolich, J. & Yu, Y. T. Spliceosomal snRNA modifications and their function. RNA Biol. 7, 192–204 (2010).

    Article  CAS  PubMed  Google Scholar 

  40. Goh, Y. T., Koh, C. W. Q., Sim, D. Y., Roca, X. & Goh, W. S. S. METTL4 catalyzes m6Am methylation in U2 snRNA to regulate pre-mRNA splicing. Nucleic Acids Res. 48, 9250–9261 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Chen, H. et al. METTL4 is an snRNA m6Am methyltransferase that regulates RNA splicing. Cell Res. 30, 544–547 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Mauer, J. et al. Reversible methylation of m6Am in the 5′ cap controls mRNA stability. Nature 541, 371–375 (2017).

    Article  CAS  PubMed  Google Scholar 

  43. Wei, J. et al. Differential m6A, m6Am, and m1A demethylation mediated by FTO in the cell nucleus and cytoplasm. Mol. Cell 71, 973–985.e5 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Linder, B. et al. Single-nucleotide-resolution mapping of m6A and m6Am throughout the transcriptome. Nat. Methods 12, 767–772 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Sun, H. et al. m6Am-seq reveals the dynamic m6Am methylation in the human transcriptome. Nat. Commun. 12, 4778 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Muthmann, N., Albers, M. & Rentmeister, A. CAPturAM, a chemo-enzymatic strategy for selective enrichment and detection of physiological CAPAM-targets. Angew. Chem. Int. Ed. Engl. 62, e202211957 (2023).

    Article  CAS  PubMed  Google Scholar 

  47. Liu, J. et al. Landscape and regulation of m6A and m6Am methylome across human and mouse tissues. Mol. Cell 77, 426–440.e6 (2020).

    Article  CAS  PubMed  Google Scholar 

  48. Zhuo, W. et al. m6Am methyltransferase PCIF1 is essential for aggressiveness of gastric cancer cells by inhibiting TM9SF1 mRNA translation. Cell Discov. 8, 48 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. RajBhandary, U. L., Stuart, A., Faulkner, R. D., Chang, S. H. & Khorana, H. G. Nucleotide sequence studies on yeast phenylalanine sRNA. Cold Spring Harb. Symp. Quant. Biol. 31, 425–434 (1966).

    Article  CAS  PubMed  Google Scholar 

  50. Srivastava, R. & Gopinathan, K. P. Ribosomal RNA methylation in Mycobacterium smegmatis SN2. Biochem. Int. 15, 1179–1188 (1987).

    CAS  PubMed  Google Scholar 

  51. Dominissini, D. et al. The dynamic N1-methyladenosine methylome in eukaryotic messenger RNA. Nature 530, 441–446 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Li, X. et al. Transcriptome-wide mapping reveals reversible and dynamic N1-methyladenosine methylome. Nat. Chem. Biol. 12, 311–316 (2016).

    Article  CAS  PubMed  Google Scholar 

  53. Li, X. et al. Base-resolution mapping reveals distinct m1A methylome in nuclear- and mitochondrial-encoded transcripts. Mol. Cell 68, 993–1005.e9 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Anderson, J., Phan, L. & Hinnebusch, A. G. The Gcd10p/Gcd14p complex is the essential two-subunit tRNA(1-methyladenosine) methyltransferase of Saccharomyces cerevisiae. Proc. Natl Acad. Sci. USA 97, 5173–5178 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Chujo, T. & Suzuki, T. Trmt61B is a methyltransferase responsible for 1-methyladenosine at position 58 of human mitochondrial tRNAs. RNA 18, 2269–2276 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Vilardo, E. et al. A subcomplex of human mitochondrial RNase P is a bifunctional methyltransferase—extensive moonlighting in mitochondrial tRNA biogenesis. Nucleic Acids Res. 40, 11583–11593 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Safra, M. et al. The m1A landscape on cytosolic and mitochondrial mRNA at single-base resolution. Nature 551, 251–255 (2017).

    Article  CAS  PubMed  Google Scholar 

  58. Liu, F. et al. ALKBH1-mediated tRNA demethylation regulates translation. Cell 167, 816–828.e16 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Ueda, Y. et al. AlkB homolog 3-mediated tRNA demethylation promotes protein synthesis in cancer cells. Sci. Rep. 7, 42271 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Dai, X., Wang, T., Gonzalez, G. & Wang, Y. Identification of YTH domain-containing proteins as the readers for N1-methyladenosine in RNA. Anal. Chem. 90, 6380–6384 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Seo, K. W. & Kleiner, R. E. YTHDF2 recognition of N1-methyladenosine (m1A)-modified RNA is associated with transcript destabilization. ACS Chem. Biol. 15, 132–139 (2020).

    Article  CAS  PubMed  Google Scholar 

  62. Grozhik, A. V. et al. Antibody cross-reactivity accounts for widespread appearance of m1A in 5′UTRs. Nat. Commun. 10, 5126 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Zhou, H. et al. Evolution of a reverse transcriptase to map N1-methyladenosine in human messenger RNA. Nat. Methods 16, 1281–1288 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Xiong, X., Li, X., Wang, K. & Yi, C. Perspectives on topology of the human m1A methylome at single nucleotide resolution. RNA 24, 1437–1442 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Alriquet, M. et al. The protective role of m1A during stress-induced granulation. J. Mol. Cell Biol. 12, 870–880 (2021).

    Article  PubMed  Google Scholar 

  66. Nishikura, K. A-to-I editing of coding and non-coding RNAs by ADARs. Nat. Rev. Mol. Cell Biol. 17, 83–96 (2016).

    Article  CAS  PubMed  Google Scholar 

  67. Eisenberg, E. & Levanon, E. Y. A-to-I RNA editing — immune protector and transcriptome diversifier. Nat. Rev. Genet. 19, 473–490 (2018).

    Article  CAS  PubMed  Google Scholar 

  68. Savva, Y. A., Rieder, L. E. & Reenan, R. A. The ADAR protein family. Genome Biol. 13, 252 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Melcher, T. et al. A mammalian RNA editing enzyme. Nature 379, 460–464 (1996).

    Article  CAS  PubMed  Google Scholar 

  70. Chen, C. X. et al. A third member of the RNA-specific adenosine deaminase gene family, ADAR3, contains both single- and double-stranded RNA binding domains. RNA 6, 755–767 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Levanon, E. Y. et al. Systematic identification of abundant A-to-I editing sites in the human transcriptome. Nat. Biotechnol. 22, 1001–1005 (2004).

    Article  CAS  PubMed  Google Scholar 

  72. Li, M. et al. Widespread RNA and DNA sequence differences in the human transcriptome. Science 333, 53–58 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Ramaswami, G. et al. Accurate identification of human Alu and non-Alu RNA editing sites. Nat. Methods 9, 579–581 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Ramaswami, G. & Li, J. B. Identification of human RNA editing sites: a historical perspective. Methods 107, 42–47 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Ramaswami, G. et al. Identifying RNA editing sites using RNA sequencing data alone. Nat. Methods 10, 128–132 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Sakurai, M., Yano, T., Kawabata, H., Ueda, H. & Suzuki, T. Inosine cyanoethylation identifies A-to-I RNA editing sites in the human transcriptome. Nat. Chem. Biol. 6, 733–740 (2010).

    Article  CAS  PubMed  Google Scholar 

  77. Knutson, S. D., Arthur, R. A., Johnston, H. R. & Heemstra, J. M. Selective enrichment of A-to-I edited transcripts from cellular RNA using endonuclease V. J. Am. Chem. Soc. 142, 5241–5251 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Kim, D. D. et al. Widespread RNA editing of embedded alu elements in the human transcriptome. Genome Res. 14, 1719–1725 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Tan, M. H. et al. Dynamic landscape and regulation of RNA editing in mammals. Nature 550, 249–254 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  80. Lev-Maor, G. et al. RNA-editing-mediated exon evolution. Genome Biol. 8, R29 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  81. Rueter, S. M., Dawson, T. R. & Emeson, R. B. Regulation of alternative splicing by RNA editing. Nature 399, 75–80 (1999).

    Article  CAS  PubMed  Google Scholar 

  82. Schoft, V. K., Schopoff, S. & Jantsch, M. F. Regulation of glutamate receptor B pre-mRNA splicing by RNA editing. Nucleic Acids Res. 35, 3723–3732 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Nakano, M. et al. RNA editing modulates human hepatic aryl hydrocarbon receptor expression by creating microRNA recognition sequence. J. Biol. Chem. 291, 894–903 (2016).

    Article  CAS  PubMed  Google Scholar 

  84. Wang, Q. et al. ADAR1 regulates ARHGAP26 gene expression through RNA editing by disrupting miR-30b-3p and miR-573 binding. RNA 19, 1525–1536 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Kawahara, Y. et al. Redirection of silencing targets by adenosine-to-inosine editing of miRNAs. Science 315, 1137–1140 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Wu, J., Samara, N. L., Kuraoka, I. & Yang, W. Evolution of inosine-specific endonuclease V from bacterial DNase to eukaryotic RNase. Mol. Cell 76, 44–56.e3 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Scadden, A. D. The RISC subunit Tudor-SN binds to hyper-edited double-stranded RNA and promotes its cleavage. Nat. Struct. Mol. Biol. 12, 489–496 (2005).

    Article  CAS  PubMed  Google Scholar 

  88. Morita, Y. et al. Human endonuclease V is a ribonuclease specific for inosine-containing RNA. Nat. Commun. 4, 2273 (2013).

    Article  PubMed  Google Scholar 

  89. Stellos, K. et al. Adenosine-to-inosine RNA editing controls cathepsin S expression in atherosclerosis by enabling HuR-mediated post-transcriptional regulation. Nat. Med. 22, 1140–1150 (2016).

    Article  CAS  PubMed  Google Scholar 

  90. Merkle, T. et al. Precise RNA editing by recruiting endogenous ADARs with antisense oligonucleotides. Nat. Biotechnol. 37, 133–138 (2019).

    Article  CAS  PubMed  Google Scholar 

  91. Qu, L. et al. Programmable RNA editing by recruiting endogenous ADAR using engineered RNAs. Nat. Biotechnol. 37, 1059–1069 (2019).

    Article  CAS  PubMed  Google Scholar 

  92. Katrekar, D. et al. In vivo RNA editing of point mutations via RNA-guided adenosine deaminases. Nat. Methods 16, 239–242 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Licht, K. et al. Inosine induces context-dependent recoding and translational stalling. Nucleic Acids Res. 47, 3–14 (2019).

    Article  CAS  PubMed  Google Scholar 

  94. Desrosiers, R., Friderici, K. & Rottman, F. Identification of methylated nucleosides in messenger RNA from Novikoff hepatoma cells. Proc. Natl Acad. Sci. USA 71, 3971–3975 (1974).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Yang, X. et al. 5-Methylcytosine promotes mRNA export—NSUN2 as the methyltransferase and ALYREF as an m5C reader. Cell Res. 27, 606–625 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Fang, L. et al. CIGAR-seq, a CRISPR/Cas-based method for unbiased screening of novel mRNA modification regulators. Mol. Syst. Biol. 16, e10025 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Liu, J. et al. Sequence- and structure-selective mRNA m5C methylation by NSUN6 in animals. Natl Sci. Rev. 8, nwaa273 (2021).

    Article  CAS  PubMed  Google Scholar 

  98. Selmi, T. et al. Sequence- and structure-specific cytosine-5 mRNA methylation by NSUN6. Nucleic Acids Res. 49, 1006–1022 (2021).

    Article  CAS  PubMed  Google Scholar 

  99. Chen, Y. S., Yang, W. L., Zhao, Y. L. & Yang, Y. G. Dynamic transcriptomic m5C and its regulatory role in RNA processing. Wiley Interdiscip. Rev. RNA 12, e1639 (2021).

    Article  CAS  PubMed  Google Scholar 

  100. Huber, S. M. et al. Formation and abundance of 5-hydroxymethylcytosine in RNA. Chembiochem 16, 752–755 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Chen, X. et al. 5-Methylcytosine promotes pathogenesis of bladder cancer through stabilizing mRNAs. Nat. Cell Biol. 21, 978–990 (2019).

    Article  CAS  PubMed  Google Scholar 

  102. Yang, Y. et al. RNA 5-methylcytosine facilitates the maternal-to-zygotic transition by preventing maternal mRNA decay. Mol. Cell 75, 1188–1202.e11 (2019).

    Article  CAS  PubMed  Google Scholar 

  103. Chen, H. et al. m5C modification of mRNA serves a DNA damage code to promote homologous recombination. Nat. Commun. 11, 2834 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Cui, X. et al. 5-Methylcytosine RNA methylation in Arabidopsis thaliana. Mol. Plant. 10, 1387–1399 (2017).

    Article  CAS  PubMed  Google Scholar 

  105. Hussain, S. et al. NSun2-mediated cytosine-5 methylation of vault noncoding RNA determines its processing into regulatory small RNAs. Cell Rep. 4, 255–261 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. George, H., Ule, J. & Hussain, S. Illustrating the epitranscriptome at nucleotide resolution using methylation-iCLIP (miCLIP). Methods Mol. Biol. 1562, 91–106 (2017).

    Article  CAS  PubMed  Google Scholar 

  107. Khoddami, V. & Cairns, B. R. Identification of direct targets and modified bases of RNA cytosine methyltransferases. Nat. Biotechnol. 31, 458–464 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Schaefer, M., Pollex, T., Hanna, K. & Lyko, F. RNA cytosine methylation analysis by bisulfite sequencing. Nucleic Acids Res. 37, e12 (2009).

    Article  PubMed  Google Scholar 

  109. Schaefer, M. RNA 5-methylcytosine analysis by bisulfite sequencing. Methods Enzymol. 560, 297–329 (2015).

    Article  CAS  PubMed  Google Scholar 

  110. Yuan, F. et al. Bisulfite-free and base-resolution analysis of 5-methylcytidine and 5-hydroxymethylcytidine in RNA with peroxotungstate. Chem. Commun. 55, 2328–2331 (2019).

    Article  CAS  Google Scholar 

  111. Arango, D. et al. Acetylation of cytidine in mRNA promotes translation efficiency. Cell 175, 1872–1886 (2018).

    Article  CAS  PubMed  Google Scholar 

  112. Arango, D. et al. Direct epitranscriptomic regulation of mammalian translation initiation through N4-acetylcytidine. Mol. Cell 82, 2912 (2022).

    Article  CAS  PubMed  Google Scholar 

  113. Sas-Chen, A. et al. Dynamic RNA acetylation revealed by quantitative cross-evolutionary mapping. Nature 583, 638–643 (2020).

    Article  CAS  PubMed  Google Scholar 

  114. Hao, H. et al. N4-Acetylcytidine regulates the replication and pathogenicity of enterovirus 71. Nucleic Acids Res. 50, 9339–9354 (2022).

    Article  CAS  PubMed  Google Scholar 

  115. Tsai, K. et al. Acetylation of cytidine residues boosts HIV-1 gene expression by increasing viral RNA stability. Cell Host Microbe 28, 306–312.e6 (2020).

    Article  CAS  PubMed  Google Scholar 

  116. Ramanathan, A., Robb, G. B. & Chan, S. H. mRNA capping: biological functions and applications. Nucleic Acids Res. 44, 7511–7526 (2016).

    Article  PubMed  Google Scholar 

  117. Werner, M. et al. 2′-O-Ribose methylation of cap2 in human: function and evolution in a horizontally mobile family. Nucleic Acids Res. 39, 4756–4768 (2011).

    Article  CAS  PubMed  Google Scholar 

  118. Wang, J. et al. Quantifying the RNA cap epitranscriptome reveals novel caps in cellular and viral RNA. Nucleic Acids Res. 47, e130 (2019).

    Article  CAS  PubMed  Google Scholar 

  119. Despic, V. & Jaffrey, S. R. mRNA ageing shapes the Cap2 methylome in mammalian mRNA. Nature 614, 358–366 (2023).

    Article  CAS  PubMed  Google Scholar 

  120. Dai, Q. et al. Nm-seq maps 2′-O-methylation sites in human mRNA with base precision. Nat. Methods 14, 695–698 (2017).

    Article  CAS  PubMed  Google Scholar 

  121. Dimitrova, D. G., Teysset, L. & Carre, C. RNA 2′-O-methylation (Nm) modification in human diseases. Genes 10, 117 (2019).

    Article  CAS  PubMed  Google Scholar 

  122. Elliott, B. A. et al. Modification of messenger RNA by 2′-O-methylation regulates gene expression in vivo. Nat. Commun. 10, 3401 (2019).

    Article  PubMed  Google Scholar 

  123. Zhu, Y., Pirnie, S. P. & Carmichael, G. G. High-throughput and site-specific identification of 2′-O-methylation sites using ribose oxidation sequencing (RibOxi-seq). RNA 23, 1303–1314 (2017).

    Article  CAS  PubMed  Google Scholar 

  124. Choi, J. et al. 2′-O-Methylation in mRNA disrupts tRNA decoding during translation elongation. Nat. Struct. Mol. Biol. 25, 208–216 (2018).

    Article  CAS  PubMed  Google Scholar 

  125. Ge, J., Liu, H. & Yu, Y. T. Regulation of pre-mRNA splicing in Xenopus oocytes by targeted 2′-O-methylation. RNA 16, 1078–1085 (2010).

    Article  CAS  PubMed  Google Scholar 

  126. Adachi, H., Hengesbach, M., Yu, Y. T. & Morais, P. From antisense RNA to RNA modification: therapeutic potential of RNA-based technologies. Biomedicines 9, 550 (2021).

    Article  CAS  PubMed  Google Scholar 

  127. Cowling, V. H. Regulation of mRNA cap methylation. Biochem. J. 425, 295–302 (2009).

    Article  PubMed  Google Scholar 

  128. Jackson, R. J., Hellen, C. U. & Pestova, T. V. The mechanism of eukaryotic translation initiation and principles of its regulation. Nat. Rev. Mol. Cell Biol. 11, 113–127 (2010).

    Article  CAS  PubMed  Google Scholar 

  129. Zhang, L. S. et al. Transcriptome-wide mapping of internal N-7-methylguanosine methylome in mammalian mRNA. Mol. Cell 74, 1304–1316 (2019).

    Article  CAS  PubMed  Google Scholar 

  130. Malbec, L. et al. Dynamic methylome of internal mRNA N-7-methylguanosine and its regulatory role in translation. Cell Res. 29, 927–941 (2019).

    Article  CAS  PubMed  Google Scholar 

  131. Song, H. et al. Epitranscriptomics and epiproteomics in cancer drug resistance: therapeutic implications. Signal. Transduct. Target. Ther. 5, 193 (2020).

    Article  PubMed  Google Scholar 

  132. Chen, S. et al. SNORA70E promotes the occurrence and development of ovarian cancer through pseudouridylation modification of RAP1B and alternative splicing of PARPBP. J. Cell. Mol. Med. 26, 5150–5164 (2022).

    Article  CAS  PubMed  Google Scholar 

  133. Guzzi, N. et al. Pseudouridylation of tRNA-derived fragments steers translational control in stem cells. Cell 173, 1204–1216.e26 (2018).

    Article  CAS  PubMed  Google Scholar 

  134. Guzzi, N. et al. Pseudouridine-modified tRNA fragments repress aberrant protein synthesis and predict leukaemic progression in myelodysplastic syndrome. Nat. Cell Biol. 24, 299–306 (2022).

    Article  CAS  PubMed  Google Scholar 

  135. Cui, Q. et al. Targeting PUS7 suppresses tRNA pseudouridylation and glioblastoma tumorigenesis. Nat. Cancer 2, 932–949 (2021).

    Article  CAS  PubMed  Google Scholar 

  136. Zhang, Q. et al. HIV reprograms host m6Am RNA methylome by viral Vpr protein-mediated degradation of PCIF1. Nat. Commun. 12, 5543 (2021).

    Article  CAS  PubMed  Google Scholar 

  137. Wang, L. et al. PCIF1-mediated deposition of 5′-cap N6,2′-O-dimethyladenosine in ACE2 and TMPRSS2 mRNA regulates susceptibility to SARS-CoV-2 infection. Proc. Natl Acad. Sci. USA 120, e2210361120 (2023).

    Article  CAS  PubMed  Google Scholar 

  138. Hensel, J. et al. Patient mutation directed shRNA screen uncovers novel bladder tumor growth suppressors. Mol. Cancer Res. 13, 1306–1315 (2015).

    Article  CAS  PubMed  Google Scholar 

  139. Relier, S. et al. FTO-mediated cytoplasmic m6Am demethylation adjusts stem-like properties in colorectal cancer cell. Nat. Commun. 12, 1716 (2021).

    Article  CAS  PubMed  Google Scholar 

  140. Wang, L. et al. Role of PCIF1-mediated 5′-cap N6-methyladeonsine mRNA methylation in colorectal cancer and anti-PD-1 immunotherapy. EMBO J. 42, e111673 (2023).

    Article  CAS  PubMed  Google Scholar 

  141. Yang, Y., Okada, S. & Sakurai, M. Adenosine-to-inosine RNA editing in neurological development and disease. RNA Biol. 18, 999–1013 (2021).

    Article  CAS  PubMed  Google Scholar 

  142. Hwang, T. et al. Dynamic regulation of RNA editing in human brain development and disease. Nat. Neurosci. 19, 1093–1099 (2016).

    Article  CAS  PubMed  Google Scholar 

  143. Cuddleston, W. H. et al. Spatiotemporal and genetic regulation of A-to-I editing throughout human brain development. Cell Rep. 41, 111585 (2022).

    Article  CAS  PubMed  Google Scholar 

  144. Liddicoat, B. J. et al. RNA editing by ADAR1 prevents MDA5 sensing of endogenous dsRNA as nonself. Science 349, 1115–1120 (2015).

    Article  CAS  PubMed  Google Scholar 

  145. Mannion, N. M. et al. The RNA-editing enzyme ADAR1 controls innate immune responses to RNA. Cell Rep. 9, 1482–1494 (2014).

    Article  CAS  PubMed  Google Scholar 

  146. Li, Q. et al. RNA editing underlies genetic risk of common inflammatory diseases. Nature 608, 569–577 (2022).

    Article  CAS  PubMed  Google Scholar 

  147. de Reuver, R. et al. ADAR1 interaction with Z-RNA promotes editing of endogenous double-stranded RNA and prevents MDA5-dependent immune activation. Cell Rep. 36, 109500 (2021).

    Article  PubMed  Google Scholar 

  148. Ishizuka, J. J. et al. Loss of ADAR1 in tumours overcomes resistance to immune checkpoint blockade. Nature 565, 43–48 (2019).

    Article  CAS  PubMed  Google Scholar 

  149. Liu, H. et al. Tumor-derived IFN triggers chronic pathway agonism and sensitivity to ADAR loss. Nat. Med. 25, 95–102 (2019).

    Article  CAS  PubMed  Google Scholar 

  150. Zhang, T. et al. ADAR1 masks the cancer immunotherapeutic promise of ZBP1-driven necroptosis. Nature 606, 594–602 (2022).

    Article  CAS  PubMed  Google Scholar 

  151. Baker, A. R. & Slack, F. J. ADAR1 and its implications in cancer development and treatment. Trends Genet. 38, 821–830 (2022).

    Article  CAS  PubMed  Google Scholar 

  152. Paz, N. et al. Altered adenosine-to-inosine RNA editing in human cancer. Genome Res. 17, 1586–1595 (2007).

    Article  CAS  PubMed  Google Scholar 

  153. Slotkin, W. & Nishikura, K. Adenosine-to-inosine RNA editing and human disease. Genome Med. 5, 105 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  154. Han, L. et al. The genomic landscape and clinical relevance of A-to-I RNA editing in human cancers. Cancer Cell 28, 515–528 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Amin, E. M. et al. The RNA-editing enzyme ADAR promotes lung adenocarcinoma migration and invasion by stabilizing FAK. Sci. Signal. 10, eaah3941 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  156. Chen, L. et al. Recoding RNA editing of AZIN1 predisposes to hepatocellular carcinoma. Nat. Med. 19, 209–216 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  157. Galeano, F. et al. ADAR2-editing activity inhibits glioblastoma growth through the modulation of the CDC14B/Skp2/p21/p27 axis. Oncogene 32, 998–1009 (2013).

    Article  CAS  PubMed  Google Scholar 

  158. Maas, S., Patt, S., Schrey, M. & Rich, A. Underediting of glutamate receptor GluR-B mRNA in malignant gliomas. Proc. Natl Acad. Sci. USA 98, 14687–14692 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Khermesh, K. et al. Reduced levels of protein recoding by A-to-I RNA editing in Alzheimer’s disease. RNA 22, 290–302 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Chi, L. & Delgado-Olguin, P. Expression of NOL1/NOP2/sun domain (Nsun) RNA methyltransferase family genes in early mouse embryogenesis. Gene Expr. Patterns 13, 319–327 (2013).

    Article  CAS  PubMed  Google Scholar 

  161. Liu, J. et al. Developmental mRNA m5C landscape and regulatory innovations of massive m5C modification of maternal mRNAs in animals. Nat. Commun. 13, 2484 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Zou, F. et al. Drosophila YBX1 homolog YPS promotes ovarian germ line stem cell development by preferentially recognizing 5-methylcytosine RNAs. Proc. Natl Acad. Sci. USA 117, 3603–3609 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Kong, W. et al. Nucleolar protein NOP2/NSUN1 suppresses HIV-1 transcription and promotes viral latency by competing with Tat for TAR binding and methylation. PLoS Pathog. 16, e1008430 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Courtney, D. G. et al. Epitranscriptomic addition of m5C to HIV-1 transcripts regulates viral gene expression. Cell Host Microbe 26, 217–227.e6 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Courtney, D. G. et al. Extensive epitranscriptomic methylation of A and C residues on murine leukemia virus transcripts enhances viral gene expression. mBio 10, e01209–e01219 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Zhang, Y. et al. 5-Methylcytosine (m5C) RNA modification controls the innate immune response to virus infection by regulating type I interferons. Proc. Natl Acad. Sci. USA 119, e2123338119 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Wang, H. et al. NSUN2-mediated m5c methylation of IRF3 mRNA negatively regulates type I interferon responses during various viral infections. Emerg. Microbes Infect. 12, 2178238 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  168. Nombela, P., Miguel-Lopez, B. & Blanco, S. The role of m6A, m5C and Ψ RNA modifications in cancer: novel therapeutic opportunities. Mol. Cancer 20, 18 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Gao, Y. et al. NOP2/Sun RNA methyltransferase 2 promotes tumor progression via its interacting partner RPL6 in gallbladder carcinoma. Cancer Sci. 110, 3510–3519 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Cheng, J. X. et al. RNA cytosine methylation and methyltransferases mediate chromatin organization and 5-azacytidine response and resistance in leukaemia. Nat. Commun. 9, 1163 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  171. Delaunay, S. et al. Mitochondrial RNA modifications shape metabolic plasticity in metastasis. Nature 607, 593–603 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Zust, R. et al. Ribose 2′-O-methylation provides a molecular signature for the distinction of self and non-self mRNA dependent on the RNA sensor Mda5. Nat. Immunol. 12, 137–143 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  173. Schuberth-Wagner, C. et al. A conserved histidine in the RNA sensor RIG-I controls immune tolerance to N1-2′O-methylated self RNA. Immunity 43, 41–51 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Hyde, J. L. & Diamond, M. S. Innate immune restriction and antagonism of viral RNA lacking 2′-O methylation. Virology 479-480, 66–74 (2015).

    Article  CAS  PubMed  Google Scholar 

  175. Daffis, S. et al. 2′-O methylation of the viral mRNA cap evades host restriction by IFIT family members. Nature 468, 452–456 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Ringeard, M., Marchand, V., Decroly, E., Motorin, Y. & Bennasser, Y. FTSJ3 is an RNA 2′-O-methyltransferase recruited by HIV to avoid innate immune sensing. Nature 565, 500–504 (2019).

    Article  CAS  PubMed  Google Scholar 

  177. Wang, Y. et al. N1-Methyladenosine methylation in tRNA drives liver tumourigenesis by regulating cholesterol metabolism. Nat. Commun. 12, 6314 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Woo, H. H. & Chambers, S. K. Human ALKBH3-induced m1A demethylation increases the CSF-1 mRNA stability in breast and ovarian cancer cells. Biochim. Biophys. Acta Gene Regul. Mech. 1862, 35–46 (2019).

    Article  CAS  PubMed  Google Scholar 

  179. Yamato, I. et al. PCA-1/ALKBH3 contributes to pancreatic cancer by supporting apoptotic resistance and angiogenesis. Cancer Res. 72, 4829–4839 (2012).

    Article  CAS  PubMed  Google Scholar 

  180. Yang, R. et al. The RNA methyltransferase NSUN6 suppresses pancreatic cancer development by regulating cell proliferation. EBioMedicine 63, 103195 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. An, O. et al. “3G” trial: an RNA editing signature to guide gastric cancer chemotherapy. Cancer Res. 81, 2788–2798 (2021).

    Article  CAS  PubMed  Google Scholar 

  182. Ding, H. Y. et al. 8-Chloro-adenosine inhibits proliferation of MDA-MB-231 and SK-BR-3 breast cancer cells by regulating ADAR1/p53 signaling pathway. Cell Transpl. 29, 963689720958656 (2020).

    Article  Google Scholar 

  183. Nakao, S. et al. Design and synthesis of prostate cancer antigen-1 (PCA-1/ALKBH3) inhibitors as anti-prostate cancer drugs. Bioorg. Med. Chem. Lett. 24, 1071–1074 (2014).

    Article  CAS  PubMed  Google Scholar 

  184. Liu, C. et al. Absolute quantification of single-base m6A methylation in the mammalian transcriptome using GLORI. Nat. Biotechnol. 41, 355–366 (2023).

    Article  CAS  PubMed  Google Scholar 

  185. Eid, J. et al. Real-time DNA sequencing from single polymerase molecules. Science 323, 133–138 (2009).

    Article  CAS  PubMed  Google Scholar 

  186. Clarke, J. et al. Continuous base identification for single-molecule nanopore DNA sequencing. Nat. Nanotechnol. 4, 265–270 (2009).

    Article  CAS  PubMed  Google Scholar 

  187. Morais, P., Adachi, H. & Yu, Y. T. The critical contribution of pseudouridine to mRNA COVID-19 vaccines. Front. Cell Dev. Biol. 9, 789427 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  188. Pardi, N., Hogan, M. J., Porter, F. W. & Weissman, D. mRNA vaccines—a new era in vaccinology. Nat. Rev. Drug. Discov. 17, 261–279 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Huang, Y. et al. Small-molecule targeting of oncogenic FTO demethylase in acute myeloid leukemia. Cancer Cell 35, 677–691.e10 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Lovejoy, A. F., Riordan, D. P. & Brown, P. O. Transcriptome-wide mapping of pseudouridines: pseudouridine synthases modify specific mRNAs in S. cerevisiae. PLoS ONE 9, e110799 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  191. Qin, Y. R. et al. Adenosine-to-inosine RNA editing mediated by ADARs in esophageal squamous cell carcinoma. Cancer Res. 74, 840–851 (2014).

    Article  CAS  PubMed  Google Scholar 

  192. Shigeyasu, K. et al. AZIN1 RNA editing confers cancer stemness and enhances oncogenic potential in colorectal cancer. JCI Insight 3, e99976 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  193. Song, Y. et al. RNA editing mediates the functional switch of COPA in a novel mechanism of hepatocarcinogenesis. J. Hepatol. 74, 135–147 (2021).

    Article  CAS  PubMed  Google Scholar 

  194. Song, J. & Yi, C. Reading chemical modifications in the transcriptome. J. Mol. Biol. 6, 1824–1839 (2019).

    Google Scholar 

  195. Kariko, K., Muramatsu, H., Ludwig, J. & Weissman, D. Generating the optimal mRNA for therapy: HPLC purification eliminates immune activation and improves translation of nucleoside-modified, protein-encoding mRNA. Nucleic Acids Res. 39, e142 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Heil, F. et al. Species-specific recognition of single-stranded RNA via Toll-like receptor 7 and 8. Science 303, 1526–1529 (2004).

    Article  CAS  PubMed  Google Scholar 

  197. Kariko, K. et al. Incorporation of pseudouridine into mRNA yields superior nonimmunogenic vector with increased translational capacity and biological stability. Mol. Ther. 16, 1833–1840 (2008).

    Article  CAS  PubMed  Google Scholar 

  198. Kariko, K., Buckstein, M., Ni, H. & Weissman, D. Suppression of RNA recognition by Toll-like receptors: the impact of nucleoside modification and the evolutionary origin of RNA. Immunity 23, 165–175 (2005).

    Article  CAS  PubMed  Google Scholar 

  199. Anderson, B. R. et al. Incorporation of pseudouridine into mRNA enhances translation by diminishing PKR activation. Nucleic Acids Res. 38, 5884–5892 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Kariko, K., Muramatsu, H., Keller, J. M. & Weissman, D. Increased erythropoiesis in mice injected with submicrogram quantities of pseudouridine-containing mRNA encoding erythropoietin. Mol. Ther. 20, 948–953 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Andries, O. et al. N1-Methylpseudouridine-incorporated mRNA outperforms pseudouridine-incorporated mRNA by providing enhanced protein expression and reduced immunogenicity in mammalian cell lines and mice. J. Control. Rel. 217, 337–344 (2015).

    Article  CAS  Google Scholar 

  202. Sahin, U. et al. BNT162b2 vaccine induces neutralizing antibodies and poly-specific T cells in humans. Nature 595, 572–577 (2021).

    Article  CAS  PubMed  Google Scholar 

  203. Corbett, K. S. et al. SARS-CoV-2 mRNA vaccine design enabled by prototype pathogen preparedness. Nature 586, 567–571 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the Ministry of Science and Technology of China (2019YFA0110902 and 2019YFA0802201 to C.Y.) and the National Natural Science Foundation of China (21825701 to C.Y.).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed substantially to discussion of the content.

Corresponding author

Correspondence to Chengqi Yi.

Ethics declarations

Competing interests

C.Y. is a founder of Modit therapeutics. H.S., K.L. and C.L. declare no competing interests.

Peer review

Peer review information

Nature Reviews Molecular Cell Biology thanks Rui Zhang, Yun-Gui Yang and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, H., Li, K., Liu, C. et al. Regulation and functions of non-m6A mRNA modifications. Nat Rev Mol Cell Biol 24, 714–731 (2023). https://doi.org/10.1038/s41580-023-00622-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41580-023-00622-x

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing