Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Genome control by SMC complexes

Abstract

Many cellular processes require large-scale rearrangements of chromatin structure. Structural maintenance of chromosomes (SMC) protein complexes are molecular machines that can provide structure to chromatin. These complexes can connect DNA elements in cis, walk along DNA, build and processively enlarge DNA loops and connect DNA molecules in trans to hold together the sister chromatids. These DNA-shaping abilities place SMC complexes at the heart of many DNA-based processes, including chromosome segregation in mitosis, transcription control and DNA replication, repair and recombination. In this Review, we discuss the latest insights into how SMC complexes such as cohesin, condensin and the SMC5–SMC6 complex shape DNA to direct these fundamental chromosomal processes. We also consider how SMC complexes, by building chromatin loops, can counteract the natural tendency of alike chromatin regions to cluster. SMC complexes thus control nuclear organization by participating in a molecular tug of war that determines the architecture of our genome.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The three eukaryotic structural maintenance of chromosomes complexes.
Fig. 2: Cohesin loops DNA to organize the genome and control gene expression and recombination.
Fig. 3: Establishment and maintenance of sister chromatid cohesion.
Fig. 4: Mitotic chromosome condensation, sister chromatid resolution and chromosome segregation.
Fig. 5: Two opposing forces shaping the nucleus.

Similar content being viewed by others

References

  1. Chuang, P. T., Albertson, D. G. & Meyer, B. J. DPY-27: a chromosome condensation protein homolog that regulates C. elegans dosage compensation through association with the X chromosome. Cell 79, 459–474 (1994).

    Article  CAS  PubMed  Google Scholar 

  2. Niki, H., Jaffe, A., Imamura, R., Ogura, T. & Hiraga, S. The new gene mukB codes for a 177 kD protein with coiled-coil domains involved in chromosome partitioning of E. coli. EMBO J. 10, 183–193 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Guacci, V., Koshland, D. & Strunnikov, A. A direct link between sister chromatid cohesion and chromosome condensation revealed through the analysis of MCD1 in S. cerevisiae. Cell 91, 47–57 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Hirano, T. & Mitchison, T. J. A heterodimeric coiled-coil protein required for mitotic chromosome condensation in vitro. Cell 79, 449–458 (1994).

    Article  CAS  PubMed  Google Scholar 

  5. Michaelis, C., Ciosk, R. & Nasmyth, K. Cohesins: chromosomal proteins that prevent premature separation of sister chromatids. Cell 91, 35–45 (1997).

    Article  CAS  PubMed  Google Scholar 

  6. Saka, Y. et al. Fission yeast cut3 and cut14, members of a ubiquitous protein family, are required for chromosome condensation and segregation in mitosis. EMBO J. 13, 4938–4952 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Strunnikov, A. V., Larionov, V. L. & Koshland, D. SMC1: an essential yeast gene encoding a putative head-rod-tail protein is required for nuclear division and defines a new ubiquitous protein family. J. Cell Biol. 123, 1635–1648 (1993).

    Article  CAS  PubMed  Google Scholar 

  8. Saitoh, N., Goldberg, I. G., Wood, E. R. & Earnshaw, W. C. ScII: an abundant chromosome scaffold protein is a member of a family of putative ATPases with an unusual predicted tertiary structure. J. Cell Biol. 127, 303–318 (1994).

    Article  CAS  PubMed  Google Scholar 

  9. Hirano, T., Kobayashi, R. & Hirano, M. Condensins, chromosome condensation protein complexes containing XCAP-C, XCAP-E and a xenopus homolog of the Drosophila barren protein. Cell 89, 511–521 (1997).

    Article  CAS  PubMed  Google Scholar 

  10. Losada, A., Hirano, M. & Hirano, T. Identification of Xenopus SMC protein complexes required for sister chromatid cohesion. Genes Dev. 12, 1986–1997 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Wells, J. N., Gligoris, T. G., Nasmyth, K. A. & Marsh, J. A. Evolution of condensin and cohesin complexes driven by replacement of Kite by Hawk proteins. Curr. Biol. 27, R17–R18 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Palecek, J. J. & Gruber, S. Kite proteins: a superfamily of SMC/kleisin partners conserved across bacteria, archaea, and eukaryotes. Structure 23, 2183–2190 (2015).

    Article  CAS  PubMed  Google Scholar 

  13. Petela, N. J. et al. Scc2 is a potent activator of cohesin’s ATPase that promotes loading by binding Scc1 without Pds5. Mol. Cell 70, 1134–1148 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. van Ruiten, M. S. et al. The cohesin acetylation cycle controls chromatin loop length through a PDS5A brake mechanism. Nat. Struct. Mol. Biol. 29, 586–591 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Bastié, N. et al. Smc3 acetylation, Pds5 and Scc2 control the translocase activity that establishes cohesin-dependent chromatin loops. Nat. Struct. Mol. Biol. 29, 575–585 (2022).

    Article  PubMed  Google Scholar 

  16. Kolesar, P., Stejskal, K., Potesil, D., Murray, J. M. & Palecek, J. J. Role of Nse1 subunit of SMC5/6 complex as a ubiquitin ligase. Cells 11, 165 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Andrews, E. A. et al. Nse2, a component of the Smc5–6 complex, is a SUMO ligase required for the response to DNA damage. Mol. Cell Biol. 25, 185–196 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Zhao, X. & Blobel, G. A SUMO ligase is part of a nuclear multiprotein complex that affects DNA repair and chromosomal organization. Proc. Natl Acad. Sci. USA 102, 4777–4782 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Taschner, M. et al. Nse5/6 inhibits the Smc5/6 ATPase and modulates DNA substrate binding. EMBO J. 40, e107807 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Hallett, S. T. et al. Nse5/6 is a negative regulator of the ATPase activity of the Smc5/6 complex. Nucleic Acids Res. 49, 4534–4549 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Räschle, M. et al. Proteomics reveals dynamic assembly of repair complexes during bypass of DNA cross-links. Science 348, 1253671 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Nasmyth, K. Disseminating the genome: joining, resolving, and separating sister chromatids during mitosis and meiosis. Annu. Rev. Genet. 35, 673–745 (2001). This Review puts forward the hypothesis that SMC complexes shape DNA through a mechanism of processive loop enlargement.

    Article  CAS  PubMed  Google Scholar 

  23. Ryu, J.-K. et al. Condensin extrudes DNA loops in steps up to hundreds of base pairs that are generated by ATP binding events. Nucleic Acids Res. 50, 820–832 (2022).

    Article  CAS  PubMed  Google Scholar 

  24. Pradhan, B. et al. SMC complexes can traverse physical roadblocks bigger than their ring size. Cell Rep. 41, 111491 (2022).

    Article  CAS  PubMed  Google Scholar 

  25. Oldenkamp, R. & Rowland, B. D. A walk through the SMC cycle: from catching DNAs to shaping the genome. Mol. Cell 82, 1616–1630 (2022).

    Article  CAS  PubMed  Google Scholar 

  26. Davidson, I. F. & Peters, J. M. Genome folding through loop extrusion by SMC complexes. Nat. Rev. Mol. Cell Biol. 22, 445–464 (2021).

    Article  CAS  PubMed  Google Scholar 

  27. Birkenbihl, R. P. & Subramani, S. Cloning and characterization of rad21 an essential gene of Schizosaccharomyces pombe involved in DNA double-strand-break repair. Nucleic Acids Res. 20, 6605–6611 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Abramo, K. et al. A chromosome folding intermediate at the condensin-to-cohesin transition during telophase. Nat. Cell Biol. 21, 1393–1402 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Zhang, H. et al. Chromatin structure dynamics during the mitosis-to-G1 phase transition. Nature 576, 158–162 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ciosk, R. et al. Cohesin’s binding to chromosomes depends on a separate complex consisting of Scc2 and Scc4 proteins. Mol. Cell 5, 243–254 (2000).

    Article  CAS  PubMed  Google Scholar 

  31. Davidson, I. F. et al. DNA loop extrusion by human cohesin. Science 366, 1338–1345 (2019).

    Article  CAS  PubMed  Google Scholar 

  32. Kim, Y., Shi, Z., Zhang, H., Finkelstein, I. J. & Yu, H. Human cohesin compacts DNA by loop extrusion. Science 366, 1345–1349 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Beckouët, F. et al. Releasing activity disengages cohesin’s Smc3/Scc1 interface in a process blocked by acetylation. Mol. Cell 61, 563–574 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Murayama, Y. & Uhlmann, F. DNA entry into and exit out of the cohesin ring by an interlocking gate mechanism. Cell 163, 1628–1640 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Eichinger, C. S., Kurze, A., Oliveira, R. A. & Nasmyth, K. Disengaging the Smc3/kleisin interface releases cohesin from Drosophila chromosomes during interphase and mitosis. EMBO J. 32, 656–665 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Chan, K. L. et al. Cohesin’s DNA exit gate is distinct from its entrance gate and is regulated by acetylation. Cell 150, 961–974 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Buheitel, J. & Stemmann, O. Prophase pathway-dependent removal of cohesin from human chromosomes requires opening of the Smc3–Scc1 gate. EMBO J. 32, 666–676 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kueng, S. et al. Wapl controls the dynamic association of cohesin with chromatin. Cell 127, 955–967 (2006).

    Article  CAS  PubMed  Google Scholar 

  39. Gandhi, R., Gillespie, P. J. & Hirano, T. Human Wapl is a cohesin-binding protein that promotes sister-chromatid resolution in mitotic prophase. Curr. Biol. 16, 2406–2417 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Haarhuis, J. H. I. et al. The cohesin release factor WAPL restricts chromatin loop extension. Cell 169, 693–707 (2017). Together with Gassler et al. (2017) and Wutz et al. (2017), these papers reveal that increasing the residence time of cohesin on the DNA causes a genome-wide extension of chromatin loops.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Gassler, J. et al. A mechanism of cohesin dependent loop extrusion organizes zygotic genome architecture. EMBO J. 36, 3600–3618 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Wutz, G. et al. Topologically associating domains and chromatin loops depend on cohesin and are regulated by CTCF, WAPL, and PDS5 proteins. EMBO J. 36, 3573–3599 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Schwarzer, W. et al. Two independent modes of chromatin organization revealed by cohesin removal. Nature 551, 51–56 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Rao, S. S. P. et al. Cohesin loss eliminates all loop domains. Cell 171, 305–320 (2017). Together with Haarhuis et al. (2017), Gassler et al. (2017), Wutz et al. (2017) and Schwarzer et al. ( 2017), these papers reveal that cohesin counteracts compartmentalization. In the study by Rao et al., cohesin was revealed to be required for the formation of all TADs and able to rebuild such structures in under an hour.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Golfier, S., Quail, T., Kimura, H. & Brugués, J. Cohesin and condensin extrude DNA loops in a cell-cycle dependent manner. eLife 9, e53885 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Zhang, H. et al. CTCF and R-loops are boundaries of cohesin-mediated DNA looping. Preprint at bioRxiv https://doi.org/10.1101/2022.09.15.508177 (2022).

  47. Davidson, I. F. et al. CTCF is a DNA-tension-dependent barrier to cohesin-mediated loop extrusion. Nature 616, 822–827 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Parelho, V. et al. Cohesins functionally associate with CTCF on mammalian chromosome arms. Cell 132, 422–433 (2008).

    Article  CAS  PubMed  Google Scholar 

  49. Wendt, K. S. et al. Cohesin mediates transcriptional insulation by CCCTC-binding factor. Nature 451, 796–801 (2008).

    Article  CAS  PubMed  Google Scholar 

  50. Davidson, I. F. et al. Rapid movement and transcriptional relocalization of human cohesin on DNA. EMBO J. 35, 2671–2685 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Rao, S. S. P. et al. A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping. Cell 159, 1665–1680 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Vietri Rudan, M. et al. Comparative Hi-C reveals that CTCF underlies evolution of chromosomal domain architecture. Cell Rep. 10, 1297–1309 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Nakahashi, H. et al. A genome-wide map of CTCF multivalency redefines the CTCF code. Cell Rep. 3, 1678–1689 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Li, Y. et al. The structural basis for cohesin–CTCF-anchored loops. Nature 578, 472–476 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Pugacheva, E. M. et al. CTCF mediates chromatin looping via N-terminal domain-dependent cohesin retention. Proc. Natl Acad. Sci. USA 117, 2020–2031 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Nishana, M. et al. Defining the relative and combined contribution of CTCF and CTCFL to genomic regulation. Genome Biol. 21, 108 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Nora, E. P. et al. Molecular basis of CTCF binding polarity in genome folding. Nat. Commun. 11, 5612 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Liu, Y. & Dekker, J. CTCF–CTCF loops and intra-TAD interactions show differential dependence on cohesin ring integrity. Nat. Cell Biol. 24, 1516–1527 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Saldaña-Meyer, R. et al. RNA interactions are essential for CTCF-mediated genome organization. Mol. Cell 76, 412–422 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Hansen, A. S. et al. Distinct classes of chromatin loops revealed by deletion of an RNA-binding region in CTCF. Mol. Cell 76, 395–411 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Wutz, G. et al. ESCO1 and CTCF enable formation of long chromatin loops by protecting cohesin/stag1 from WAPL. eLife 9, e52091 (2020).

    CAS  Google Scholar 

  62. Psakhye, I. & Branzei, D. SMC complexes are guarded by the SUMO protease Ulp2 against SUMO-chain-mediated turnover. Cell Rep. 36, 109485 (2021).

    Article  CAS  PubMed  Google Scholar 

  63. Wagner, K. et al. The SUMO isopeptidase SENP6 functions as a rheostat of chromatin residency in genome maintenance and chromosome dynamics. Cell Rep. 29, 480–494 (2019).

    Article  CAS  PubMed  Google Scholar 

  64. Hansen, A. S., Pustova, I., Cattoglio, C., Tjian, R. & Darzacq, X. CTCF and cohesin regulate chromatin loop stability with distinct dynamics. eLife 6, e25776 (2017).

    Google Scholar 

  65. Cattoglio, C. et al. Determining cellular CTCF and cohesin abundances to constrain 3D genome models. eLife 8, e40164 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Holzmann, J. et al. Absolute quantification of cohesin, CTCF and their regulators in human cells. eLife 8, e46269 (2019).

    Google Scholar 

  67. Stevens, T. J. et al. 3D structures of individual mammalian genomes studied by single-cell Hi-C. Nature 544, 59–64 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Bintu, B. et al. Super-resolution chromatin tracing reveals domains and cooperative interactions in single cells. Science 362, eaau1783 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Su, J. H., Zheng, P., Kinrot, S. S., Bintu, B. & Zhuang, X. Genome-scale imaging of the 3D organization and transcriptional activity of chromatin. Cell 182, 1641–1659 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Flyamer, I. M. et al. Single-nucleus Hi-C reveals unique chromatin reorganization at oocyte-to-zygote transition. Nature 544, 110–114 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Finn, E. H. et al. Extensive heterogeneity and intrinsic variation in spatial genome organization. Cell 176, 1502–1515 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Luppino, J. M. et al. Cohesin promotes stochastic domain intermingling to ensure proper regulation of boundary-proximal genes. Nat. Genet. 52, 840–848 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Gabriele, M. et al. Dynamics of CTCF- and cohesin-mediated chromatin looping revealed by live-cell imaging. Science 376, 476–501 (2022). This study shows by imaging single cells that CTCF-anchored chromatin loops are highly dynamic and that loop domains are rarely fully looped.

    Article  Google Scholar 

  74. Mach, P. et al. Cohesin and CTCF control the dynamics of chromosome folding. Nat. Genet. 54, 1907–1918 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Symmons, O. et al. The Shh topological domain facilitates the action of remote enhancers by reducing the effects of genomic distances. Dev. Cell 39, 529–543 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Flavahan, W. A. et al. Insulator dysfunction and oncogene activation in IDH mutant gliomas. Nature 529, 110–114 (2016).

    Article  CAS  PubMed  Google Scholar 

  77. Hnisz, D. et al. Activation of proto-oncogenes by disruption of chromosome neighborhoods. Science 351, 1454–1458 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Lupiáñez, D. G. et al. Disruptions of topological chromatin domains cause pathogenic rewiring of gene-enhancer interactions. Cell 161, 1012–1025 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  79. Rinzema, N. J. et al. Building regulatory landscapes reveals that an enhancer can recruit cohesin to create contact domains, engage CTCF sites and activate distant genes. Nat. Struct. Mol. Biol. 29, 563–574 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Ing-Simmons, E. et al. Spatial enhancer clustering and regulation of enhancer-proximal genes by cohesin. Genome Res. 25, 504–513 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Kagey, M. H. et al. Mediator and cohesin connect gene expression and chromatin architecture. Nature 467, 430–435 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Thiecke, M. J. et al. Cohesin-dependent and -independent mechanisms mediate chromosomal contacts between promoters and enhancers. Cell Rep. 32, 107929 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Vian, L. et al. The energetics and physiological impact of Cohesin extrusion. Cell 173, 1165–1178 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Barrington, C. et al. Enhancer accessibility and CTCF occupancy underlie asymmetric TAD architecture and cell type specific genome topology. Nat. Commun. 10, 2908 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  85. Kane, L. et al. Cohesin is required for long-range enhancer action at the Shh locus. Nat. Struct. Mol. Biol. 29, 891–897 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Robles-Rebollo, I. et al. Cohesin couples transcriptional bursting probabilities of inducible enhancers and promoters. Nat. Commun. 13, 4342 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Liu, N. Q. et al. WAPL maintains a cohesin loading cycle to preserve cell-type-specific distal gene regulation. Nat. Genet. 53, 100–109 (2021).

    Article  CAS  PubMed  Google Scholar 

  88. Cuartero, S. et al. Control of inducible gene expression links cohesin to hematopoietic progenitor self-renewal and differentiation. Nat. Immunol. 19, 932–941 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Calderon, L. et al. Cohesin-dependence of neuronal gene expression relates to chromatin loop length. eLife 11, e76539 (2022).

    CAS  Google Scholar 

  90. Rinaldi, L. et al. The glucocorticoid receptor associates with the cohesin loader NIPBL to promote long-range gene regulation. Sci. Adv. 8, 8360 (2022).

    Article  Google Scholar 

  91. Yamada, T. et al. Sensory experience remodels genome architecture in neural circuit to drive motor learning. Nature 569, 708–713 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Sams, D. S. et al. Neuronal CTCF is necessary for basal and experience-dependent gene regulation, memory formation, and genomic structure of BDNF and arc. Cell Rep. 17, 2418–2430 (2016).

    Article  CAS  PubMed  Google Scholar 

  93. Wang, J., Bando, M., Shirahige, K. & Nakato, R. Large-scale multi-omics analysis suggests specific roles for intragenic cohesin in transcriptional regulation. Nat. Commun. 13, 3218 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  94. Lupo, R., Breiling, A., Bianchi, M. E. & Orlando, V. Drosophila chromosome condensation proteins Topoisomerase II and Barren colocalize with Polycomb and maintain Fab-7 PRE silencing. Mol. Cell 7, 127–136 (2001).

    Article  CAS  PubMed  Google Scholar 

  95. Zhang, T. et al. Condensin I and II behaviour in interphase nuclei and cells undergoing premature chromosome condensation. Chromosome Res. 24, 243–269 (2016).

    Article  CAS  PubMed  Google Scholar 

  96. Lancaster, L., Patel, H., Kelly, G. & Uhlmann, F. A role for condensin in mediating transcriptional adaptation to environmental stimuli. Life Sci. Alliance 4, 202000961 (2021).

    Article  Google Scholar 

  97. Yuen, K. C., Slaughter, B. D. & Gerton, J. L. Condensin II is anchored by TFIIIC and H3K4me3 in the mammalian genome and supports the expression of active dense gene clusters. Sci. Adv. 3, e1700191 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  98. Li, W. et al. Condensin I and II complexes license full estrogen receptor α-dependent enhancer activation. Mol. Cell 59, 188–202 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Hoencamp, C. et al. 3D genomics across the tree of life reveals condensin II as a determinant of architecture type. Science 372, 984–989 (2021). This study shows that condensin II activity in mitosis establishes interphase genome organization, thereby promoting chromosome territories over Rabl-like organization.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Macdonald, L. et al. Rapid and specific degradation of endogenous proteins in mouse models using auxin-inducible degrons. eLife 11, e77987 (2022).

    CAS  Google Scholar 

  101. Abdennur, N. et al. Condensin II inactivation in interphase does not affect chromatin folding or gene expression. Preprint at bioRxiv https://doi.org/10.1101/437459 (2018).

  102. Hocquet, C. et al. Condensin controls cellular RNA levels through the accurate segregation of chromosomes instead of directly regulating transcription. eLife 7, e38517 (2018).

    Google Scholar 

  103. Woodward, J. et al. Condensin II mutation causes T-cell lymphoma through tissue-specific genome instability. Genes Dev. 30, 2173–2186 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Zhang, Y., Zhang, X., Dai, H. Q., Hu, H. & Alt, F. W. The role of chromatin loop extrusion in antibody diversification. Nat. Rev. Immunol. 22, 550–566 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Guo, C. et al. CTCF-binding elements mediate control of V(D)J recombination. Nature 477, 424–431 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Dai, H. Q. et al. Loop extrusion mediates physiological Igh locus contraction for RAG scanning. Nature 590, 338–343 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Ba, Z. et al. CTCF orchestrates long-range cohesin-driven V(D)J recombinational scanning. Nature 586, 305–310 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Hill, L. et al. Wapl repression by Pax5 promotes V gene recombination by Igh loop extrusion. Nature 584, 142–147 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Jain, S., Ba, Z., Zhang, Y., Dai, H. Q. & Alt, F. W. CTCF-binding elements mediate accessibility of RAG substrates during chromatin scanning. Cell 174, 102–116 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Lin, S. G., Guo, C., Sua, A., Zhang, Y. & Alt, F. W. CTCF-binding elements 1 and 2 in the Igh intergenic control region cooperatively regulate V(D)J recombination. Proc. Natl Acad. Sci. USA 112, 1815–1820 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Medvedovic, J. et al. Flexible long-range loops in the VH gene region of the Igh locus facilitate the generation of a diverse antibody repertoire. Immunity 39, 229–244 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Zhang, X. et al. Fundamental roles of chromatin loop extrusion in antibody class switching. Nature 575, 385–389 (2019). This study reports that cohesin-mediated loop extrusion is vital for deletional class-switch recombination in B lymphocytes.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Seitan, V. C. et al. A role for cohesin in T-cell-receptor rearrangement and thymocyte differentiation. Nature 476, 467–473 (2011). This study shows that cohesin is important for the rearrangement of the T cell receptor locus and efficient thymocyte differentiation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Haering, C. H., Farcas, A. M., Arumugam, P., Metson, J. & Nasmyth, K. The cohesin ring concatenates sister DNA molecules. Nature 454, 297–301 (2008). This study shows that cohesin can topologically entrap two sister DNA molecules within its ring-shaped structure.

    Article  CAS  PubMed  Google Scholar 

  115. Murayama, Y., Samora, C. P., Kurokawa, Y., Iwasaki, H. & Uhlmann, F. Establishment of DNA–DNA interactions by the cohesin ring. Cell 172, 465–469 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Xu, H., Boone, C. & Brown, G. W. Genetic dissection of parallel sister-chromatid cohesion pathways. Genetics 176, 1417–1429 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Srinivasan, M., Fumasoni, M., Petela, N. J., Murray, A. & Nasmyth, K. A. Cohesion is established during DNA replication utilising chromosome associated cohesin rings as well as those loaded de novo onto nascent DNAs. eLife 9, e56611 (2020). This study describes two pathways for the establishment of sister chromatid cohesion in budding yeast: the conversion pathway and the de novo pathway.

    CAS  Google Scholar 

  118. Cameron, G. et al. Sister chromatid cohesion establishment during DNA replication termination. Preprint at biorXiv https://doi.org/10.1101/2022.09.15.508094 (2022).

  119. Srinivasan, M. et al. Scc2 counteracts a Wapl-independent mechanism that releases cohesin from chromosomes during G1. eLife 8, e44736 (2019).

    CAS  Google Scholar 

  120. Rhodes, J. D. P. et al. Cohesin can remain associated with chromosomes during DNA replication. Cell Rep. 20, 2749–2755 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. van Schie, J. J. et al. MMS22L-TONSL functions in sister chromatid cohesion in a pathway parallel to DSCC1-RFC. Life Sci. Alliance 6, e2022201598 (2023).

    Google Scholar 

  122. Liu, H. W. et al. Division of labor between PCNA loaders in DNA replication and sister chromatid cohesion establishment. Mol. Cell 78, 725–738 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Kawasumi, R. et al. Vertebrate CTF18 and DDX11 essential function in cohesion is bypassed by preventing WAPL-mediated cohesin release. Genes Dev. 35, 1368–1382 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Faramarz, A. et al. Non-redundant roles in sister chromatid cohesion of the DNA helicase DDX11 and the SMC3 acetyl transferases ESCO1 and ESCO2. PLoS ONE 15, e0220348 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Psakhye, I., Kawasumi, R., Abe, T., Hirota, K. & Branzei, D. PCNA recruits cohesin loader Scc2/NIPBL to ensure sister chromatid cohesion. Preprint at biorXiv https://doi.org/10.1101/2022.09.16.508217 (2022).

  126. Mitter, M. et al. Conformation of sister chromatids in the replicated human genome. Nature 586, 139–144 (2020). This study uses a novel technique, sister chromatid-sensitive Hi-C (scsHi-C) to reveal that sister chromatid cohesion is enriched at CTCF sites.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Collier, J. E. & Nasmyth, K. A. DNA passes through cohesin’s hinge as well as its Smc3–kleisin interface. eLife 11, e80310 (2022).

    Google Scholar 

  128. Nagasaka, K. et al. Cohesin mediates DNA loop extrusion and sister chromatid cohesion by distinct mechanisms. Preprint at bioRxiv https://doi.org/10.1101/2022.09.23.509019 (2022).

  129. Ivanov, D. et al. Eco1 is a novel acetyltransferase that can acetylate proteins involved in cohesion. Curr. Biol. 12, 323–328 (2002).

    Article  CAS  PubMed  Google Scholar 

  130. Ben-Shahar, T. R. et al. Eco1-dependent cohesin acetylation during establishment of sister chromatid cohesion. Science 321, 563–566 (2008).

    Article  CAS  Google Scholar 

  131. Unal, E. et al. Eco1-dependent cohesin acetylation during establishment of sister chromatid cohesion. Science 321, 566–569 (2008).

    Article  PubMed  Google Scholar 

  132. Zhang, J. et al. Acetylation of Smc3 by Eco1 is required for S phase sister chromatid cohesion in both human and yeast. Mol. Cell 31, 143–151 (2008).

    Article  CAS  PubMed  Google Scholar 

  133. Rowland, B. D. et al. Building sister chromatid cohesion: Smc3 acetylation counteracts an antiestablishment activity. Mol. Cell 33, 763–774 (2009).

    Article  CAS  PubMed  Google Scholar 

  134. Minamino, M., Bouchoux, C., Canal, B., Diffley, J. F. X. & Uhlmann, F. A replication fork determinant for the establishment of sister chromatid cohesion. Cell 186, 837–849 (2023).

    Article  CAS  PubMed  Google Scholar 

  135. Gerlich, D., Koch, B., Dupeux, F., Peters, J. M. & Ellenberg, J. Live-cell imaging reveals a stable cohesin–chromatin interaction after but not before DNA replication. Curr. Biol. 16, 1571–1578 (2006).

    Article  CAS  PubMed  Google Scholar 

  136. Sutani, T., Kawaguchi, T., Kanno, R., Itoh, T. & Shirahige, K. Budding yeast Wpl1(Rad61)–Pds5 complex counteracts sister chromatid cohesion-establishing reaction. Curr. Biol. 19, 492–497 (2009).

    Article  CAS  PubMed  Google Scholar 

  137. Feytout, A., Vaur, S., Genier, S., Vazquez, S. & Javerzat, J.-P. Psm3 acetylation on conserved lysine residues is dispensable for viability in fission yeast but contributes to eso1-mediated sister chromatid cohesion by antagonizing Wpl1. Mol. Cell Biol. 31, 1771–1786 (2011).

    CAS  Google Scholar 

  138. Rankin, S., Ayad, N. G. & Kirschner, M. W. Sororin, a substrate of the anaphase-promoting complex, is required for sister chromatid cohesion in vertebrates. Mol. Cell 18, 185–200 (2005).

    Article  CAS  PubMed  Google Scholar 

  139. Schmitz, J., Watrin, E., Lénárt, P., Mechtler, K. & Peters, J. M. Sororin is required for stable binding of cohesin to chromatin and for sister chromatid cohesion in interphase. Curr. Biol. 17, 630–636 (2007).

    Article  CAS  PubMed  Google Scholar 

  140. Nishiyama, T. et al. Sororin mediates sister chromatid cohesion by antagonizing Wapl. Cell 143, 737–749 (2010).

    Article  CAS  PubMed  Google Scholar 

  141. Ladurner, R. et al. Sororin actively maintains sister chromatid cohesion. EMBO J. 35, 635–653 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Emerson, D. J. et al. Cohesin-mediated loop anchors confine the locations of human replication origins. Nature 606, 812–819 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Dequeker, B. J. H. et al. MCM complexes are barriers that restrict cohesin-mediated loop extrusion. Nature 606, 197–203 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Jeppsson, K. et al. Cohesin-dependent chromosome loop extrusion is limited by transcription and stalled replication forks. Sci. Adv. 8, eabn7063 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Sonoda, E. et al. Scc1/Rad21/Mcd1 is required for sister chromatid cohesion and kinetochore function in vertebrate cells. Dev. Cell 1, 759–770 (2001).

    Article  CAS  PubMed  Google Scholar 

  146. Bauerschmidt, C. et al. Cohesin promotes the repair of ionizing radiation-induced DNA double-strand breaks in replicated chromatin. Nucleic Acids Res. 38, 477–487 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  147. Sjögren, C. & Nasmyth, K. Sister chromatid cohesion is required for postreplicative double-strand break repair in Saccharomyces cerevisiae. Curr. Biol. 11, 991–995 (2001).

    Article  PubMed  Google Scholar 

  148. Kim, J. S. et al. Specific recruitment of human cohesin to laser-induced DNA damage. J. Biol. Chem. 277, 45149–45153 (2002).

    Article  CAS  PubMed  Google Scholar 

  149. Ström, L., Lindroos, H. B., Shirahige, K. & Sjögren, C. Postreplicative recruitment of cohesin to double-strand breaks is required for DNA repair. Mol. Cell 16, 1003–1015 (2004).

    Article  PubMed  Google Scholar 

  150. Ünal, E. et al. DNA damage response pathway uses histone modification to assemble a double-strand break-specific cohesin domain. Mol. Cell 16, 991–1002 (2004).

    Article  PubMed  Google Scholar 

  151. Ström, L. et al. Postreplicative formation of cohesion is required for repair and induced by a single DNA break. Science 317, 242–245 (2007).

    Article  PubMed  Google Scholar 

  152. Unal, E., Heidinger-Pauli, J. M. & Koshland, D. DNA double-strand breaks trigger genome-wide sister-chromatid cohesion through Eco1 (Ctf7). Science 317, 245–248 (2007). Together with Ström et al. (2007), these papers show that in response to DNA damage, sister chromatin cohesion is established genome-wide in a replication-independent manner.

    Article  PubMed  Google Scholar 

  153. Covo, S., Westmoreland, J. W., Gordenin, D. A. & Resnick, M. A. Cohesin is limiting for the suppression of DNA damage-induced recombination between homologous chromosomes. PLoS Genet. 6, e1001006 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  154. Piazza, A. et al. Cohesin regulates homology search during recombinational DNA repair. Nat. Cell Biol. 23, 1176–1186 (2021).

    Article  CAS  PubMed  Google Scholar 

  155. Uhlmann, F. & Nasmyth, K. Cohesion between sister chromatids must be established during DNA replication. Curr. Biol. 8, 1095–1102 (1998).

    Article  CAS  PubMed  Google Scholar 

  156. Caron, P. et al. Cohesin protects genes against γH2AX induced by DNA double-strand breaks. PLoS Genet. 8, e1002460 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Potts, P. R., Porteus, M. H. & Yu, H. Human SMC5/6 complex promotes sister chromatid homologous recombination by recruiting the SMC1/3 cohesin complex to double-strand breaks. EMBO J. 25, 3377–3388 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Bot, C. et al. Independent mechanisms recruit the cohesin loader protein NIPBL to sites of DNA damage. J. Cell Sci. 130, 1134–1146 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  159. Gelot, C. et al. The cohesin complex prevents the end joining of distant DNA double-strand ends. Mol. Cell 61, 15–26 (2016).

    Article  CAS  PubMed  Google Scholar 

  160. Arnould, C. et al. Loop extrusion as a mechanism for formation of DNA damage repair foci. Nature 590, 660–665 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Kong, X. et al. Distinct functions of human cohesin-SA1 and cohesin-SA2 in double-strand break repair. Mol. Cell Biol. 34, 685–698 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  162. Verkade, H. M., Teli, T., Laursen, L. V., Murray, J. M. & O’Connell, M. J. A homologue of the Rad18 postreplication repair gene is required for DNA damage responses throughout the fission yeast cell cycle. Mol. Genet. Genomics 265, 993–1003 (2001).

    Article  CAS  PubMed  Google Scholar 

  163. Lehmann, A. R. et al. The rad18 gene of Schizosaccharomyces pombe defines a new subgroup of the SMC superfamily involved in DNA repair. Mol. Cell Biol. 15, 7067–7080 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Fujioka, Y., Kimata, Y., Nomaguchi, K., Watanabe, K. & Kohno, K. Identification of a novel non-structural maintenance of chromosomes (SMC) component of the SMC5–SMC6 complex involved in DNA repair. J. Biol. Chem. 277, 21585–21591 (2002).

    Article  CAS  PubMed  Google Scholar 

  165. Betts Lindroos, H. et al. Chromosomal association of the Smc5/6 complex reveals that it functions in differently regulated pathways. Mol. Cell 22, 755–767 (2006).

    Article  PubMed  Google Scholar 

  166. De Piccoli, G. et al. Smc5–Smc6 mediate DNA double-strand-break repair by promoting sister-chromatid recombination. Nat. Cell Biol. 8, 1032–1034 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  167. Wu, N. et al. Scc1 sumoylation by Mms21 promotes sister chromatid recombination through counteracting Wapl. Genes Dev. 26, 1473–1485 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Bermúdez-López, M. et al. Sgs1’s roles in DNA end resection, HJ dissolution, and crossover suppression require a two-step SUMO regulation dependent on Smc5/6. Genes Dev. 30, 1339–1356 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  169. Agashe, S. et al. Smc5/6 functions with Sgs1–Top3–Rmi1 to complete chromosome replication at natural pause sites. Nat. Commun. 12, 2111 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Bonner, J. N. et al. Smc5/6 mediated sumoylation of the Sgs1–Top3–Rmi1 complex promotes removal of recombination intermediates. Cell Rep. 16, 368–378 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Chavez, A., George, V., Agrawal, V. & Johnson, F. B. Sumoylation and the structural maintenance of chromosomes (Smc) 5/6 complex slow senescence through recombination intermediate resolution. J. Biol. Chem. 285, 11922–11930 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Bermúdez-López, M. et al. The Smc5/6 complex is required for dissolution of DNA-mediated sister chromatid linkages. Nucleic Acids Res. 38, 6502–6512 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  173. Menolfi, D., Delamarre, A., Lengronne, A., Pasero, P. & Branzei, D. Essential roles of the Smc5/6 complex in replication through natural pausing sites and endogenous DNA damage tolerance. Mol. Cell 60, 835–846 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Chang, J. T. H. et al. Smc5/6’s multifaceted DNA binding capacities stabilize branched DNA structures. Nat. Commun. 13, 7179 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Tanasie, N. L., Gutiérrez-Escribano, P., Jaklin, S., Aragon, L. & Stigler, J. Stabilization of DNA fork junctions by Smc5/6 complexes revealed by single-molecule imaging. Cell Rep. 41, 111778 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Torres-Rosell, J. et al. SMC5 and SMC6 genes are required for the segregation of repetitive chromosome regions. Nat. Cell Biol. 7, 412–419 (2005).

    Article  CAS  PubMed  Google Scholar 

  177. Yong-Gonzales, V., Hang, L. E., Castellucci, F., Branzei, D. & Zhao, X. The Smc5–Smc6 complex regulates recombination at centromeric regions and affects kinetochore protein sumoylation during normal growth. PLoS ONE 7, e51540 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Venegas, A. B., Natsume, T., Kanemaki, M. & Hickson, I. D. Inducible degradation of the human SMC5/6 complex reveals an essential role only during interphase. Cell Rep. 31, 107533 (2020).

    Article  CAS  PubMed  Google Scholar 

  179. Rossi, F. et al. SMC5/6 acts jointly with Fanconi anemia factors to support DNA repair and genome stability. EMBO Rep. 21, e48222 (2020).

    Article  CAS  PubMed  Google Scholar 

  180. Grange, L. J. et al. Pathogenic variants in SLF2 and SMC5 cause segmented chromosomes and mosaic variegated hyperploidy. Nat. Commun. 13, 6664 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Wood, J. L., Singh, N., Mer, G. & Chen, J. MCPH1 functions in an H2AX-dependent but MDC1-independent pathway in response to DNA damage. J. Biol. Chem. 282, 35416–35423 (2007).

    Article  CAS  PubMed  Google Scholar 

  182. Kong, X. et al. Condensin I recruitment to base damage-enriched DNA lesions is modulated by PARP1. PLoS ONE 6, e23548 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Heale, J. T. et al. Condensin I interacts with the PARP-1–XRCC1 complex and functions in DNA single-strand break repair. Mol. Cell 21, 837–848 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Boteva, L. et al. Common fragile sites are characterized by faulty condensin loading after replication stress. Cell Rep. 32, 108177 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Ono, T., Yamashita, D. & Hirano, T. Condensin II initiates sister chromatid resolution during S phase. J. Cell Biol. 200, 429–441 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Nagasaka, K., Hossain, M. J., Roberti, M. J., Ellenberg, J. & Hirota, T. Sister chromatid resolution is an intrinsic part of chromosome organization in prophase. Nat. Cell Biol. 18, 692–699 (2016).

    Article  CAS  PubMed  Google Scholar 

  187. Batty, P. et al. Cohesin-mediated DNA loop extrusion resolves sister chromatids in G2 phase. Preprint at bioRxiv https://doi.org/10.1101/2023.01.12.523718 (2023).

  188. D’Ambrosio, C. et al. Identification of cis-acting sites for condensin loading onto budding yeast chromosomes. Genes Dev. 22, 2215–2227 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  189. Charbin, A., Bouchoux, C. & Uhlmann, F. Condensin aids sister chromatid decatenation by topoisomerase II. Nucleic Acids Res. 42, 340–348 (2014).

    Article  CAS  PubMed  Google Scholar 

  190. Dyson, S., Segura, J., Martínez‐García, B., Valdés, A. & Roca, J. Condensin minimizes topoisomerase II mediated entanglements of DNA in vivo. EMBO J. 40, e105393 (2021).

    Article  CAS  PubMed  Google Scholar 

  191. Baxter, J. et al. Positive supercoiling of mitotic DNA drives decatenation by topoisomerase II in eukaryotes. Sci. Rep. 331, 1328–1332 (2011).

    CAS  Google Scholar 

  192. Sen, N. et al. Physical proximity of sister chromatids promotes Top2-dependent intertwining. Mol. Cell 64, 134–147 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Piskadlo, E., Tavares, A. & Oliveira, R. A. Metaphase chromosome structure is dynamically maintained by condensin I-directed DNA (de)catenation. eLife 6, e26120 (2017).

    Google Scholar 

  194. Coelho, P. A., Queiroz-Machado, J. & Sunkel, C. E. Condensin-dependent localisation of topoisomerase II to an axial chromosomal structure is required for sister chromatid resolution during mitosis. J. Cell Sci. 116, 4763–4776 (2003).

    Article  CAS  PubMed  Google Scholar 

  195. Ono, T., Sakamoto, C., Nakao, M., Saitoh, N. & Hirano, T. Condensin II plays an essential role in reversible assembly of mitotic chromosomes in situ. Mol. Biol. Cell 28, 2875–2886 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Hudson, D. F., Vagnarelli, P., Gassmann, R. & Earnshaw, W. C. Condensin is required for nonhistone protein assembly and structural integrity of vertebrate mitotic chromosomes. Dev. Cell 5, 323–336 (2003).

    Article  CAS  PubMed  Google Scholar 

  197. Deiss, K. et al. A genome-wide RNAi screen identifies the SMC5/6 complex as a non-redundant regulator of a Topo2a-dependent G2 arrest. Nucleic Acids Res. 47, 2906–2921 (2019).

    Article  CAS  PubMed  Google Scholar 

  198. Verver, D. E. et al. Non-SMC element 2 (NSMCE2) of the SMC5/6 complex helps to resolve topological stress. Int. J. Mol. Sci. 17, 1782 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  199. Shintomi, K. & Hirano, T. Guiding functions of the C-terminal domain of topoisomerase IIα advance mitotic chromosome assembly. Nat. Commun. 12, 2917 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Hildebrand, E. M. et al. Chromosome decompaction and cohesin direct topoisomerase II activity to establish and maintain an unentangled interphase genome. Preprint at biorXiv https://doi.org/10.1101/2022.10.15.511838 (2022).

  201. Ono, T. et al. Differential contributions of condensin I and condensin II to mitotic chromosome architecture in vertebrate cells. Cell 115, 109–121 (2003).

    Article  CAS  PubMed  Google Scholar 

  202. Green, L. C. et al. Contrasting roles of condensin I and condensin II in mitotic chromosome formation. J. Cell Sci. 125, 1591–1604 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  203. Shintomi, K. & Hirano, T. The relative ratio of condensing I to II determines chromosome shapes. Genes Dev. 25, 1464–1469 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Shintomi, K. et al. Mitotic chromosome assembly despite nucleosome depletion in Xenopus egg extracts. Science 356, 1284–1287 (2017).

    Article  CAS  PubMed  Google Scholar 

  205. Samejima, K. et al. Functional analysis after rapid degradation of condensins and 3D-EM reveals chromatin volume is uncoupled from chromosome architecture in mitosis. J. Cell Sci. 131, jcs210187 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  206. Houlard, M. et al. Condensin confers the longitudinal rigidity of chromosomes. Nat. Cell Biol. 17, 771–781 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Gerlich, D., Hirota, T., Koch, B., Peters, J. M. & Ellenberg, J. Condensin I stabilizes chromosomes mechanically through a dynamic interaction in live cells. Curr. Biol. 16, 333–344 (2006).

    Article  CAS  PubMed  Google Scholar 

  208. Gibcus, J. H. et al. A pathway for mitotic chromosome formation. Science 359, eaao6135 (2018). By combining Hi-C, imaging and polymer modelling, together with Walther et al. (2018), these studies show that the mitotic chromosome is formed by condensin II-dependent formation of large chromatin loops that are subdivided by condensin I into smaller, nested loops.

    Article  PubMed  PubMed Central  Google Scholar 

  209. Houlard, M. et al. MCPH1 inhibits condensin II during interphase by regulating its SMC2–kleisin interface. eLife 10, e73348 (2021). This study establishes microcephalin (MCPH1) as a condensin II-removal factor, which functions by opening up the condensin II SMC2–kleisin interface.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Hirota, T., Gerlich, D., Koch, B., Ellenberg, J. & Peters, J. M. Distinct functions of condensin I and II in mitotic chromosome assembly. J. Cell Sci. 117, 6435–6445 (2004). Together with Ono et al. (2003), these papers discovered condensin II and described distinct functions for the two condensin complexes.

    Article  CAS  PubMed  Google Scholar 

  211. Ono, T., Fang, Y., Spector, D. L. & Hirano, T. Spatial and temporal regulation of condensins I and II in mitotic chromosome assembly in human cells. Mol. Biol. Cell 15, 3296–3308 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Walther, N. et al. A quantitative map of human condensins provides new insights into mitotic chromosome architecture. J. Cell Biol. 217, 2309–2328 (2018). This study performs quantitative imaging of condensin complexes on the DNA of mitotic chromosomes, which supports the model that condensin II forms an axis of large chromatin loops that are subdivided by condensin I into smaller loops.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Oliveira, R. A., Coelho, P. A. & Sunkel, C. E. The condensin I subunit barren/CAP-H is essential for the structural integrity of centromeric heterochromatin during mitosis. Mol. Cell Biol. 25, 8971–8984 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Sacristan, C. et al. Condensin reorganizes centromeric chromatin during mitotic entry into a bipartite structure stabilized by cohesin. Preprint at bioRxiv https://doi.org/10.1101/2022.08.01.502248 (2022).

  215. Waizenegger, I. C., Hauf, S., Meinke, A. & Peters, J. M. Two distinct pathways remove mammalian cohesin from chromosome arms in prophase and from centromeres in anaphase. Cell 103, 399–410 (2000). This study shows that in mammalian cells, cohesin is removed from chromatin in two distinct waves, with only the second being dependent on separase-mediated cleavage of cohesin.

    Article  CAS  PubMed  Google Scholar 

  216. Zhang, N., Panigrahi, A. K., Mao, Q. & Pati, D. Interaction of sororin protein with polo-like kinase 1 mediates resolution of chromosomal arm cohesion. J. Biol. Chem. 286, 41826–41837 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. Sumara, I. et al. The dissociation of cohesin from chromosomes in prophase is regulated by polo-like kinase. Mol. Cell 9, 515–525 (2002).

    Article  CAS  PubMed  Google Scholar 

  218. Nishiyama, T., Sykora, M. M., Huis, P. J., Mechtler, K. & Peters, J. M. Aurora B and Cdk1 mediate Wapl activation and release of acetylated cohesin from chromosomes by phosphorylating sororin. Proc. Natl Acad. Sci. USA 110, 13404–13409 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Losada, A., Hirano, M. & Hirano, T. Cohesin release is required for sister chromatid resolution, but not for condensin-mediated compaction, at the onset of mitosis. Genes Dev. 16, 3004–3016 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. Liu, H., Rankin, S. & Yu, H. Phosphorylation-enabled binding of SGO1–PP2A to cohesin protects sororin and centromeric cohesion during mitosis. Nat. Cell Biol. 15, 40–49 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. Hauf, S. et al. Dissociation of cohesin from chromosome arms and loss of arm cohesion during early mitosis depends on phosphorylation of SA2. PLoS Biol. 3, e69 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  222. Giménez-Abián, J. F. et al. Regulation of sister chromatid cohesion between chromosome arms. Curr. Biol. 14, 1187–1193 (2004).

    Article  PubMed  Google Scholar 

  223. Dreier, M. R., Bekier, M. E. & Taylor, W. R. Regulation of sororin by Cdk1-mediated phosphorylation. J. Cell Sci. 124, 2976–2987 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Haarhuis, J. H. I. et al. WAPL-mediated removal of cohesin protects against segregation errors and aneuploidy. Curr. Biol. 23, 2071–2077 (2013).

    Article  CAS  PubMed  Google Scholar 

  225. Chu, L., Zhang, Z., Mukhina, M., Zickler, D. & Kleckner, N. Sister chromatids separate during anaphase in a three-stage program as directed by interaxis bridges. Proc. Natl Acad. Sci. USA 119, e2123363119 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  226. Tedeschi, A. et al. Wapl is an essential regulator of chromatin structure and chromosome segregation. Nature 501, 564–568 (2013). This study reveals that stabilization of cohesin on DNA in interphase leads to cohesin accumulation in an axial configuration and condensation of interphase chromosomes.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  227. Perea-Resa, C., Bury, L., Cheeseman, I. M. & Blower, M. D. Cohesin removal reprograms gene expression upon mitotic entry. Mol. Cell 78, 127–140 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  228. Salic, A., Waters, J. C. & Mitchison, T. J. Vertebrate shugoshin links sister centromere cohesion and kinetochore microtubule stability in mitosis. Cell 118, 567–578 (2004).

    Article  CAS  PubMed  Google Scholar 

  229. Tang, Z., Sun, Y., Harley, S. E., Zou, H. & Yu, H. Human Bub1 protects centromeric sister-chromatid cohesion through Shugoshin during mitosis. Proc. Natl Acad. Sci. USA 101, 18012–18017 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  230. McGuinness, B. E., Hirota, T., Kudo, N. R., Peters, J. M. & Nasmyth, K. Shugoshin prevents dissociation of cohesin from centromeres during mitosis in vertebrate cells. PLoS Biol. 3, 0433–0449 (2005).

    Article  CAS  Google Scholar 

  231. Riedel, C. G. et al. Protein phosphatase 2A protects centromeric sister chromatid cohesion during meiosis I. Nature 441, 53–61 (2006).

    Article  CAS  PubMed  Google Scholar 

  232. Kitajima, T. S. et al. Shugoshin collaborates with protein phosphatase 2A to protect cohesin. Nature 441, 46–52 (2006).

    Article  CAS  PubMed  Google Scholar 

  233. Hara, K. et al. Structure of cohesin subcomplex pinpoints direct shugoshin-Wapl antagonism in centromeric cohesion. Nat. Struct. Mol. Biol. 21, 864–870 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  234. García-Nieto, A. et al. Structural basis of centromeric cohesion protection. Nat. Struct. Mol. Biol. https://doi.org/10.1038/s41594-023-00968-y (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  235. Peters, J. M. The anaphase promoting complex/cyclosome: a machine designed to destroy. Nat. Rev. Mol. Cell Biol. 7, 644–656 (2006).

    Article  CAS  PubMed  Google Scholar 

  236. Vázquez-Novelle, M. D. et al. Cdk1 inactivation terminates mitotic checkpoint surveillance and stabilizes kinetochore attachments in anaphase. Curr. Biol. 24, 638–645 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  237. Oliveira, R. A., Hamilton, R. S., Pauli, A., Davis, I. & Nasmyth, K. Cohesin cleavage and Cdk inhibition trigger formation of daughter nuclei. Nat. Cell Biol. 12, 185–192 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  238. Yu, J. et al. Structural basis of human separase regulation by securin and CDK1–cyclin B1. Nature 596, 138–142 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  239. Hellmuth, S., Gómez-H, L., Pendás, A. M. & Stemmann, O. Securin-independent regulation of separase by checkpoint-induced shugoshin–MAD2. Nature 580, 536–541 (2020).

    Article  CAS  PubMed  Google Scholar 

  240. Uhlmann, F., Lottspelch, F. & Nasmyth, K. Sister-chromatid separation at anaphase onset is promoted by cleavage of the cohesin subunit Scc1. Nature 400, 37–42 (1999). This study reveals that separase-mediated cleavage of the Scc1 subunit of cohesin is required for anaphase onset.

    Article  CAS  PubMed  Google Scholar 

  241. Uhlmann, F., Wernic, D., Poupart, M. A., Koonin, E. V. & Nasmyth, K. Cleavage of cohesin by the CD clan protease separin triggers anaphase in yeast. Cell 103, 375–386 (2000).

    Article  CAS  PubMed  Google Scholar 

  242. Boveri, T. Die Blastomerenkerne von Ascaris megalocephala und die Theorie der Chromosomenindividualitat. Arch. Zellforsch. 3, 181–268 (1909).

    Google Scholar 

  243. Joyce, E. F., Williams, B. R., Xie, T. & Wu, C. T. Identification of genes that promote or antagonize somatic homolog pairing using a high-throughput FISH-based screen. PLoS Genet. 8, e1002667 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  244. Bauer, C. R., Hartl, T. A. & Bosco, G. Condensin II promotes the formation of chromosome territories by inducing axial compaction of polyploid interphase chromosomes. PLoS Genet. 8, e1002873 (2012). This study shows that, in Drosophila melanogaster, condensin II promotes the formation of chromosome territories and regulates the spatial organization of heterochromatin domains.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  245. Hartl, T. A., Smith, H. F. & Bosco, G. Chromosome alignment and transvection are antagonized by condensin II. Science 322, 1384–1387 (2008). This study shows that in D. melanogaster, condensin II negatively regulates transvection, possibly by restricting chromosomal interactions in trans.

    Article  CAS  PubMed  Google Scholar 

  246. Buster, D. W. et al. SCF(Slimb) ubiquitin ligase suppresses condensin II-mediated nuclear reorganization by degrading Cap-H2. J. Cell Biol. 201, 49–63 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  247. Vernizzi, L. & Lehner, C. F. Bivalent individualization during chromosome territory formation in Drosophila spermatocytes by controlled condensin II protein activity and additional force generators. PLoS Genet. 17, e1009870 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  248. Nguyen, H. Q. et al. Drosophila casein kinase I alpha regulates homolog pairing and genome organization by modulating condensin II subunit Cap-H2 levels. PLoS Genet. 11, e1005014 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  249. Rosin, L. F., Nguyen, S. C., Joyce, E. F. & Bosco, G. Condensin II drives large-scale folding and spatial partitioning of interphase chromosomes in Drosophila nuclei. PLoS Genet. 14, 1007393 (2018).

    Article  Google Scholar 

  250. Iwasaki, O., Corcoran, C. J. & Noma, K. I. Involvement of condensin-directed gene associations in the organization and regulation of chromosome territories during the cell cycle. Nucleic Acids Res. 44, 3618–3628 (2016).

    Article  CAS  PubMed  Google Scholar 

  251. Howard-Till, R. & Loidl, J. Condensins promote chromosome individualization and segregation during mitosis, meiosis, and amitosis in Tetrahymena thermophila. Mol. Biol. Cell 29, 466–478 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  252. Municio, C. et al. The Arabidopsis condensin CAP-D subunits arrange interphase chromatin. N. Phytol. 230, 972–987 (2021).

    Article  CAS  Google Scholar 

  253. Schubert, V., Lermontova, I. & Schubert, I. The Arabidopsis CAP-D proteins are required for correct chromatin organisation, growth and fertility. Chromosoma 122, 517–533 (2013).

    Article  CAS  PubMed  Google Scholar 

  254. Sakamoto, T., Sugiyama, T., Yamashita, T. & Matsunaga, S. Plant condensin II is required for the correct spatial relationship between centromeres and rDNA arrays. Nucleus 10, 116–125 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  255. Sakamoto, T. et al. Two-step regulation of centromere distribution by condensin II and the nuclear envelope proteins. Res. Sq. https://doi.org/10.21203/rs.3.rs-793150/v1 (2021).

  256. Nishide, K. & Hirano, T. Overlapping and non-overlapping functions of condensins I and II in neural stem cell divisions. PLoS Genet. 10, e1004847 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  257. King, T. D. et al. Recurrent losses and rapid evolution of the condensin II complex in insects. Mol. Biol. Evol. 36, 2195–2204 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  258. Hirano, T. Chromosome territories meet a condensin. PLoS Genet. 8, e1002939 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  259. Lieberman-Aiden, E. et al. Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science 326, 289–293 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  260. Falk, M. et al. Heterochromatin drives compartmentalization of inverted and conventional nuclei. Nature 570, 395–399 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  261. Biswas, S. et al. HP1 oligomerization compensates for low-affinity H3K9me recognition and provides a tunable mechanism for heterochromatin-specific localization. Sci. Adv. 8, eabk0793 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  262. Canzio, D. et al. Chromodomain-mediated oligomerization of HP1 suggests a nucleosome-bridging mechanism for heterochromatin assembly. Mol. Cell 41, 67–81 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  263. Erdel, F. et al. Mouse heterochromatin adopts digital compaction states without showing hallmarks of HP1-driven liquid–liquid phase separation. Mol. Cell 78, 236–249 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  264. Gitler, A. D., Shorter, J., Ha, T. & Myong, S. Just took a DNA test, turns out 100% not that phase. Mol. Cell 78, 193–194 (2020).

    Article  CAS  PubMed  Google Scholar 

  265. Sanulli, S. et al. HP1 reshapes nucleosome core to promote phase separation of heterochromatin. Nature 575, 390–394 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  266. Zenk, F. et al. HP1 drives de novo 3D genome reorganization in early Drosophila embryos. Nature 593, 289–293 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  267. Plys, A. J. et al. Phase separation of polycomb-repressive complex 1 is governed by a charged disordered region of CBX2. Genes Dev. 33, 799–813 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  268. Jagannathan, M., Cummings, R. & Yamashita, Y. M. The modular mechanism of chromocenter formation in Drosophila. eLife 8, e243938 (2019).

    Google Scholar 

  269. Chardon, F. et al. CENP-B-mediated DNA loops regulate activity and stability of human centromeres. Mol. Cell 82, 1751–1767.e8 (2022).

    Article  CAS  PubMed  Google Scholar 

  270. Gibson, B. A. et al. Organization of chromatin by intrinsic and regulated phase separation. Cell 179, 470–484 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  271. Guo, Y. E. et al. Pol II phosphorylation regulates a switch between transcriptional and splicing condensates. Nature 572, 543–548 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  272. Nuebler, J., Fudenberg, G., Imakaev, M., Abdennur, N. & Mirny, L. A. Chromatin organization by an interplay of loop extrusion and compartmental segregation. Proc. Natl Acad. Sci. USA 115, 6697–6706 (2018).

    Article  Google Scholar 

  273. Haarhuis, J. H. I. et al. A mediator-cohesin axis controls heterochromatin domain formation. Nat. Commun. 13, 754 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  274. Alipour, E. & Marko, J. F. Self-organization of domain structures by DNA-loop-extruding enzymes. Nucleic Acids Res. 40, 11202–11212 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  275. Fudenberg, G. et al. Formation of chromosomal domains by loop extrusion. Cell Rep. 15, 2038–2049 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  276. Sanborn, A. L. et al. Chromatin extrusion explains key features of loop and domain formation in wild-type and engineered genomes. Proc. Natl Acad. Sci. USA 112, E6456–E6465 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  277. Goloborodko, A., Imakaev, M. V., Marko, J. F. & Mirny, L. Compaction and segregation of sister chromatids via active loop extrusion. eLife 5, e14864 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  278. Wang, X., Brandão, H. B., Le, T. B. K., Laub, M. T. & Rudner, D. Z. Bacillus subtilis SMC complexes juxtapose chromosome arms as they travel from origin to terminus. Science 355, 524–527 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  279. Ganji, M. et al. Real-time imaging of DNA loop extrusion by condensin. Science 360, 102–105 (2018). The first proof that SMC complexes, in this case budding yeast condensin, can perform loop extrusion in vitro.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  280. Pradhan, B. et al. The Smc5/6 complex is a DNA loop extruding motor. Nature https://doi.org/10.1038/s41586-023-05963-3 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  281. Kong, M. et al. Human condensin I and II drive extensive ATP-dependent compaction of nucleosome-bound DNA. Mol. Cell 79, 99–114.e9 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  282. Guo, Y. et al. Chromatin jets define the properties of cohesin-driven in vivo loop extrusion. Mol. Cell 82, 3769–3780 (2022).

    Article  CAS  PubMed  Google Scholar 

  283. Naumova, N. et al. Organization of the mitotic chromosome. Science 342, 948–953 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  284. Irwan, I. D., Bogerd, H. P. & Cullen, B. R. Epigenetic silencing by the SMC5/6 complex mediates HIV-1 latency. Nat. Microbiol. 7, 2101–2113 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  285. Dupont, L. et al. The SMC5/6 complex compacts and silences unintegrated HIV-1 DNA and is antagonized by Vpr. Cell Host Microbe 29, 792–805 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  286. Decorsière, A. et al. Hepatitis B virus X protein identifies the Smc5/6 complex as a host restriction factor. Nature 531, 386–389 (2016). This study identifies the SMC5–SMC6 complex as a restriction factor in hepatitis B virus infection that can be degraded with the aid of the viral protein HBx.

    Article  PubMed  Google Scholar 

  287. Gibson, R. T. & Androphy, E. J. The SMC5/6 complex represses the replicative program of high-risk human papillomavirus type 31. Pathogens 9, 786 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  288. Bentley, P., Tan, M. J. A., McBride, A. A., White, E. A. & Howley, P. M. The SMC5/6 complex interacts with the papillomavirus E2 protein and influences maintenance of viral episomal DNA. J. Virol. 92, e00356-18 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  289. Xu, W. et al. PJA1 coordinates with the SMC5/6 complex to restrict DNA viruses and episomal genes in an interferon-independent manner. J. Virol. 92, 825–843 (2018).

    Article  Google Scholar 

  290. Yiu, S. P. T., Guo, R., Zerbe, C., Weekes, M. P. & Gewurz, B. E. Epstein–Barr virus BNRF1 destabilizes SMC5/6 cohesin complexes to evade its restriction of replication compartments. Cell Rep. 10, 110411 (2022).

    Article  Google Scholar 

  291. Han, C. et al. KSHV RTA antagonizes SMC5/6 complex-induced viral chromatin compaction by hijacking the ubiquitin–proteasome system. PLoS Pathog. 18, e1010744 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  292. Abdul, F. et al. Smc5/6 silences episomal transcription by a three-step function. Nat. Struct. Mol. Biol. 29, 922–931 (2022).

    Article  CAS  PubMed  Google Scholar 

  293. Murphy, C. M. et al. Hepatitis B virus X protein promotes degradation of SMC5/6 to enhance HBV replication. Cell Rep. 16, 2846–2854 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  294. Abdul, F. et al. Smc5/6 antagonism by HBx is an evolutionarily conserved function of hepatitis B virus infection in mammals. J. Virol. 92, e00769-18 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  295. Deep, A. et al. The condensin-like Wadjet complex protects bacteria from plasmid transformation by recognition and cleavage of closed-circular DNA. Mol. Cell 82, 4145–4159 (2022). This study shows that the bacterial SMC complex Wadjet has a role in antiplasmid defence by cleaving circular plasmid DNA, for which it requires its topoisomerase-like subunit.

    Article  CAS  PubMed  Google Scholar 

  296. Doron, S. et al. Systematic discovery of antiphage defense systems in the microbial pangenome. Science 359, eaar4120 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  297. Liu, H. W. et al. DNA-measuring Wadjet SMC ATPases restrict smaller circular plasmids by DNA cleavage. Mol. Cell 82, 4727–4740 (2022).

    Article  CAS  PubMed  Google Scholar 

  298. Rabl, C. Über Zelltheilung. Morphol. Jahrb. 10, 214–330 (1885).

    Google Scholar 

  299. Longo, G. M. C. & Roukos, V. Territories or spaghetti? Chromosome organization exposed. Nat. Rev. Mol. Cell Biol. 22, 508–508 (2021).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Owing to space limitations, the authors apologize for not being able to cite all relevant articles or discuss all aspects of SMC biology. The authors acknowledge financial support from the European Research Council (772471-CohesinLooping) and from the Dutch Research Council (VI.C.202.098) and thank A. Friskes and members of the Rowland Laboratory for critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Benjamin D. Rowland.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Molecular Cell Biology thanks Dana Branzei, Daniel Gerlich and Jan-Michael Peters with Iain Davidson for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Catenanes

A molecular linkage that naturally arises in processes such as DNA replication, in which two DNA molecules are knotted in such a way that can only be resolved by the breaking of the DNA chain.

Chromocentres

An accumulation of different heterochromatin regions into a dense structure within the nuclei of some types of animal cells.

CTCF

A chromatin-organizing protein that binds to a specific DNA motif and acts as a boundary for extruding cohesin complexes.

Hi-C

A chromatin conformation capture technique, in which regions that are close together in the nucleus are crosslinked and identified by sequencing, which provides genome-wide information about the 3D nuclear architecture of a population of cells.

Malformation syndromes

A disorder characterized by congenital anomalies that are causally related.

Promyelocytic leukaemia bodies

Nuclear membrane-less organelles that accumulate certain proteins and that have been implicated in processes ranging from DNA damage repair to antiviral defence.

Topologically associating domains

(TADs). Self-interacting genomic regions as observed by chromatin capture techniques that are flanked by CTCF binding sites and consist of chromatin loops formed by cohesin.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hoencamp, C., Rowland, B.D. Genome control by SMC complexes. Nat Rev Mol Cell Biol 24, 633–650 (2023). https://doi.org/10.1038/s41580-023-00609-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41580-023-00609-8

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing