Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Genome folding through loop extrusion by SMC complexes

Abstract

Genomic DNA is folded into loops and topologically associating domains (TADs), which serve important structural and regulatory roles. It has been proposed that these genomic structures are formed by a loop extrusion process, which is mediated by structural maintenance of chromosomes (SMC) protein complexes. Recent single-molecule studies have shown that the SMC complexes condensin and cohesin are indeed able to extrude DNA into loops. In this Review, we discuss how the loop extrusion hypothesis can explain key features of genome architecture; cellular functions of loop extrusion, such as separation of replicated DNA molecules, facilitation of enhancer–promoter interactions and immunoglobulin gene recombination; and what is known about the mechanism of loop extrusion and its regulation, for example, by chromatin boundaries that depend on the DNA binding protein CTCF. We also discuss how the loop extrusion hypothesis has led to a paradigm shift in our understanding of both genome architecture and the functions of SMC complexes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Interphase genome organization.
Fig. 2: Architecture of human condensin and cohesin complexes.
Fig. 3: The loop extrusion hypothesis explains features of chromatin organization.
Fig. 4: Potential functions of loop extrusion in vivo.
Fig. 5: The symmetry of loop extrusion in vitro.
Fig. 6: SMC conformations and models of loop extrusion.
Fig. 7: CTCF protects cohesin from release by WAPL.

Similar content being viewed by others

References

  1. Kornberg, R. D. Chromatin structure: a repeating unit of histones and DNA. Science 184, 868–871 (1974).

    CAS  PubMed  Google Scholar 

  2. Olins, A. L. & Olins, D. E. Spheroid chromatin units (ν bodies). Science 183, 330–332 (1974).

    CAS  PubMed  Google Scholar 

  3. Woodcock, C. L., Safer, J. P. & Stanchfield, J. E. Structural repeating units in chromatin. I. Evidence for their general occurrence. Exp. Cell Res. 97, 101–110 (1976).

    CAS  PubMed  Google Scholar 

  4. Dixon, J. R. et al. Topological domains in mammalian genomes identified by analysis of chromatin interactions. Nature 485, 376–380 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Nora, E. P. et al. Spatial partitioning of the regulatory landscape of the X-inactivation centre. Nature 485, 381–385 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Sexton, T. et al. Three-dimensional folding and functional organization principles of the Drosophila genome. Cell 148, 458–472 (2012).

    CAS  PubMed  Google Scholar 

  7. Rao, S. S. et al. A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping. Cell 159, 1665–1680 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Lieberman-Aiden, E. et al. Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science 326, 289–293 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Lajoie, B. R., Dekker, J. & Kaplan, N. The Hitchhiker’s guide to Hi-C analysis: practical guidelines. Methods 72, 65–75 (2015).

    CAS  PubMed  Google Scholar 

  10. Hsieh, T. H. et al. Mapping nucleosome resolution chromosome folding in yeast by micro-C. Cell 162, 108–119 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Uhlmann, F. SMC complexes: from DNA to chromosomes. Nat. Rev. Mol. Cell Biol. 17, 399–412 (2016).

    CAS  PubMed  Google Scholar 

  12. Rosamond, J., Endlich, B., Telander, K. M. & Linn, S. Mechanisms of action of the type-I restriction endonuclease, ecoB, and the recBC DNase from Escherichia coli. Cold Spring Harb. Symp. Quant. Biol. 43, 1049–1057 (1979).

    CAS  PubMed  Google Scholar 

  13. Wood, C. & Tonegawa, S. Diversity and joining segments of mouse immunoglobulin heavy chain genes are closely linked and in the same orientation: implications for the joining mechanism. Proc. Natl Acad. Sci. USA 80, 3030–3034 (1983).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Riggs, A. D. DNA methylation and late replication probably aid cell memory, and type I DNA reeling could aid chromosome folding and enhancer function. Philos. Trans. R. Soc. Lond. B Biol. Sci. 326, 285–297 (1990).

    CAS  PubMed  Google Scholar 

  15. Nasmyth, K. Disseminating the genome: joining, resolving, and separating sister chromatids during mitosis and meiosis. Annu. Rev. Genet. 35, 673–745 (2001).

    CAS  PubMed  Google Scholar 

  16. Alipour, E. & Marko, J. F. Self-organization of domain structures by DNA-loop-extruding enzymes. Nucleic Acids Res. 40, 11202–11212 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Goloborodko, A., Imakaev, M. V., Marko, J. F. & Mirny, L. Compaction and segregation of sister chromatids via active loop extrusion. eLife 5, e14864 (2016).

    PubMed  PubMed Central  Google Scholar 

  18. Goloborodko, A., Marko, J. F. & Mirny, L. A. Chromosome compaction by active loop extrusion. Biophys. J. 110, 2162–2168 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Strick, T. R., Kawaguchi, T. & Hirano, T. Real-time detection of single-molecule DNA compaction by condensin I. Curr. Biol. 14, 874–880 (2004).

    CAS  PubMed  Google Scholar 

  20. Terakawa, T. et al. The condensin complex is a mechanochemical motor that translocates along DNA. Science 358, 672–676 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Ganji, M. et al. Real-time imaging of DNA loop extrusion by condensin. Science 360, 102–105 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Paulson, J. R. & Laemmli, U. K. The structure of histone-depleted metaphase chromosomes. Cell 12, 817–828 (1977).

    CAS  PubMed  Google Scholar 

  23. Naumova, N. et al. Organization of the mitotic chromosome. Science 342, 948–953 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Gibcus, J. H. et al. A pathway for mitotic chromosome formation. Science 359, eaao6135 (2018).

    PubMed  PubMed Central  Google Scholar 

  25. Saitoh, N., Goldberg, I. G., Wood, E. R. & Earnshaw, W. C. ScII: an abundant chromosome scaffold protein is a member of a family of putative ATPases with an unusual predicted tertiary structure. J. Cell Biol. 127, 303–318 (1994).

    CAS  PubMed  Google Scholar 

  26. Maeshima, K. & Laemmli, U. K. A two-step scaffolding model for mitotic chromosome assembly. Dev. Cell 4, 467–480 (2003).

    CAS  PubMed  Google Scholar 

  27. Gruber, S. Multilayer chromosome organization through DNA bending, bridging and extrusion. Curr. Opin. Microbiol. 22, 102–110 (2014).

    CAS  PubMed  Google Scholar 

  28. Wang, X. et al. In vivo evidence for ATPase-dependent DNA translocation by the Bacillus subtilis SMC condensin complex. Mol. Cell 71, 841–847 e845 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Ono, T. et al. Differential contributions of condensin I and condensin II to mitotic chromosome architecture in vertebrate cells. Cell 115, 109–121 (2003).

    CAS  PubMed  Google Scholar 

  30. Yeong, F. M. et al. Identification of a subunit of a novel kleisin-beta/SMC complex as a potential substrate of protein phosphatase 2A. Curr. Biol. 13, 2058–2064 (2003).

    CAS  PubMed  Google Scholar 

  31. Hirota, T., Gerlich, D., Koch, B., Ellenberg, J. & Peters, J. M. Distinct functions of condensin I and II in mitotic chromosome assembly. J. Cell Sci. 117, 6435–6445 (2004).

    CAS  PubMed  Google Scholar 

  32. Gerlich, D., Hirota, T., Koch, B., Peters, J. M. & Ellenberg, J. Condensin I stabilizes chromosomes mechanically through a dynamic interaction in live cells. Curr. Biol. 16, 333–344 (2006).

    CAS  PubMed  Google Scholar 

  33. Walther, N. et al. A quantitative map of human condensins provides new insights into mitotic chromosome architecture. J. Cell Biol. 217, 2309–2328 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Strunnikov, A. V., Larionov, V. L. & Koshland, D. SMC1: an essential yeast gene encoding a putative head-rod-tail protein is required for nuclear division and defines a new ubiquitous protein family. J. Cell Biol. 123, 1635–1648 (1993).

    CAS  PubMed  Google Scholar 

  35. Guacci, V., Koshland, D. & Strunnikov, A. A direct link between sister chromatid cohesion and chromosome condensation revealed through the analysis of MCD1 in S. cerevisiae. Cell 91, 47–57 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Michaelis, C., Ciosk, R. & Nasmyth, K. Cohesins: chromosomal proteins that prevent premature separation of sister chromatids. Cell 91, 35–45 (1997).

    CAS  PubMed  Google Scholar 

  37. Losada, A., Hirano, M. & Hirano, T. Identification of Xenopus SMC protein complexes required for sister chromatid cohesion. Genes Dev. 12, 1986–1997 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Haering, C. H., Farcas, A. M., Arumugam, P., Metson, J. & Nasmyth, K. The cohesin ring concatenates sister DNA molecules. Nature 454, 297–301 (2008).

    CAS  PubMed  Google Scholar 

  39. Srinivasan, M. et al. The cohesin ring uses its hinge to organize DNA using non-topological as well as topological mechanisms. Cell 173, 1508–1519 e1518 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Wendt, K. S. et al. Cohesin mediates transcriptional insulation by CCCTC-binding factor. Nature 451, 796–801 (2008).

    CAS  PubMed  Google Scholar 

  41. Parelho, V. et al. Cohesins functionally associate with CTCF on mammalian chromosome arms. Cell 132, 422–433 (2008).

    CAS  PubMed  Google Scholar 

  42. Kurukuti, S. et al. CTCF binding at the H19 imprinting control region mediates maternally inherited higher-order chromatin conformation to restrict enhancer access to Igf2. Proc. Natl Acad. Sci. USA 103, 10684–10689 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Splinter, E. et al. CTCF mediates long-range chromatin looping and local histone modification in the beta-globin locus. Genes Dev. 20, 2349–2354 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Bell, A. C. & Felsenfeld, G. Methylation of a CTCF-dependent boundary controls imprinted expression of the Igf2 gene. Nature 405, 482–485 (2000).

    CAS  PubMed  Google Scholar 

  45. Hadjur, S. et al. Cohesins form chromosomal cis-interactions at the developmentally regulated IFNG locus. Nature 460, 410–413 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Nativio, R. et al. Cohesin is required for higher-order chromatin conformation at the imprinted IGF2-H19 locus. PLoS Genet. 5, e1000739 (2009).

    PubMed  PubMed Central  Google Scholar 

  47. Wendt, K. S. & Peters, J. M. How cohesin and CTCF cooperate in regulating gene expression. Chromosome Res. 17, 201–214 (2009).

    CAS  PubMed  Google Scholar 

  48. Nichols, M. H. & Corces, V. G. A CTCF code for 3D genome architecture. Cell 162, 703–705 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Sanborn, A. L. et al. Chromatin extrusion explains key features of loop and domain formation in wild-type and engineered genomes. Proc. Natl Acad. Sci. USA 112, E6456–E6465 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Fudenberg, G. et al. Formation of chromosomal domains by loop extrusion. Cell Rep. 15, 2038–2049 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Lengronne, A. et al. Cohesin relocation from sites of chromosomal loading to places of convergent transcription. Nature 430, 573–578 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Hu, B. et al. ATP hydrolysis is required for relocating cohesin from sites occupied by its Scc2/4 loading complex. Curr. Biol. 21, 12–24 (2011).

    CAS  PubMed  Google Scholar 

  53. Busslinger, G. A. et al. Cohesin is positioned in mammalian genomes by transcription, CTCF and Wapl. Nature 544, 503–507 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Gassler, J. et al. A mechanism of cohesin-dependent loop extrusion organizes zygotic genome architecture. EMBO J. 36, 3600–3618 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Nora, E. P. et al. Targeted degradation of CTCF decouples local insulation of chromosome domains from genomic compartmentalization. Cell 169, 930–944 e922 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Rao, S. S. P. et al. Cohesin loss eliminates all loop domains. Cell 171, 305–320 e324 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Schwarzer, W. et al. Two independent modes of chromatin organization revealed by cohesin removal. Nature 551, 51–56 (2017).

    PubMed  PubMed Central  Google Scholar 

  58. Wutz, G. et al. Topologically associating domains and chromatin loops depend on cohesin and are regulated by CTCF, WAPL, and PDS5 proteins. EMBO J. 36, 3573–3599 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Schalbetter, S. A. et al. SMC complexes differentially compact mitotic chromosomes according to genomic context. Nat. Cell Biol. 19, 1071–1080 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Schalbetter, S. A., Fudenberg, G., Baxter, J., Pollard, K. S. & Neale, M. J. Principles of meiotic chromosome assembly revealed in S. cerevisiae. Nat. Commun. 10, 4795 (2019).

    PubMed  PubMed Central  Google Scholar 

  61. Costantino, L., Hsieh, T. S., Lamothe, R., Darzacq, X. & Koshland, D. Cohesin residency determines chromatin loop patterns. eLife 9, e59889 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Dong, P. et al. 3D chromatin architecture of large plant genomes determined by local A/B compartments. Mol. Plant. 10, 1497–1509 (2017).

    CAS  PubMed  Google Scholar 

  63. Rowley, M. J. et al. Evolutionarily conserved principles predict 3D chromatin organization. Mol. Cell 67, 837–852.e837 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Rowley, M. J. et al. Condensin II counteracts cohesin and RNA polymerase II in the establishment of 3D chromatin organization. Cell Rep. 26, 2890–2903.e2893 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. de Wit, E. et al. CTCF binding polarity determines chromatin looping. Mol. Cell 60, 676–684 (2015).

    PubMed  Google Scholar 

  66. Vietri Rudan, M. et al. Comparative Hi-C reveals that CTCF underlies evolution of chromosomal domain architecture. Cell Rep. 10, 1297–1309 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Gandhi, R., Gillespie, P. J. & Hirano, T. Human Wapl is a cohesin-binding protein that promotes sister-chromatid resolution in mitotic prophase. Curr. Biol. 16, 2406–2417 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Kueng, S. et al. Wapl controls the dynamic association of cohesin with chromatin. Cell 127, 955–967 (2006).

    CAS  PubMed  Google Scholar 

  69. Tedeschi, A. et al. Wapl is an essential regulator of chromatin structure and chromosome segregation. Nature 501, 564–568 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Klein, F. et al. A central role for cohesins in sister chromatid cohesion, formation of axial elements, and recombination during yeast meiosis. Cell 98, 91–103 (1999).

    CAS  PubMed  Google Scholar 

  71. Zickler, D. & Kleckner, N. Meiotic chromosomes: integrating structure and function. Annu. Rev. Genet. 33, 603–754 (1999).

    CAS  PubMed  Google Scholar 

  72. Haarhuis, J. H. I. et al. The cohesin release factor WAPL restricts chromatin loop extension. Cell 169, 693–707 e614 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Davidson, I. F. et al. DNA loop extrusion by human cohesin. Science 366, 1338–1345 (2019).

    CAS  PubMed  Google Scholar 

  74. Kim, Y., Shi, Z., Zhang, H., Finkelstein, I. J. & Yu, H. Human cohesin compacts DNA by loop extrusion. Science 366, 1345–1349 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Losada, A., Yokochi, T., Kobayashi, R. & Hirano, T. Identification and characterization of SA/Scc3p subunits in the Xenopus and human cohesin complexes. J. Cell Biol. 150, 405–416 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Sumara, I., Vorlaufer, E., Gieffers, C., Peters, B. H. & Peters, J. M. Characterization of vertebrate cohesin complexes and their regulation in prophase. J. Cell Biol. 151, 749–762 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Ciosk, R. et al. Cohesin’s binding to chromosomes depends on a separate complex consisting of Scc2 and Scc4 proteins. Mol. Cell 5, 243–254 (2000).

    CAS  PubMed  Google Scholar 

  78. Takahashi, T. S., Yiu, P., Chou, M. F., Gygi, S. & Walter, J. C. Recruitment of Xenopus Scc2 and cohesin to chromatin requires the pre-replication complex. Nat. Cell Biol. 6, 991–996 (2004).

    CAS  PubMed  Google Scholar 

  79. Murayama, Y. & Uhlmann, F. Biochemical reconstitution of topological DNA binding by the cohesin ring. Nature 505, 367–371 (2014).

    CAS  PubMed  Google Scholar 

  80. Camdere, G., Guacci, V., Stricklin, J. & Koshland, D. The ATPases of cohesin interface with regulators to modulate cohesin-mediated DNA tethering. eLife 4, 13115 (2015).

    Google Scholar 

  81. Petela, N. J. et al. Scc2 is a potent activator of Cohesin’s ATPase that promotes loading by binding Scc1 without Pds5. Mol. Cell 70, 1134–1148 e1137 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Kong, M. et al. Human condensin I and II drive extensive ATP-dependent compaction of nucleosome-bound DNA. Mol. Cell 79, 99–114 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Kireeva, N., Lakonishok, M., Kireev, I., Hirano, T. & Belmont, A. S. Visualization of early chromosome condensation: a hierarchical folding, axial glue model of chromosome structure. J. Cell Biol. 166, 775–785 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Nozaki, T. et al. Dynamic organization of chromatin domains revealed by super-resolution live-cell imaging. Mol. Cell 67, 282–293.e287 (2017).

    CAS  PubMed  Google Scholar 

  85. Maeshima, K. et al. A transient rise in free Mg2+ ions released from ATP-Mg hydrolysis contributes to mitotic chromosome condensation. Curr. Biol. 28, 444–451.e446 (2018).

    CAS  PubMed  Google Scholar 

  86. Niki, H., Jaffe, A., Imamura, R., Ogura, T. & Hiraga, S. The new gene mukB codes for a 177 kd protein with coiled-coil domains involved in chromosome partitioning of E. coli. EMBO J. 10, 183–193 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Gruber, S. et al. Interlinked sister chromosomes arise in the absence of condensin during fast replication in B. subtilis. Curr. Biol. 24, 293–298 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Wang, X., Tang, O. W., Riley, E. P. & Rudner, D. Z. The SMC condensin complex is required for origin segregation in Bacillus subtilis. Curr. Biol. 24, 287–292 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Long, S. W. & Faguy, D. M. Anucleate and titan cell phenotypes caused by insertional inactivation of the structural maintenance of chromosomes (smc) gene in the archaeon Methanococcus voltae. Mol. Microbiol. 52, 1567–1577 (2004).

    CAS  PubMed  Google Scholar 

  90. Wang, X. et al. Condensin promotes the juxtaposition of DNA flanking its loading site in Bacillus subtilis. Genes Dev. 29, 1661–1675 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Wang, X., Brandao, H. B., Le, T. B., Laub, M. T. & Rudner, D. Z. Bacillus subtilis SMC complexes juxtapose chromosome arms as they travel from origin to terminus. Science 355, 524–527 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Mitter, M. et al. Conformation of sister chromatids in the replicated human genome. Nature 586, 139–144 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Chen, S. H., Chan, N. L. & Hsieh, T. S. New mechanistic and functional insights into DNA topoisomerases. Annu. Rev. Biochem. 82, 139–170 (2013).

    CAS  PubMed  Google Scholar 

  94. Sundin, O. & Varshavsky, A. Terminal stages of SV40 DNA replication proceed via multiply intertwined catenated dimers. Cell 21, 103–114 (1980).

    CAS  PubMed  Google Scholar 

  95. Kegel, A. et al. Chromosome length influences replication-induced topological stress. Nature 471, 392–396 (2011).

    CAS  PubMed  Google Scholar 

  96. Natale, F et al. Identification of the elementary structural units of the DNA damage response. Nat. Commun. 8, 15760 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Collins, P. L. et al. DNA double-strand breaks induce H2Ax phosphorylation domains in a contact-dependent manner. Nat. Commun. 11, 3158 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Arnould, C. et al. Loop extrusion as a mechanism for formation of DNA damage repair foci. Nature 590, 660–665 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Birkenbihl, R. P. & Subramani, S. Cloning and characterization of an essential gene of involved in DNA double-strand-break repair. Nucleic Acids Res. 20, 6605–6611 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Sjögren, C. & Nasmyth, K. Sister chromatid cohesion is required for postreplicative double-strand break repair in Saccharomyces cerevisiae. Curr. Biol. 11, 991–995 (2001).

    PubMed  Google Scholar 

  101. Watrin, E. & Peters, J-M. The cohesin complex is required for the DNA damage-induced G2/M checkpoint in mammalian cells. EMBO J. 28, 2625–2635 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Caron, P. et al. Cohesin protects genes against γH2AX induced by DNA double-strand breaks. PLoS Genet. 8, e1002460 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Ladstätter, S. & Tachibana-Konwalski, K. A surveillance mechanism ensures repair of DNA lesions during zygotic reprogramming. Cell 167, 1774–1787 (2016).

    PubMed  PubMed Central  Google Scholar 

  104. Remeseiro, S. et al. Cohesin-SA1 deficiency drives aneuploidy and tumourigenesis in mice due to impaired replication of telomeres. EMBO J. 31, 2076–2089 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Seitan, V. C. et al. Cohesin-based chromatin interactions enable regulated gene expression within preexisting architectural compartments. Genome Res. 23, 2066–2077 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Sofueva, S. et al. Cohesin-mediated interactions organize chromosomal domain architecture. EMBO J. 32, 3119–3129 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Zuin, J. et al. Cohesin and CTCF differentially affect chromatin architecture and gene expression in human cells. Proc. Natl Acad. Sci. USA 111, 996–1001 (2014).

    CAS  PubMed  Google Scholar 

  108. Cuartero, S. et al. Control of inducible gene expression links cohesin to hematopoietic progenitor self-renewal and differentiation. Nat. Immunol. 19, 932–941 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Liu, N. Q. et al. WAPL maintains a cohesin loading cycle to preserve cell-type-specific distal gene regulation. Nat. Genet. 53, 100–109 (2021).

    CAS  PubMed  Google Scholar 

  110. El Khattabi, L. et al. A pliable mediator acts as a functional rather than an architectural bridge between promoters and enhancers. Cell 178, 1145–1158 e1120 (2019).

    CAS  PubMed  Google Scholar 

  111. Grubert, F. et al. Landscape of cohesin-mediated chromatin loops in the human genome. Nature 583, 737–743 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Thiecke, M. J. et al. Cohesin-dependent and -independent mechanisms mediate chromosomal contacts between promoters and enhancers. Cell Rep. 32, 107929 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Krietenstein, N. et al. Ultrastructural details of mammalian chromosome architecture. Mol. Cell 78, 554–565.e557 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Fullwood, M. J. & Ruan, Y. ChIP-based methods for the identification of long-range chromatin interactions. J. Cell Biochem. 107, 30–39 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Mifsud, B. et al. Mapping long-range promoter contacts in human cells with high-resolution capture Hi-C. Nat. Genet. 47, 598–606 (2015).

    CAS  PubMed  Google Scholar 

  116. Sahlén, P. et al. Genome-wide mapping of promoter-anchored interactions with close to single-enhancer resolution. Genome Biol. 16, 156 (2015).

    PubMed  PubMed Central  Google Scholar 

  117. Schoenfelder, S. et al. The pluripotent regulatory circuitry connecting promoters to their long-range interacting elements. Genome Res. 25, 582–597 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Rollins, R. A., Morcillo, P. & Dorsett, D. Nipped-B, a Drosophila homologue of chromosomal adherins, participates in activation by remote enhancers in the cut and Ultrabithorax genes. Genetics 152, 577–593 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Krantz, I. D. et al. Cornelia de Lange syndrome is caused by mutations in NIPBL, the human homolog of Drosophila melanogaster Nipped-B. Nat. Genet. 36, 631–635 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Tonkin, E. T. et al. A giant novel gene undergoing extensive alternative splicing is severed by a Cornelia de Lange-associated translocation breakpoint at 3q26.3. Hum. Genet. 115, 139–148 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Deardorff, M. A. et al. Mutations in cohesin complex members SMC3 and SMC1A cause a mild variant of Cornelia de Lange syndrome with predominant mental retardation. Am. J. Hum. Genet. 80, 485–494 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Izumi, K. et al. Germline gain-of-function mutations in AFF4 cause a developmental syndrome functionally linking the super elongation complex and cohesin. Nat. Genet. 47, 338–344 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Rhodes, J., Mazza, D., Nasmyth, K. & Uphoff, S. Scc2/Nipbl hops between chromosomal cohesin rings after loading. eLife 6, e30000 (2017).

    PubMed  PubMed Central  Google Scholar 

  124. Guo, Y. et al. CTCF/cohesin-mediated DNA looping is required for protocadherin α promoter choice. Proc. Natl Acad. Sci. USA 109, 21081–21086 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Monahan, K. et al. Role of CCCTC binding factor (CTCF) and cohesin in the generation of single-cell diversity of protocadherin-α gene expression. Proc. Natl Acad. Sci. USA 109, 9125–9130 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Canzio, D. et al. Antisense lncRNA transcription mediates DNA demethylation to drive stochastic protocadherin α promoter choice. Cell 177, 639–653.e615 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Chang, L. H., Ghosh, S. & Noordermeer, D. TADs and their borders: free movement or building a wall? J. Mol. Biol. 432, 643–652 (2020).

    CAS  PubMed  Google Scholar 

  128. Soshnikova, N., Montavon, T., Leleu, M., Galjart, N. & Duboule, D. Functional analysis of CTCF during mammalian limb development. Dev. Cell 19, 819–830 (2010).

    CAS  PubMed  Google Scholar 

  129. Lupianez, D. G. et al. Disruptions of topological chromatin domains cause pathogenic rewiring of gene-enhancer interactions. Cell 161, 1012–1025 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Symmons, O. et al. The Shh topological domain facilitates the action of remote enhancers by reducing the effects of genomic distances. Dev. Cell 39, 529–543 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Despang, A. et al. Functional dissection of the Sox9-Kcnj2 locus identifies nonessential and instructive roles of TAD architecture. Nat. Genet. 51, 1263–1271 (2019).

    CAS  PubMed  Google Scholar 

  132. Williamson, I. et al. Developmentally regulated Shh expression is robust to TAD perturbations. Development 146, dev179523 (2019).

    CAS  PubMed  Google Scholar 

  133. Dekker, J. & Mirny, L. The 3D genome as moderator of chromosomal communication. Cell 164, 1110–1121 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Kosak, S. T. et al. Subnuclear compartmentalization of immunoglobulin loci during lymphocyte development. Science 296, 158–162 (2002).

    CAS  PubMed  Google Scholar 

  135. Fuxa, M. et al. Pax5 induces V-to-DJ rearrangements and locus contraction of the immunoglobulin heavy-chain gene. Genes Dev. 18, 411–422 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Roldan, E. et al. Locus ‘decontraction’ and centromeric recruitment contribute to allelic exclusion of the immunoglobulin heavy-chain gene. Nat. Immunol. 6, 31–41 (2005).

    CAS  PubMed  Google Scholar 

  137. Sayegh, C. E., Jhunjhunwala, S., Riblet, R. & Murre, C. Visualization of looping involving the immunoglobulin heavy-chain locus in developing B cells. Genes Dev. 19, 322–327 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Bassing, C. H., Swat, W. & Alt, F. W. The mechanism and regulation of chromosomal V(D)J recombination. Cell 109 (Suppl.), S45–S55 (2002).

    CAS  PubMed  Google Scholar 

  139. Ji, Y. et al. The in vivo pattern of binding of RAG1 and RAG2 to antigen receptor loci. Cell 141, 419–431 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Zhang, Y. et al. The fundamental role of chromatin loop extrusion in physiological V(D)J recombination. Nature 573, 600–604 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Mullighan, C. G. et al. BCR-ABL1 lymphoblastic leukaemia is characterized by the deletion of Ikaros. Nature 453, 110–114 (2008).

    CAS  PubMed  Google Scholar 

  142. Onozawa, M. & Aplan, P. D. Illegitimate V(D)J recombination involving nonantigen receptor loci in lymphoid malignancy. Genes Chromosomes Cancer 51, 525–535 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  143. Mendes, R. D. et al. PTEN microdeletions in T-cell acute lymphoblastic leukemia are caused by illegitimate RAG-mediated recombination events. Blood 124, 567–578 (2014).

    CAS  PubMed  Google Scholar 

  144. Papaemmanuil, E. et al. RAG-mediated recombination is the predominant driver of oncogenic rearrangement in ETV6-RUNX1 acute lymphoblastic leukemia. Nat. Genet. 46, 116–125 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Hu, J. et al. Chromosomal loop domains direct the recombination of antigen receptor genes. Cell 163, 947–959 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Guo, C. et al. CTCF-binding elements mediate control of V(D)J recombination. Nature 477, 424–430 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  147. Hill, L. et al. Wapl repression by Pax5 promotes V gene recombination by Igh loop extrusion. Nature 584, 142–147 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  148. Lin, S. G., Ba, Z., Alt, F. W. & Zhang, Y. RAG chromatin scanning during V(D)J recombination and chromatin loop extrusion are related processes. Adv. Immunol. 139, 93–135 (2018).

    CAS  PubMed  Google Scholar 

  149. Jain, S., Ba, Z., Zhang, Y., Dai, H. Q. & Alt, F. W. CTCF-binding elements mediate accessibility of RAG substrates during chromatin scanning. Cell 174, 102–116 e114 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  150. Peters, J. M. How DNA loop extrusion mediated by cohesin enables V(D)J recombination. Curr. Opin. Cell Biol. 70, 75–83 (2021).

    CAS  PubMed  Google Scholar 

  151. Ba, Z. et al. CTCF orchestrates long-range cohesin-driven V(D)J recombinational scanning. Nature 586, 305–310 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  152. Nutt, S. L., Heavey, B., Rolink, A. G. & Busslinger, M. Commitment to the B-lymphoid lineage depends on the transcription factor Pax5. Nature 401, 556–562 (1999).

    CAS  PubMed  Google Scholar 

  153. Dai, H. Q. et al. Loop extrusion mediates physiological Igh locus contraction for RAG scanning. Nature 590, 338–343 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  154. Carmona, L. M. & Schatz, D. G. New insights into the evolutionary origins of the recombination-activating gene proteins and V(D)J recombination. FEBS J. 284, 1590–1605 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  155. Hirano, T., Kobayashi, R. & Hirano, M. Condensins, chromosome condensation protein complexes containing XCAP-C, XCAP-E and a Xenopus homolog of the Drosophila Barren protein. Cell 89, 511–521 (1997).

    CAS  PubMed  Google Scholar 

  156. Kikuchi, S., Borek, D. M., Otwinowski, Z., Tomchick, D. R. & Yu, H. Crystal structure of the cohesin loader Scc2 and insight into cohesinopathy. Proc. Natl Acad. Sci. USA 113, 12444–12449 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  157. Murayama, Y. & Uhlmann, F. DNA entry into and exit out of the cohesin ring by an interlocking gate mechanism. Cell 163, 1628–1640 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  158. Rolef Ben-Shahar, T. et al. Eco1-dependent cohesin acetylation during establishment of sister chromatid cohesion. Science 321, 563–566 (2008).

    PubMed  Google Scholar 

  159. Unal, E. et al. A molecular determinant for the establishment of sister chromatid cohesion. Science 321, 566–569 (2008).

    PubMed  Google Scholar 

  160. Rankin, S., Ayad, N. G. & Kirschner, M. W. Sororin, a substrate of the anaphase-promoting complex, is required for sister chromatid cohesion in vertebrates. Mol. Cell 18, 185–200 (2005).

    CAS  PubMed  Google Scholar 

  161. Schmitz, J., Watrin, E., Lenart, P., Mechtler, K. & Peters, J. M. Sororin is required for stable binding of cohesin to chromatin and for sister chromatid cohesion in interphase. Curr. Biol. 17, 630–636 (2007).

    CAS  PubMed  Google Scholar 

  162. Nishiyama, T. et al. Sororin mediates sister chromatid cohesion by antagonizing Wapl. Cell 143, 737–749 (2010).

    CAS  PubMed  Google Scholar 

  163. Vaur, S., Feytout, A., Vazquez, S. & Javerzat, J. P. Pds5 promotes cohesin acetylation and stable cohesin-chromosome interaction. EMBO Rep. 13, 645–652 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  164. Chan, K. L. et al. Pds5 promotes and protects cohesin acetylation. Proc. Natl Acad. Sci. USA 110, 13020–13025 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  165. Minamino, M. et al. Esco1 acetylates cohesin via a mechanism different from that of Esco2. Curr. Biol. 25, 1694–1706 (2015).

    CAS  PubMed  Google Scholar 

  166. Hopfner, K. P. et al. Structural biology of Rad50 ATPase: ATP-driven conformational control in DNA double-strand break repair and the ABC-ATPase superfamily. Cell 101, 789–800 (2000).

    CAS  PubMed  Google Scholar 

  167. Locher, K. P. Mechanistic diversity in ATP-binding cassette (ABC) transporters. Nat. Struct. Mol. Biol. 23, 487–493 (2016).

    CAS  PubMed  Google Scholar 

  168. Kimura, K. & Hirano, T. Dual roles of the 11S regulatory subcomplex in condensin functions. Proc. Natl Acad. Sci. USA 97, 11972–11977 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  169. Piazza, I. et al. Association of condensin with chromosomes depends on DNA binding by its HEAT-repeat subunits. Nat. Struct. Mol. Biol. 21, 560–568 (2014).

    CAS  PubMed  Google Scholar 

  170. Arumugam, P. et al. ATP hydrolysis is required for cohesin’s association with chromosomes. Curr. Biol. 13, 1941–1953 (2003).

    CAS  PubMed  Google Scholar 

  171. Weitzer, S., Lehane, C. & Uhlmann, F. A model for ATP hydrolysis-dependent binding of cohesin to DNA. Curr. Biol. 13, 1930–1940 (2003).

    CAS  PubMed  Google Scholar 

  172. Hudson, D. F. et al. Molecular and genetic analysis of condensin function in vertebrate cells. Mol. Biol. Cell 19, 3070–3079 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  173. Heidinger-Pauli, J. M., Onn, I. & Koshland, D. Genetic evidence that the acetylation of the Smc3p subunit of cohesin modulates its ATP-bound state to promote cohesion establishment in Saccharomyces cerevisiae. Genetics 185, 1249–1256 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  174. Ladurner, R. et al. Cohesin’s ATPase activity couples cohesin loading onto DNA with Smc3 acetylation. Curr. Biol. 24, 2228–2237 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  175. Kinoshita, K., Kobayashi, T. J. & Hirano, T. Balancing acts of two HEAT subunits of condensin I support dynamic assembly of chromosome axes. Dev. Cell 33, 94–106 (2015).

    CAS  PubMed  Google Scholar 

  176. Wilhelm, L. et al. SMC condensin entraps chromosomal DNA by an ATP hydrolysis dependent loading mechanism in Bacillus subtilis. eLife 4, e06659 (2015).

    PubMed Central  Google Scholar 

  177. Minnen, A. et al. Control of Smc coiled coil architecture by the ATPase heads facilitates targeting to chromosomal ParB/parS and release onto flanking DNA. Cell Rep. 14, 2003–2016 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  178. Roig, M. B. et al. Structure and function of cohesin’s Scc3/SA regulatory subunit. FEBS Lett. 588, 3692–3702 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  179. Wutz, G. et al. ESCO1 and CTCF enable formation of long chromatin loops by protecting cohesin(STAG1) from WAPL. eLife 9, e52091 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  180. Kojic, A. et al. Distinct roles of cohesin-SA1 and cohesin-SA2 in 3D chromosome organization. Nat. Struct. Mol. Biol. 25, 496–504 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  181. Kschonsak, M. et al. Structural basis for a safety-belt mechanism that anchors condensin to chromosomes. Cell 171, 588–600 e524 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  182. Collier, J. E. et al. Transport of DNA within cohesin involves clamping on top of engaged heads by Scc2 and entrapment within the ring by Scc3. eLife 9, e59560 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  183. Higashi, T. L. et al. A structure-based mechanism for DNA entry into the cohesin ring. Mol. Cell 79, 917–933 (2020).

    PubMed  PubMed Central  Google Scholar 

  184. Shi, Z., Gao, H., Bai, X. C. & Yu, H. Cryo-EM structure of the human cohesin-NIPBL-DNA complex. Science 368, 1454–1459 (2020).

    CAS  PubMed  Google Scholar 

  185. Cuylen, S., Metz, J. & Haering, C. H. Condensin structures chromosomal DNA through topological links. Nat. Struct. Mol. Biol. 18, 894–901 (2011).

    CAS  PubMed  Google Scholar 

  186. Elbatsh, A. M. O. et al. Distinct roles for condensin’s two ATPase sites in chromosome condensation. Mol. Cell 76, 724–737 e725 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  187. Kim, E., Kerssemakers, J., Shaltiel, I. A., Haering, C. H. & Dekker, C. DNA-loop extruding condensin complexes can traverse one another. Nature 579, 438–442 (2020).

    CAS  PubMed  Google Scholar 

  188. Banigan, E. J., van den Berg, A. A., Brandao, H. B., Marko, J. F. & Mirny, L. A. Chromosome organization by one-sided and two-sided loop extrusion. eLife 9, e53558 (2020).

    PubMed  PubMed Central  Google Scholar 

  189. Golfier, S., Quail, T., Kimura, H. & Brugues, J. Cohesin and condensin extrude DNA loops in a cell-cycle dependent manner. eLife 9, e53885 (2020).

    PubMed  PubMed Central  Google Scholar 

  190. Anderson, D. E., Losada, A., Erickson, H. P. & Hirano, T. Condensin and cohesin display different arm conformations with characteristic hinge angles. J. Cell Biol. 156, 419–424 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  191. Huis in ‘t Veld, P. J. et al. Characterization of a DNA exit gate in the human cohesin ring. Science 346, 968–972 (2014).

    PubMed  Google Scholar 

  192. Soh, Y. M. et al. Molecular basis for SMC rod formation and its dissolution upon DNA binding. Mol. Cell 57, 290–303 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  193. Eeftens, J. M. et al. Condensin Smc2-Smc4 dimers are flexible and dynamic. Cell Rep. 14, 1813–1818 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  194. Hons, M. T. et al. Topology and structure of an engineered human cohesin complex bound to Pds5B. Nat. Commun. 7, 12523 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  195. Ryu, J. K. et al. The condensin holocomplex cycles dynamically between open and collapsed states. Nat. Struct. Mol. Biol. 27, 1134–1141 (2020).

    PubMed  Google Scholar 

  196. Nunez, R. V., Polyhach, Y., Soh, Y.-M., Jeschke, G. & Gruber, S. Gradual opening of Smc arms in prokaryotic condensin. Preprint at bioRxiv https://doi.org/10.1101/2021.01.21.427566 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  197. Ryu, J.-K., Rah, S.-H., Janissen, R., Kerssemakers, J. W. J. & Dekker, C. Resolving the step size in condensin-driven DNA loop extrusion identifies ATP binding as the step-generating process. Preprint at bioRxiv https://doi.org/10.1101/2020.11.04.368506 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  198. Diebold-Durand, M. L. et al. Structure of full-length SMC and rearrangements required for chromosome organization. Mol. Cell 67, 334–347 e335 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  199. Chapard, C., Jones, R., van Oepen, T., Scheinost, J. C. & Nasmyth, K. Sister DNA entrapment between Juxtaposed Smc heads and kleisin of the cohesin complex. Mol. Cell 75, 224–237 e225 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  200. Vazquez Nunez, R., Ruiz Avila, L. B. & Gruber, S. Transient DNA occupancy of the SMC interarm space in prokaryotic condensin. Mol. Cell 75, 209–223 e206 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  201. Marko, J. F., De Los Rios, P., Barducci, A. & Gruber, S. DNA-segment-capture model for loop extrusion by structural maintenance of chromosome (SMC) protein complexes. Nucleic Acids Res. 47, 6956–6972 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  202. Burmann, F. et al. A folded conformation of MukBEF and cohesin. Nat. Struct. Mol. Biol. 26, 227–236 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  203. Lee, B. G. et al. Cryo-EM structures of holo condensin reveal a subunit flip-flop mechanism. Nat. Struct. Mol. Biol. 27, 743–751 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  204. Hassler, M., Shaltiel, I. A. & Haering, C. H. Towards a unified model of SMC complex function. Curr. Biol. 28, R1266–R1281 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  205. Yatskevich, S., Rhodes, J. & Nasmyth, K. Organization of chromosomal DNA by SMC complexes. Annu. Rev. Genet. 53, 445–482 (2019).

    CAS  PubMed  Google Scholar 

  206. Guacci, V. et al. Structure and function of chromosomes in mitosis of budding yeast. Cold Spring Harb. Symp. Quant. Biol. 58, 677–685 (1993).

    CAS  PubMed  Google Scholar 

  207. Peterson, C. L. The SMC family: novel motor proteins for chromosome condensation? Cell 79, 389–392 (1994).

    CAS  PubMed  Google Scholar 

  208. Fudenberg, G., Abdennur, N., Imakaev, M., Goloborodko, A. & Mirny, L. A. Emerging evidence of chromosome folding by loop extrusion. Cold Spring Harb. Symp. Quant. Biol. 82, 45–55 (2017).

    PubMed  Google Scholar 

  209. Sweeney, H. L. & Holzbaur, E. L. F. Motor proteins. Cold Spring Harb. Perspect. Biol. 10, a021931 (2018).

    PubMed  PubMed Central  Google Scholar 

  210. Nichols, M. H. & Corces, V. G. A tethered-inchworm model of SMC DNA translocation. Nat. Struct. Mol. Biol. 25, 906–910 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  211. Keenholtz, R. A. et al. Oligomerization and ATP stimulate condensin-mediated DNA compaction. Sci. Rep. 7, 14279 (2017).

    PubMed  PubMed Central  Google Scholar 

  212. Farrell, C. M., Mackey, A. T., Klumpp, L. M. & Gilbert, S. P. The role of ATP hydrolysis for kinesin processivity. J. Biol. Chem. 277, 17079–17087 (2002).

    CAS  PubMed  Google Scholar 

  213. Schmidt, H., Gleave, E. S. & Carter, A. P. Insights into dynein motor domain function from a 3.3-A crystal structure. Nat. Struct. Mol. Biol. 19, 492–497, S491 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  214. Hirano, M. & Hirano, T. Positive and negative regulation of SMC-DNA interactions by ATP and accessory proteins. EMBO J. 23, 2664–2673 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  215. Burmann, F. et al. Tuned SMC arms drive chromosomal loading of prokaryotic condensin. Mol. Cell 65, 861–872 e869 (2017).

    PubMed  PubMed Central  Google Scholar 

  216. Hirano, T. Condensins: universal organizers of chromosomes with diverse functions. Genes Dev. 26, 1659–1678 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  217. Rowland, B. D. et al. Building sister chromatid cohesion: smc3 acetylation counteracts an antiestablishment activity. Mol. Cell 33, 763–774 (2009).

    CAS  PubMed  Google Scholar 

  218. Shintomi, K. & Hirano, T. Releasing cohesin from chromosome arms in early mitosis: opposing actions of Wapl-Pds5 and Sgo1. Genes Dev. 23, 2224–2236 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  219. Chan, K. L. et al. Cohesin’s DNA exit gate is distinct from its entrance gate and is regulated by acetylation. Cell 150, 961–974 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  220. Buheitel, J. & Stemmann, O. Prophase pathway-dependent removal of cohesin from human chromosomes requires opening of the Smc3-Scc1 gate. EMBO J. 32, 666–676 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  221. Eichinger, C. S., Kurze, A., Oliveira, R. A. & Nasmyth, K. Disengaging the Smc3/kleisin interface releases cohesin from Drosophila chromosomes during interphase and mitosis. EMBO J. 32, 656–665 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  222. Gligoris, T. G. et al. Closing the cohesin ring: structure and function of its Smc3-kleisin interface. Science 346, 963–967 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  223. Vian, L. et al. The energetics and physiological impact of cohesin extrusion. Cell 173, 1165–1178 e1120 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  224. Whelan, G. et al. Cohesin acetyltransferase Esco2 is a cell viability factor and is required for cohesion in pericentric heterochromatin. EMBO J. 31, 71–82 (2012).

    CAS  PubMed  Google Scholar 

  225. Li, Y. et al. The structural basis for cohesin-CTCF-anchored loops. Nature 578, 472–476 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  226. Hashimoto, H. et al. Structural basis for the versatile and methylation-dependent binding of CTCF to DNA. Mol. Cell 66, 711–720 e713 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  227. Yin, M. et al. Molecular mechanism of directional CTCF recognition of a diverse range of genomic sites. Cell Res. 27, 1365–1377 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  228. Xiao, T., Wallace, J. & Felsenfeld, G. Specific sites in the C terminus of CTCF interact with the SA2 subunit of the cohesin complex and are required for cohesin-dependent insulation activity. Mol. Cell Biol. 31, 2174–2183 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  229. Nishana, M. et al. Defining the relative and combined contribution of CTCF and CTCFL to genomic regulation. Genome Biol. 21, 108 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  230. Nora, E. P. et al. Molecular basis of CTCF binding polarity in genome folding. Nat. Commun. 11, 5612 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  231. Pugacheva, E. M. et al. CTCF mediates chromatin looping via N-terminal domain-dependent cohesin retention. Proc. Natl Acad. Sci. USA 117, 2020–2031 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  232. Hara, K. et al. Structure of cohesin subcomplex pinpoints direct shugoshin-Wapl antagonism in centromeric cohesion. Nat. Struct. Mol. Biol. 21, 864–870 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  233. Davidson, I. F. et al. Rapid movement and transcriptional re-localization of human cohesin on DNA. EMBO J. 35, 2671–2685 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  234. Nakahashi, H. et al. A genome-wide map of CTCF multivalency redefines the CTCF code. Cell Rep. 3, 1678–1689 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  235. Agarwal, H., Reisser, M., Wortmann, C. & Gebhardt, J. C. M. Direct observation of cell-cycle-dependent interactions between CTCF and chromatin. Biophys. J. 112, 2051–2055 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  236. Hansen, A. S., Pustova, I., Cattoglio, C., Tjian, R. & Darzacq, X. CTCF and cohesin regulate chromatin loop stability with distinct dynamics. eLife 6, e25776 (2017).

    PubMed  PubMed Central  Google Scholar 

  237. Kieffer-Kwon, K. R. et al. Myc regulates chromatin decompaction and nuclear architecture during B cell activation. Mol. Cell 67, 566–578 e510 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  238. Hansen, A. S., Amitai, A., Cattoglio, C., Tjian, R. & Darzacq, X. Guided nuclear exploration increases CTCF target search efficiency. Nat. Chem. Biol. 16, 257–266 (2020).

    CAS  PubMed  Google Scholar 

  239. Cattoglio, C. et al. Determining cellular CTCF and cohesin abundances to constrain 3D genome models. eLife 8, e25776 (2019).

    Google Scholar 

  240. Holzmann, J. et al. Absolute quantification of cohesin, CTCF and their regulators in human cells. eLife 8, e46269 (2019).

    PubMed  PubMed Central  Google Scholar 

  241. Kaaij, L. J. T., Mohn, F., van der Weide, R. H., de Wit, E. & Bühler, M. The ChAHP complex counteracts chromatin looping at CTCF sites that emerged from SINE expansions in mouse. Cell 178, 1437–1451.e1414 (2019).

    CAS  PubMed  Google Scholar 

  242. Hsu, S. C. et al. The BET protein BRD2 cooperates with CTCF to enforce transcriptional and architectural boundaries. Mol. Cell 66, 102–116 e107 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  243. Dauban, L. et al. Regulation of cohesin-mediated chromosome folding by Eco1 and other partners. Mol. Cell 77, 1279–1293 e1274 (2020).

    CAS  PubMed  Google Scholar 

  244. Kagey, M. H. et al. Mediator and cohesin connect gene expression and chromatin architecture. Nature 467, 430–435 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  245. Megee, P. C., Mistrot, C., Guacci, V. & Koshland, D. The centromeric sister chromatid cohesion site directs Mcd1p binding to adjacent sequences. Mol. Cell 4, 445–450 (1999).

    CAS  PubMed  Google Scholar 

  246. Heinz, S. et al. Transcription elongation can affect genome 3D structure. Cell 174, 1522–1536 e1522 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  247. Brandao, H. B. et al. RNA polymerases as moving barriers to condensin loop extrusion. Proc. Natl Acad. Sci. USA 116, 20489–20499 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  248. Dequeker, B. J. H. et al. MCM complexes are barriers that restrict cohesin-mediated loop extrusion. Preprint at bioRxiv https://doi.org/10.1101/2020.1110.1115.340356 (2020).

    Article  Google Scholar 

  249. Wells, J. N., Gligoris, T. G., Nasmyth, K. A. & Marsh, J. A. Evolution of condensin and cohesin complexes driven by replacement of Kite by Hawk proteins. Curr. Biol. 27, R17–R18 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  250. McNicoll, F., Stevense, M. & Jessberger, R. Cohesin in gametogenesis. Curr. Top. Dev. Biol. 102, 1–34, (2013)

    CAS  PubMed  Google Scholar 

  251. Flyamer, I. M. et al. Single-nucleus Hi-C reveals unique chromatin reorganization at oocyte-to-zygote transition. Nature 544, 110–114 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  252. Bintu, B. et al. Super-resolution chromatin tracing reveals domains and cooperative interactions in single cells. Science 362, eaau1783 (2018).

    PubMed  PubMed Central  Google Scholar 

  253. Finn, E. H. et al. Extensive heterogeneity and intrinsic variation in spatial genome organization. Cell 176, 1502–1515.e1510 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  254. Luppino, J. M. et al. Cohesin promotes stochastic domain intermingling to ensure proper regulation of boundary-proximal genes. Nat. Genet. 52, 840–848 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  255. Su, J. H., Zheng, P., Kinrot, S. S., Bintu, B. & Zhuang, X. Genome-scale imaging of the 3D organization and transcriptional activity of chromatin. Cell 182, 1641–1659.e1626 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  256. Szabo, Q. et al. Regulation of single-cell genome organization into TADs and chromatin nanodomains. Nat. Genet. 52, 1151–1157 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  257. Flemming, W. Zellsubstanz, Kern und Zelltheilung (F.C.W. Vogel, 1882).

  258. Hershey, A. D. & Chase, M. Independent functions of viral protein and nucleic acid in growth of bacteriophage. J. Gen. Physiol. 36, 39–56 (1952).

    CAS  PubMed  PubMed Central  Google Scholar 

  259. Berezney, R. & Coffey, D. S. Identification of a nuclear protein matrix. Biochem. Biophys. Res. Commun. 60, 1410–1417 (1974).

    CAS  PubMed  Google Scholar 

  260. Mirkovitch, J., Mirault, M. E. & Laemmli, U. K. Organization of the higher-order chromatin loop: specific DNA attachment sites on nuclear scaffold. Cell 39, 223–232 (1984).

    CAS  PubMed  Google Scholar 

  261. Cockerill, P. N. & Garrard, W. T. Chromosomal loop anchorage of the kappa immunoglobulin gene occurs next to the enhancer in a region containing topoisomerase II sites. Cell 44, 273–282 (1986).

    CAS  PubMed  Google Scholar 

  262. Sun, M., Biggs, R., Hornick, J. & Marko, J. F. Condensin controls mitotic chromosome stiffness and stability without forming a structurally contiguous scaffold. Chromosome Res. 26, 277–295 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  263. Pederson, T. Half a century of “the nuclear matrix”. Mol. Biol. Cell 11, 799–805 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  264. Blackwood, E. M. & Kadonaga, J. T. Going the distance: a current view of enhancer action. Science 281, 60–63 (1998).

    CAS  PubMed  Google Scholar 

  265. Bulger, M. & Groudine, M. Looping versus linking: toward a model for long-distance gene activation. Genes Dev. 13, 2465–2477 (1999).

    CAS  PubMed  Google Scholar 

  266. Hirano, T. & Mitchison, T. J. A heterodimeric coiled-coil protein required for mitotic chromosome condensation in vitro. Cell 79, 449–458 (1994).

    CAS  PubMed  Google Scholar 

  267. Kimura, K., Rybenkov, V. V., Crisona, N. J., Hirano, T. & Cozzarelli, N. R. 13S condensin actively reconfigures DNA by introducing global positive writhe: implications for chromosome condensation. Cell 98, 239–248 (1999).

    CAS  PubMed  Google Scholar 

  268. Nasmyth, K. Cohesin: a catenase with separate entry and exit gates? Nat. Cell Biol. 13, 1170–1177 (2011).

    CAS  PubMed  Google Scholar 

  269. Brackley, C. A. et al. Nonequilibrium chromosome looping via molecular slip links. Phys. Rev. Lett. 119, 138101 (2017).

    CAS  PubMed  Google Scholar 

  270. Yamamoto, T. & Schiessel, H. Osmotic mechanism of the loop extrusion process. Phys. Rev. E 96, 030402 (2017).

    PubMed  Google Scholar 

  271. Brackley, C. A. et al. Extrusion without a motor: a new take on the loop extrusion model of genome organization. Nucleus 9, 95–103 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  272. Ryu, J-K. et al. Bridging-induced phase separation induced by cohesin SMC protein complexes. Sci. Adv. 7, eabe5905 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  273. Cheng, T. M. et al. A simple biophysical model emulates budding yeast chromosome condensation. eLife 4, e05565 (2015).

    PubMed  PubMed Central  Google Scholar 

  274. Gerguri, T. et al. Comparison of loop extrusion and diffusion capture as mitotic chromosome formation pathways in fission yeast. Nucleic Acids Res. https://doi.org/10.1093/nar/gkaa1270 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  275. Gerlich, D., Koch, B., Dupeux, F., Peters, J-M. & Ellenberg, J. Live-cell imaging reveals a stable cohesin-chromatin interaction after but not before DNA replication. Curr. Biol. 16, 1571–1578 (2006).

    CAS  PubMed  Google Scholar 

  276. Silva, M. C. C. et al. Wapl releases Scc1-cohesin and regulates chromosome structure and segregation in mouse oocytes. J. Cell Biol. 219, e201906100 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  277. Tachibana-Konwalski, K. et al. Rec8-containing cohesin maintains bivalents without turnover during the growing phase of mouse oocytes. Genes Dev. 24, 2505–2516 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  278. Crawley, O. et al. Cohesin-interacting protein WAPL-1 regulates meiotic chromosome structure and cohesion by antagonizing specific cohesin complexes. eLife 5, e10851 (2016).

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank M. Busslinger, A. Goloborodko, K. Tachibana and members of the Peters laboratory for helpful discussions. Research in the laboratory of J.-M.P. is supported by Boehringer Ingelheim, the Austrian Research Promotion Agency (Headquarter grant FFG-852936), the European Research Council under the European Union’s Horizon 2020 research and innovation programme GA No. 693949, the Human Frontier Science Program (grant RGP0057/2018) and the Vienna Science and Technology Fund (grant LS19-029). J.-M.P. is also an adjunct professor at the Medical University of Vienna.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Jan-Michael Peters.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Molecular Cell Biology thanks Kazuhiro Maeshima and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Glossary

Hi-C

A chromatin conformation capture method, in which genomic sequences that are in close proximity inside nuclei are crosslinked to each other, fragmented by restriction enzymes and identified by sequencing, providing information about spatial organization of genomic DNA.

Micro-C

A chromatin conformation capture method that is similar to Hi-C, but involves fragmentation by micrococcal nuclease and provides higher-resolution information about spatial organization of genomic DNA.

Chromatin interaction analysis with paired-end tags

(ChIA-PET). A chromatin conformation capture method, in which genomic sequences that are in close proximity inside nuclei are crosslinked, isolated using antibodies to a chromatin protein of interest and identified by sequencing, providing information about the spatial organization of DNA in regions bound by the protein of interest.

Type II transposable elements

DNA transposons that contain a gene encoding the enzyme transposase, which is an endonuclease that catalyses the excision and insertion of the transposon.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Davidson, I.F., Peters, JM. Genome folding through loop extrusion by SMC complexes. Nat Rev Mol Cell Biol 22, 445–464 (2021). https://doi.org/10.1038/s41580-021-00349-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41580-021-00349-7

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing