Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The proteostasis network and its decline in ageing


Ageing is a major risk factor for the development of many diseases, prominently including neurodegenerative disorders such as Alzheimer disease and Parkinson disease. A hallmark of many age-related diseases is the dysfunction in protein homeostasis (proteostasis), leading to the accumulation of protein aggregates. In healthy cells, a complex proteostasis network, comprising molecular chaperones and proteolytic machineries and their regulators, operates to ensure the maintenance of proteostasis. These factors coordinate protein synthesis with polypeptide folding, the conservation of protein conformation and protein degradation. However, sustaining proteome balance is a challenging task in the face of various external and endogenous stresses that accumulate during ageing. These stresses lead to the decline of proteostasis network capacity and proteome integrity. The resulting accumulation of misfolded and aggregated proteins affects, in particular, postmitotic cell types such as neurons, manifesting in disease. Recent analyses of proteome-wide changes that occur during ageing inform strategies to improve proteostasis. The possibilities of pharmacological augmentation of the capacity of proteostasis networks hold great promise for delaying the onset of age-related pathologies associated with proteome deterioration and for extending healthspan.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: The proteostasis network prevents the formation of toxic aggregates.
Fig. 2: Mechanisms of aggregate toxicity.
Fig. 3: Mechanisms to counteract aggregate toxicity.
Fig. 4: Pro-longevity changes in the proteostasis network during ageing in Caenorhabditis elegans.


  1. 1.

    Balch, W. E., Morimoto, R. I., Dillin, A. & Kelly, J. W. Adapting proteostasis for disease intervention. Science 319, 916–919 (2008). This paper presents the first introduction of the term proteostasis and of the proteostasis concept.

    CAS  PubMed  Google Scholar 

  2. 2.

    Klaips, C. L., Jayaraj, G. G. & Hartl, F. U. Pathways of cellular proteostasis in aging and disease. J. Cell Biol. 217, 51–63 (2017).

    PubMed  Google Scholar 

  3. 3.

    Taylor, R. C. & Dillin, A. Aging as an event of proteostasis collapse. Cold Spring Harb. Persp. Biol. 3, a004440 (2011).

    Google Scholar 

  4. 4.

    Labbadia, J. & Morimoto, R. I. The biology of proteostasis inaging and disease. Annu. Rev. Biochem. 84, 435–464 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. 5.

    Picotti, P. et al. A complete mass-spectrometric map of the yeast proteome applied to quantitative trait analysis. Nature 494, 266–270 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. 6.

    Kulak, N. A., Geyer, P. E. & Mann, M. Loss-less nano-fractionator for high sensitivity, high coverage proteomics. Mol. Cell. Proteomics 16, 694–705 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. 7.

    Lek, M. et al. Analysis of protein-coding genetic variation in 60,706 humans. Nature 536, 285–291 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. 8.

    Boucher, J. I., Bolon, D. N. & Tawfik, D. S. Quantifying and understanding the fitness effects of protein mutations: laboratory versus nature. Protein Sci. 25, 1219–1226 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. 9.

    Kundra, R., Ciryam, P., Morimoto, R. I., Dobson, C. M. & Vendruscolo, M. Protein homeostasis of a metastable subproteome associated with Alzheimer’s disease. Proc. Natl Acad. Sci. USA 114, E5703–E5711 (2017).

    CAS  PubMed  Google Scholar 

  10. 10.

    Gidalevitz, T., Ben-Zvi, A., Ho, K. H., Brignull, H. R. & Morimoto, R. I. Progressive disruption of cellular protein folding in models of polyglutamine diseases. Science 311, 1471–1474 (2006). This paper demonstrates that expression of disease-related mutant proteins disrupts global protein folding.

    CAS  PubMed  Google Scholar 

  11. 11.

    Ghaemmaghami, S. et al. Global analysis of protein expression in yeast. Nature 425, 737–741 (2003).

    CAS  PubMed  Google Scholar 

  12. 12.

    Geiger, T., Wehner, A., Schaab, C., Cox, J. & Mann, M. Comparative proteomic analysis of eleven common cell lines reveals ubiquitous but varying expression of most proteins. Mol. Cell. Proteomics 11, M111.014050 (2012).

    PubMed  PubMed Central  Google Scholar 

  13. 13.

    Demarest, S. J. et al. Mutual synergistic folding in recruitment of CBP/p300 by p160 nuclear receptor coactivators. Nature 415, 549–553 (2002).

    CAS  PubMed  Google Scholar 

  14. 14.

    Dunker, A. K., Silman, I., Uversky, V. N. & Sussman, J. L. Function and structure of inherently disordered proteins. Curr. Opin. Struct. Biol. 18, 756–764 (2008).

    CAS  PubMed  Google Scholar 

  15. 15.

    Hartl, F. U. Molecular chaperones in cellular protein folding. Nature 381, 571–579 (1996).

    CAS  PubMed  Google Scholar 

  16. 16.

    Kim, Y. E., Hipp, M. S., Bracher, A., Hayer-Hartl, M. & Hartl, F. U. Molecular chaperone functions in protein folding and proteostasis. Annu. Rev. Biochem. 82, 323–355 (2013).

    CAS  PubMed  Google Scholar 

  17. 17.

    Hartl, F. U., Bracher, A. & Hayer-Hartl, M. Molecular chaperones in protein folding and proteostasis. Nature 475, 324–332 (2011).

    CAS  PubMed  Google Scholar 

  18. 18.

    Balchin, D., Hayer-Hartl, M. & Hartl, F. U. In vivo aspects of protein folding and quality control. Science 353, aac4354 (2016).

    PubMed  Google Scholar 

  19. 19.

    Carra, S. et al. The growing world of small heat shock proteins: from structure to functions. Cell Stress Chaperones 22, 601–611 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. 20.

    Lee, C., Kim, H. & Bardwell, J. C. A. Electrostatic interactions are important for chaperone-client interaction in vivo. Microbiology 164, 992–997 (2018).

    CAS  PubMed  Google Scholar 

  21. 21.

    Joachimiak, L. A., Walzthoeni, T., Liu, C. W., Aebersold, R. & Frydman, J. The structural basis of substrate recognition by the eukaryotic chaperonin TRiC/CCT. Cell 159, 1042–1055 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. 22.

    Koldewey, P., Stull, F., Horowitz, S., Martin, R. & Bardwell, J. C. A. Forces driving chaperone action. Cell 166, 369–379 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. 23.

    Thul, P. J. et al. A subcellular map of the human proteome. Science 356, eaal3321 (2017).

    PubMed  PubMed Central  Google Scholar 

  24. 24.

    Young, J. C., Hoogenraad, N. J. & Hartl, F. U. Molecular chaperones Hsp90 and Hsp70 deliver preproteins to the mitochondrial import receptor Tom70. Cell 112, 41–50 (2003).

    CAS  PubMed  Google Scholar 

  25. 25.

    Liu, Q., D’Silva, P., Walter, W., Marszalek, J. & Craig, E. A. Regulated cycling of mitochondrial Hsp70 at the protein import channel. Science 300, 139–141 (2003).

    CAS  PubMed  Google Scholar 

  26. 26.

    Schneider, H. C. et al. Mitochondrial Hsp70/MIM44 complex facilitates protein import. Nature 371, 768–774 (1994).

    CAS  PubMed  Google Scholar 

  27. 27.

    Zou, J., Guo, Y., Guettouche, T., Smith, D. F. & Voellmy, R. Repression of heat shock transcription factor HSF1 activation by HSP90 (HSP90 complex) that forms a stress-sensitive complex with HSF1. Cell 94, 471–480 (1998).

    CAS  PubMed  Google Scholar 

  28. 28.

    Zheng, X. et al. Dynamic control of Hsf1 during heat shock by a chaperone switch and phosphorylation. eLife 5, e18638 (2016).

    PubMed  PubMed Central  Google Scholar 

  29. 29.

    Anckar, J. & Sistonen, L. Regulation of HSF1 function in the heat stress response: implications in aging and disease. Annu. Rev. Biochem. 80, 1089–1115 (2011).

    CAS  PubMed  Google Scholar 

  30. 30.

    Gomez-Pastor, R., Burchfiel, E. T. & Thiele, D. J. Regulation of heat shock transcription factors and their roles in physiology and disease. Nat. Rev. Mol. Cell Biol. 19, 4–19 (2018).

    CAS  PubMed  Google Scholar 

  31. 31.

    Walter, P. & Ron, D. The unfolded protein response: from stress pathway to homeostatic regulation. Science 334, 1081–1086 (2011).

    CAS  PubMed  Google Scholar 

  32. 32.

    Shpilka, T. & Haynes, C. M. The mitochondrial UPR: mechanisms, physiological functions and implications in ageing. Nat. Rev. Mol. Cell Biol. 19, 109–120 (2018).

    CAS  PubMed  Google Scholar 

  33. 33.

    Wyatt, A. R., Yerbury, J. J., Ecroyd, H. & Wilson, M. R. Extracellular chaperones and proteostasis. Annu. Rev. Biochem. 82, 295–322 (2013).

    CAS  PubMed  Google Scholar 

  34. 34.

    Glotzer, M., Murray, A. W. & Kirschner, M. W. Cyclin is degraded by the ubiquitin pathway. Nature 349, 132–138 (1991).

    CAS  PubMed  Google Scholar 

  35. 35.

    Faust, J. R., Luskey, K. L., Chin, D. J., Goldstein, J. L. & Brown, M. S. Regulation of synthesis and degradation of 3-hydroxy-3-methylglutaryl-coenzyme A reductase by low density lipoprotein and 25-hydroxycholesterol in UT-1 cells. Proc. Natl Acad. Sci. USA 79, 5205–5209 (1982).

    CAS  PubMed  Google Scholar 

  36. 36.

    Murakami, Y. et al. Ornithine decarboxylase is degraded by the 26S proteasome without ubiquitination. Nature 360, 597–599 (1992).

    CAS  PubMed  Google Scholar 

  37. 37.

    Ciechanover, A. Intracellular protein degradation: from a vague idea thru the lysosome and the ubiquitin-proteasome system and onto human diseases and drug targeting. Best Pract. Res. Clin. Haematol. 30, 341–355 (2017).

    PubMed  Google Scholar 

  38. 38.

    Dikic, I. Proteasomal and autophagic degradation systems. Annu. Rev. Biochem. 86, 193–224 (2017).

    CAS  PubMed  Google Scholar 

  39. 39.

    Varshavsky, A. The ubiquitin system, an immense realm. Annu. Rev. Biochem. 81, 167–176 (2012).

    CAS  PubMed  Google Scholar 

  40. 40.

    Arndt, V., Rogon, C. & Höhfeld, J. To be, or not to be — molecular chaperones in protein degradation. Cell. Mol. Life Sci. 64, 2525–2541 (2007).

    CAS  PubMed  Google Scholar 

  41. 41.

    Shiber, A. & Ravid, T. Chaperoning proteins for destruction: diverse roles of Hsp70 chaperones and their co-chaperones in targeting misfolded proteins to the proteasome. Biomolecules 4, 704–724 (2014).

    PubMed  PubMed Central  Google Scholar 

  42. 42.

    Tekirdag, K. & Cuervo, A. M. Chaperone-mediated autophagy and endosomal microautophagy: joint by a chaperone. J. Biol. Chem. 293, 5414–5424 (2018).

    CAS  PubMed  Google Scholar 

  43. 43.

    Esser, C., Alberti, S. & Hohfeld, J. Cooperation of molecular chaperones with the ubiquitin/proteasome system. Biochim. Biophys. Acta 1695, 171–188 (2004).

    CAS  PubMed  Google Scholar 

  44. 44.

    Rosser, M. F., Washburn, E., Muchowski, P. J., Patterson, C. & Cyr, D. M. Chaperone functions of the E3 ubiquitin ligase CHIP. J. Biol. Chem. 282, 22267–22277 (2007).

    CAS  PubMed  Google Scholar 

  45. 45.

    Rosenbaum, J. C. et al. Disorder targets misorder in nuclear quality control degradation: a disordered ubiquitin ligase directly recognizes its misfolded substrates. Mol. Cell 41, 93–106 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. 46.

    Yanagitani, K., Juszkiewicz, S. & Hegde, R. S. UBE2O is a quality control factor for orphans of multiprotein complexes. Science 357, 472–475 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. 47.

    Hwang, C. S., Shemorry, A. & Varshavsky, A. N-Terminal acetylation of cellular proteins creates specific degradation signals. Science 327, 973–977 (2010). This paper introduces amino-terminal acetylation as a signal for proteasomal degradation to regulate the removal of nonassembled protein subunits of oligomeric complexes.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. 48.

    Kettern, N., Dreiseidler, M., Tawo, R. & Hohfeld, J. Chaperone-assisted degradation: multiple paths to destruction. Biol. Chem. 391, 481–489 (2010).

    CAS  PubMed  Google Scholar 

  49. 49.

    Arndt, V. et al. Chaperone-assisted selective autophagy is essential for muscle maintenance. Curr. Biol. 20, 143–148 (2010).

    CAS  PubMed  Google Scholar 

  50. 50.

    Gamerdinger, M., Kaya, A. M., Wolfrum, U., Clement, A. M. & Behl, C. BAG3 mediates chaperone-based aggresome-targeting and selective autophagy of misfolded proteins. EMBO Rep. 12, 149–156 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. 51.

    Chiang, H. L., Terlecky, S. R., Plant, C. P. & Dice, J. F. A role for a 70-kilodalton heat shock protein in lysosomal degradation of intracellular proteins. Science 246, 382–385 (1989).

    CAS  PubMed  Google Scholar 

  52. 52.

    Kaushik, S. & Cuervo, A. M. The coming of age of chaperone-mediated autophagy. Nat. Rev. Mol. Cell Biol. 19, 365–381 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. 53.

    Sahu, R. et al. Microautophagy of cytosolic proteins by late endosomes. Dev. Cell 20, 131–139 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. 54.

    Sies, H., Berndt, C. & Jones, D. P. Oxidative stress. Annu. Rev. Biochem. 86, 715–748 (2017).

    CAS  PubMed  Google Scholar 

  55. 55.

    Jacobson, T. et al. Cadmium causes misfolding and aggregation of cytosolic proteins in yeast. Mol. Cell. Biol. 37, e00490–16 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. 56.

    Lang, L., Kurnik, M., Danielsson, J. & Oliveberg, M. Fibrillation precursor of superoxide dismutase 1 revealed by gradual tuning of the protein-folding equilibrium. Proc. Natl Acad. Sci. USA 109, 17868–17873 (2012).

    CAS  PubMed  Google Scholar 

  57. 57.

    Schubert, U. et al. Rapid degradation of a large fraction of newly synthesized proteins by proteasomes. Nature 404, 770–774 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. 58.

    Vabulas, R. M. & Hartl, F. U. Protein synthesis upon acute nutrient restriction relies on proteasome function. Science 310, 1960–1963 (2005).

    CAS  Google Scholar 

  59. 59.

    Duttler, S., Pechmann, S. & Frydman, J. Principles of cotranslational ubiquitination and quality control at the ribosome. Mol. Cell 50, 379–393 (2013).

    CAS  PubMed  Google Scholar 

  60. 60.

    Ward, C. L. & Kopito, R. R. Intracellular turnover of cystic fibrosis transmembrane conductance regulator. Inefficient processing and rapid degradation of wild-type and mutant proteins. J. Biol. Chem. 269, 25710–25718 (1994).

    CAS  PubMed  Google Scholar 

  61. 61.

    Lukacs, G. L. et al. Conformational maturation of CFTR but not its mutant counterpart (delta F508) occurs in the endoplasmic reticulum and requires ATP. EMBO J. 13, 6076–6086 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. 62.

    Bruns, C. K. & Kopito, R. R. Impaired post-translational folding of familial ALS-linked Cu, Zn superoxide dismutase mutants. EMBO J. 26, 855–866 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. 63.

    Brandman, O. & Hegde, R. S. Ribosome-associated protein quality control. Nat. Struct. Mol. Biol. 23, 7–15 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. 64.

    Choe, Y. J. et al. Failure of RQC machinery causes protein aggregation and proteotoxic stress. Nature 531, 191–195 (2016).

    CAS  Google Scholar 

  65. 65.

    Yonashiro, R. et al. The Rqc2/Tae2 subunit of the ribosome-associated quality control (RQC) complex marks ribosome-stalled nascent polypeptide chains for aggregation. eLife 5, e11794 (2016).

    PubMed  PubMed Central  Google Scholar 

  66. 66.

    Defenouillere, Q. et al. Cdc48-associated complex bound to 60S particles is required for the clearance of aberrant translation products. Proc. Natl Acad. Sci. USA 110, 5046–5051 (2013).

    CAS  PubMed  Google Scholar 

  67. 67.

    Chu, J. et al. A mouse forward genetics screen identifies LISTERIN as an E3 ubiquitin ligase involved in neurodegeneration. Proc. Natl Acad. Sci. USA 106, 2097–2103 (2009).

    CAS  PubMed  Google Scholar 

  68. 68.

    Nedialkova, D. D. & Leidel, S. A. Optimization of codon translation rates via tRNA modifications maintains proteome integrity. Cell 161, 1606–1618 (2015). This paper shows that codon-specific translational pausing can cause protein misfolding.

    CAS  PubMed  PubMed Central  Google Scholar 

  69. 69.

    Wrobel, L. et al. Mistargeted mitochondrial proteins activate a proteostatic response in the cytosol. Nature 524, 485–488 (2015).

    CAS  PubMed  Google Scholar 

  70. 70.

    Park, S. H. et al. The cytoplasmic Hsp70 chaperone machinery subjects misfolded and endoplasmic reticulum import-incompetent proteins to degradation via the ubiquitin-proteasome system. Mol. Biol. Cell 18, 153–165 (2007).

    PubMed  PubMed Central  Google Scholar 

  71. 71.

    Alzheimer, A., Förstl, H. & Levy, R. On certain peculiar diseases of old age. Hist. Psychiatry 2, 74–101 (1991).

    Google Scholar 

  72. 72.

    Mukherjee, A., Morales-Scheihing, D., Butler, P. C. & Soto, C. Type 2 diabetes as a protein misfolding disease. Trends Mol. Med. 21, 439–449 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. 73.

    Iadanza, M. G., Jackson, M. P., Hewitt, E. W., Ranson, N. A. & Radford, S. E. A new era for understanding amyloid structures and disease. Nat. Rev. Mol. Cell Biol. 19, 755–773 (2018).

    CAS  PubMed  Google Scholar 

  74. 74.

    Winklhofer, K. F., Tatzelt, J. & Haass, C. The two faces of protein misfolding: gain- and loss-of-function in neurodegenerative diseases. EMBO J. 27, 336–349 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. 75.

    Lukacs, G. L. & Verkman, A. S. CFTR: folding, misfolding and correcting the DeltaF508 conformational defect. Trends Mol. Med. 18, 81–91 (2012).

    CAS  PubMed  Google Scholar 

  76. 76.

    Riek, R. & Eisenberg, D. S. The activities of amyloids from a structural perspective. Nature 539, 227–235 (2016).

    PubMed  Google Scholar 

  77. 77.

    Landreh, M. et al. The formation, function and regulation of amyloids: insights from structural biology. J. Intern. Med. 280, 164–176 (2016).

    CAS  PubMed  Google Scholar 

  78. 78.

    Chiti, F. & Dobson, C. M. Protein misfolding, amyloid formation, and human disease: a summary of progress over the last decade. Annu. Rev. Biochem. 86, 27–68 (2017).

    CAS  PubMed  Google Scholar 

  79. 79.

    Tipping, K. W., van Oosten-Hawle, P., Hewitt, E. W. & Radford, S. E. Amyloid fibres: inert end-stage aggregates or key players in disease? Trends Biochem. Sci. 40, 719–727 (2015).

    CAS  PubMed  Google Scholar 

  80. 80.

    Arosio, P., Knowles, T. P. & Linse, S. On the lag phase in amyloid fibril formation. Phys. Chem. Chem. Phys. 17, 7606–7618 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. 81.

    Arosio, P., Vendruscolo, M., Dobson, C. M. & Knowles, T. P. Chemical kinetics for drug discovery to combat protein aggregation diseases. Trends Pharmacol. Sci. 35, 127–135 (2014).

    CAS  PubMed  Google Scholar 

  82. 82.

    Wagner, A. S. et al. Self-assembly of mutant huntingtin exon-1 fragments into large complex fibrillar structures involves nucleated branching. J. Mol. Biol. 430, 1725–1744 (2018).

    CAS  PubMed  Google Scholar 

  83. 83.

    Brundin, P., Melki, R. & Kopito, R. Prion-like transmission of protein aggregates in neurodegenerative diseases. Nat. Rev. Mol. Cell Biol. 11, 301–307 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. 84.

    Li, J. Y. et al. Lewy bodies in grafted neurons in subjects with Parkinson’s disease suggest host-to-graft disease propagation. Nat. Med. 14, 501–503 (2008).

    CAS  PubMed  Google Scholar 

  85. 85.

    Sibilla, C. & Bertolotti, A. Prion properties of SOD1 in amyotrophic lateral sclerosis and potential therapy. Cold Spring Harb. Persp. Biol. 9, a024141 (2017).

    Google Scholar 

  86. 86.

    Guo, J. L. et al. Unique pathological tau conformers from Alzheimer’s brains transmit tau pathology in nontransgenic mice. J. Exp. Med. 213, 2635–2654 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. 87.

    Chiti, F. & Dobson, C. M. Protein misfolding, functional amyloid, and human disease. Annu. Rev. Biochem. 75, 333–366 (2006).

    CAS  PubMed  Google Scholar 

  88. 88.

    Chapman, M. R. et al. Role of Escherichia coli curli operons in directing amyloid fiber formation. Science 295, 851–855 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. 89.

    Fowler, D. M. et al. Functional amyloid formation within mammalian tissue. PLOS Biol. 4, e6 (2006).

    PubMed  Google Scholar 

  90. 90.

    Sengupta, U., Nilson, A. N. & Kayed, R. The role of amyloid-beta oligomers in toxicity, propagation, and immunotherapy. EBioMedicine 6, 42–49 (2016).

    PubMed  PubMed Central  Google Scholar 

  91. 91.

    Jackson, M. P. & Hewitt, E. W. Why are functional amyloids non-toxic in humans? Biomolecules 7, 71 (2017).

    PubMed Central  Google Scholar 

  92. 92.

    Kayed, R. et al. Common structure of soluble amyloid oligomers implies common mechanism of pathogenesis. Science 300, 486–489 (2003).

    CAS  PubMed  Google Scholar 

  93. 93.

    Miller, J. et al. Identifying polyglutamine protein species in situ that best predict neurodegeneration. Nat. Chem. Biol. 7, 925–934 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. 94.

    Cheon, M. et al. Structural reorganisation and potential toxicity of oligomeric species formed during the assembly of amyloid fibrils. PLOS Comput. Biol. 3, 1727–1738 (2007).

    CAS  PubMed  Google Scholar 

  95. 95.

    Sangwan, S. et al. Atomic structure of a toxic, oligomeric segment of SOD1 linked to amyotrophic lateral sclerosis (ALS). Proc. Natl Acad. Sci. USA 114, 8770–8775 (2017).

    CAS  PubMed  Google Scholar 

  96. 96.

    Kim, Y. E. et al. Soluble oligomers of PolyQ-expanded huntingtin target a multiplicity of key cellular factors. Mol. Cell 63, 951–964 (2016).

    CAS  PubMed  Google Scholar 

  97. 97.

    Franzmann, T. M. et al. Phase separation of a yeast prion protein promotes cellular fitness. Science 359, eaao5654 (2018).

    PubMed  Google Scholar 

  98. 98.

    Mateju, D. et al. An aberrant phase transition of stress granules triggered by misfolded protein and prevented by chaperone function. EMBO J. 36, 1669–1687 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. 99.

    Shin, Y. & Brangwynne, C. P. Liquid phase condensation in cell physiology and disease. Science 357, eaaf4382 (2017).

    PubMed  Google Scholar 

  100. 100.

    Banani, S. F., Lee, H. O., Hyman, A. A. & Rosen, M. K. Biomolecular condensates: organizers of cellular biochemistry. Nat. Rev. Mol. Cell Biol. 18, 285–298 (2017).

    CAS  PubMed  Google Scholar 

  101. 101.

    Molliex, A. et al. Phase separation by low complexity domains promotes stress granule assembly and drives pathological fibrillization. Cell 163, 123–133 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. 102.

    Patel, A. et al. A liquid-to-solid phase transition of the ALS protein FUS accelerated by disease mutation. Cell 162, 1066–1077 (2015).

    CAS  PubMed  Google Scholar 

  103. 103.

    Gopal, P. P., Nirschl, J. J., Klinman, E. & Holzbaur, E. L. Amyotrophic lateral sclerosis-linked mutations increase the viscosity of liquid-like TDP-43 RNP granules in neurons. Proc. Natl Acad. Sci. USA 114, E2466–E2475 (2017).

    CAS  PubMed  Google Scholar 

  104. 104.

    Alberti, S. & Hyman, A. A. Are aberrant phase transitions a driver of cellular aging? Bioessays 38, 959–968 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. 105.

    Lashuel, H. A., Hartley, D., Petre, B. M., Walz, T. & Lansbury, P. T. Jr. Neurodegenerative disease: amyloid pores from pathogenic mutations. Nature 418, 291 (2002). This paper demonstrates that mutant amyloidogenic proteins can form pores in membranes.

    CAS  PubMed  Google Scholar 

  106. 106.

    Anguiano, M., Nowak, R. J. & Lansbury, P. T. Jr. Protofibrillar islet amyloid polypeptide permeabilizes synthetic vesicles by a pore-like mechanism that may be relevant to type II diabetes. Biochemistry 41, 11338–11343 (2002).

    CAS  PubMed  Google Scholar 

  107. 107.

    Lashuel, H. A. & Lansbury, P. T. Jr. Are amyloid diseases caused by protein aggregates that mimic bacterial pore-forming toxins? Q. Rev. Biophys. 39, 167–201 (2006).

    CAS  PubMed  Google Scholar 

  108. 108.

    Milanesi, L. et al. Direct three-dimensional visualization of membrane disruption by amyloid fibrils. Proc. Natl Acad. Sci. USA 109, 20455–20460 (2012). This paper demonstrates use of cryo-electron tomography to show that fibrils can damage membranes.

    CAS  PubMed  Google Scholar 

  109. 109.

    Bauerlein, F. J. B. et al. In situ architecture and cellular interactions of PolyQ inclusions. Cell 171, 179–187 (2017).

    PubMed  Google Scholar 

  110. 110.

    Chou, C. C. et al. TDP-43 pathology disrupts nuclear pore complexes and nucleocytoplasmic transport in ALS/FTD. Nat. Neurosci. 21, 228–239 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. 111.

    Woerner, A. C. et al. Cytoplasmic protein aggregates interfere with nucleocytoplasmic transport of protein and RNA. Science 351, 173–176 (2016).

    CAS  PubMed  Google Scholar 

  112. 112.

    Zhang, Y. J. et al. C9ORF72 poly(GA) aggregates sequester and impair HR23 and nucleocytoplasmic transport proteins. Nat. Neurosci. 19, 668–677 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. 113.

    Gasset-Rosa, F. et al. Polyglutamine-expanded huntingtin exacerbates age-related disruption of nuclear integrity and nucleocytoplasmic transport. Neuron 94, 48–57 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. 114.

    Ramdzan, Y. M. et al. Huntingtin inclusions trigger cellular quiescence, deactivate apoptosis, and lead to delayed necrosis. Cell Rep. 19, 919–927 (2017).

    CAS  PubMed  Google Scholar 

  115. 115.

    Olzscha, H. et al. Amyloid-like aggregates sequester numerous metastable proteins with essential cellular functions. Cell 144, 67–78 (2011). This paper describes soluble protein sequestration in aggregates as a basic mechanism of the toxicity of aggregates.

    CAS  PubMed  Google Scholar 

  116. 116.

    Lin, Y. et al. Toxic PR poly-dipeptides encoded by the C9orf72 repeat expansion target LC domain polymers. Cell 167, 789–802 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. 117.

    Lee, K. H. et al. C9orf72 dipeptide repeats impair the assembly, dynamics, and function of membrane-less organelles. Cell 167, 774–788 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. 118.

    Hosp, F. et al. Spatiotemporal proteomic profiling of huntington’s disease inclusions reveals widespread loss of protein function. Cell Rep. 21, 2291–2303 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. 119.

    Park, S. H. et al. PolyQ proteins interfere with nuclear degradation of cytosolic proteins by sequestering the Sis1p chaperone. Cell 154, 134–145 (2013).

    CAS  PubMed  Google Scholar 

  120. 120.

    Yu, A. et al. Protein aggregation can inhibit clathrin-mediated endocytosis by chaperone competition. Proc. Natl Acad. Sci. USA 111, E1481–E1490 (2014).

    CAS  PubMed  Google Scholar 

  121. 121.

    Chafekar, S. M. & Duennwald, M. L. Impaired heat shock response in cells expressing full-length polyglutamine-expanded huntingtin. PLOS ONE 7, e37929 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. 122.

    Roth, D. M. et al. Modulation of the maladaptive stress response to manage diseases of protein folding. PLOS Biol. 12, e1001998 (2014).

    PubMed  PubMed Central  Google Scholar 

  123. 123.

    Ashkenazi, A. et al. Polyglutamine tracts regulate beclin 1-dependent autophagy. Nature 545, 108–111 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  124. 124.

    Bence, N. F., Sampat, R. M. & Kopito, R. R. Impairment of the ubiquitin-proteasome system by protein aggregation. Science 292, 1552–1555 (2001). This paper shows that expression of aggregation-prone proteins interferes with the function of the UPS.

    CAS  PubMed  Google Scholar 

  125. 125.

    Hipp, M. S. et al. Indirect inhibition of 26S proteasome activity in a cellular model of Huntington’s disease. J. Cell Biol. 196, 573–587 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. 126.

    Guo, Q. et al. In situ structure of neuronal C9orf72 poly-GA aggregates reveals proteasome recruitment. Cell 172, 696–705 (2018). This paper presents uses of cryo-electron tomography to show that proteasomes are sequestered inside aggregates.

    CAS  PubMed  PubMed Central  Google Scholar 

  127. 127.

    Deriziotis, P. et al. Misfolded PrP impairs the UPS by interaction with the 20S proteasome and inhibition of substrate entry. EMBO J. 30, 3065–3077 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. 128.

    Hipp, M. S., Park, S. H. & Hartl, F. U. Proteostasis impairment in protein-misfolding and -aggregation diseases. Trends Cell Biol. 24, 506–514 (2014).

    CAS  PubMed  Google Scholar 

  129. 129.

    Behrends, C. et al. Chaperonin TRiC promotes the assembly of polyQ expansion proteins into nontoxic oligomers. Mol. Cell 23, 887–897 (2006).

    CAS  PubMed  Google Scholar 

  130. 130.

    Muchowski, P. J. et al. Hsp70 and hsp40 chaperones can inhibit self-assembly of polyglutamine proteins into amyloid-like fibrils. Proc. Natl Acad. Sci. USA 97, 7841–7846 (2000).

    CAS  PubMed  Google Scholar 

  131. 131.

    Schaffar, G. et al. Cellular toxicity of polyglutamine expansion proteins: mechanism of transcription factor deactivation. Mol. Cell 15, 95–105 (2004).

    CAS  PubMed  Google Scholar 

  132. 132.

    Dedmon, M. M., Christodoulou, J., Wilson, M. R. & Dobson, C. M. Heat shock protein 70 inhibits alpha-synuclein fibril formation via preferential binding to prefibrillar species. J. Biol. Chem. 280, 14733–14740 (2005).

    CAS  PubMed  Google Scholar 

  133. 133.

    Rujano, M. A., Kampinga, H. H. & Salomons, F. A. Modulation of polyglutamine inclusion formation by the Hsp70 chaperone machine. Exp. Cell Res. 313, 3568–3578 (2007).

    CAS  PubMed  Google Scholar 

  134. 134.

    Kakkar, V., Kuiper, E. F., Pandey, A., Braakman, I. & Kampinga, H. H. Versatile members of the DNAJ family show Hsp70 dependent anti-aggregation activity on RING1 mutant parkin C289G. Sci. Rep. 6, 34830 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  135. 135.

    Lotz, G. P. et al. Hsp70 and Hsp40 functionally interact with soluble mutant huntingtin oligomers in a classic ATP-dependent reaction cycle. J. Biol. Chem. 285, 38183–38193 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  136. 136.

    Tam, S., Geller, R., Spiess, C. & Frydman, J. The chaperonin TRiC controls polyglutamine aggregation and toxicity through subunit-specific interactions. Nat. Cell Biol. 8, 1155–1162 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  137. 137.

    Kitamura, A. et al. Cytosolic chaperonin prevents polyglutamine toxicity with altering the aggregation state. Nat. Cell Biol. 8, 1163–1170 (2006).

    CAS  PubMed  Google Scholar 

  138. 138.

    Cohen, S. I. A. et al. A molecular chaperone breaks the catalytic cycle that generates toxic Abeta oligomers. Nat. Struct. Mol. Biol. 22, 207–213 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  139. 139.

    Kordasiewicz, H. B. et al. Sustained therapeutic reversal of Huntington’s disease by transient repression of huntingtin synthesis. Neuron 74, 1031–1044 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  140. 140.

    Yamamoto, A., Lucas, J. J. & Hen, R. Reversal of neuropathology and motor dysfunction in a conditional model of Huntington’s disease. Cell 101, 57–66 (2000). This paper demonstrates that disease-related aggregates can be cleared when synthesis of the disease protein is blocked.

    CAS  PubMed  Google Scholar 

  141. 141.

    Glover, J. R. & Lindquist, S. Hsp104, Hsp70, and Hsp40: a novel chaperone system that rescues previously aggregated proteins. Cell 94, 73–82 (1998).

    CAS  PubMed  Google Scholar 

  142. 142.

    Parsell, D. A., Kowal, A. S., Singer, M. A. & Lindquist, S. Protein disaggregation mediated by heat-shock protein Hsp104. Nature 372, 475–478 (1994).

    CAS  PubMed  Google Scholar 

  143. 143.

    Nillegoda, N. B. et al. Crucial HSP70 co-chaperone complex unlocks metazoan protein disaggregation. Nature 524, 247–251 (2015). This paper describes a metazoan chaperone system for protein disaggregation.

    CAS  PubMed  PubMed Central  Google Scholar 

  144. 144.

    Mogk, A., Bukau, B. & Kampinga, H. H. Cellular handling of protein aggregates by disaggregation machines. Mol. Cell 69, 214–226 (2018).

    CAS  PubMed  Google Scholar 

  145. 145.

    Escusa-Toret, S., Vonk, W. I. & Frydman, J. Spatial sequestration of misfolded proteins by a dynamic chaperone pathway enhances cellular fitness during stress. Nat. Cell Biol. 15, 1231–1243 (2013). This paper defines aggregation of misfolded proteins as a process important in maintaining proteostasis during stress.

    CAS  PubMed  PubMed Central  Google Scholar 

  146. 146.

    Miller, S. B. et al. Compartment-specific aggregases direct distinct nuclear and cytoplasmic aggregate deposition. EMBO J. 34, 778–797 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  147. 147.

    Wallace, E. W. et al. Reversible, specific, active aggregates of endogenous proteins assemble upon heat stress. Cell 162, 1286–1298 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  148. 148.

    Malinovska, L., Kroschwald, S., Munder, M. C., Richter, D. & Alberti, S. Molecular chaperones and stress-inducible protein-sorting factors coordinate the spatiotemporal distribution of protein aggregates. Mol. Biol. Cell 23, 3041–3056 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  149. 149.

    Grousl, T. et al. A prion-like domain in Hsp42 drives chaperone-facilitated aggregation of misfolded proteins. J. Cell Biol. 217, 1269–1285 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  150. 150.

    Mogk, A. & Bukau, B. Role of sHsps in organizing cytosolic protein aggregation and disaggregation. Cell Stress Chaperones 22, 493–502 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  151. 151.

    Kaganovich, D., Kopito, R. & Frydman, J. Misfolded proteins partition between two distinct quality control compartments. Nature 454, 1088–1095 (2008). This paper introduces the concept of spatial control of aggregate deposition in distinct cellular locations.

    CAS  PubMed  PubMed Central  Google Scholar 

  152. 152.

    Kopito, R. R. Aggresomes, inclusion bodies and protein aggregation. Trends Cell Biol. 10, 524–530 (2000).

    CAS  PubMed  Google Scholar 

  153. 153.

    Arrasate, M., Mitra, S., Schweitzer, E., Segal, M. & Finkbeiner, S. Inclusion body formation reduces levels of mutant huntingtin and the risk of neuronal death. Nature 431, 805–810 (2004). This paper shows that inclusion-body formation can be beneficial by sequestering toxic aggregates.

    CAS  PubMed  Google Scholar 

  154. 154.

    Liu, B. et al. The polarisome is required for segregation and retrograde transport of protein aggregates. Cell 140, 257–267 (2010). This paper describes the machinery that controls the asymmetric distribution of aggregates during cell division in budding yeast.

    CAS  PubMed  Google Scholar 

  155. 155.

    Hill, S. M., Hanzen, S. & Nystrom, T. Restricted access: spatial sequestration of damaged proteins during stress and aging. EMBO Rep. 18, 377–391 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  156. 156.

    Sontag, E. M., Samant, R. S. & Frydman, J. Mechanisms and functions of spatial protein quality control. Annu. Rev. Biochem. 86, 97–122 (2017).

    CAS  PubMed  Google Scholar 

  157. 157.

    Ruan, L. et al. Cytosolic proteostasis through importing of misfolded proteins into mitochondria. Nature 543, 443–446 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  158. 158.

    Rousseau, E. et al. Targeting expression of expanded polyglutamine proteins to the endoplasmic reticulum or mitochondria prevents their aggregation. Proc. Natl Acad. Sci. USA 101, 9648–9653 (2004).

    CAS  PubMed  Google Scholar 

  159. 159.

    Vincenz-Donnelly, L. et al. High capacity of the endoplasmic reticulum to prevent secretion and aggregation of amyloidogenic proteins. EMBO J. 37, 337–350 (2018).

    CAS  PubMed  Google Scholar 

  160. 160.

    Rubinsztein, D. C., Marino, G. & Kroemer, G. Autophagy and aging. Cell 146, 682–695 (2011).

    CAS  PubMed  Google Scholar 

  161. 161.

    Min, J. N. et al. CHIP deficiency decreases longevity, with accelerated aging phenotypes accompanied by altered protein quality control. Mol. Cell. Biol. 28, 4018–4025 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  162. 162.

    Labbadia, J. & Morimoto, R. I. Repression of the Heat Shock Response Is a Programmed Event at the Onset of Reproduction. Mol. Cell 59, 639–650 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  163. 163.

    David, D. C. et al. Widespread protein aggregation as an inherent part of aging in C. elegans. PLOS Biol. 8, e1000450 (2010).

    PubMed  PubMed Central  Google Scholar 

  164. 164.

    Reis-Rodrigues, P. et al. Proteomic analysis of age-dependent changes in protein solubility identifies genes that modulate lifespan. Aging Cell 11, 120–127 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  165. 165.

    Liang, V. et al. Altered proteostasis in aging and heat shock response in C. elegans revealed by analysis of the global and de novo synthesized proteome. Cell. Mol. Life Sci. 71, 3339–3361 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  166. 166.

    Walther, D. M. et al. Widespread proteome remodeling and aggregation in aging C. elegans. Cell 161, 919–932 (2015). This paper presents an analysis of proteome changes during the lifespan of C. elegans.

    CAS  PubMed  PubMed Central  Google Scholar 

  167. 167.

    Zimmerman, S. M., Hinkson, I. V., Elias, J. E. & Kim, S. K. Reproductive aging drives protein accumulation in the uterus and limits lifespan in C. elegans. PLOS Genet. 11, e1005725 (2015).

    PubMed  PubMed Central  Google Scholar 

  168. 168.

    Waldera-Lupa, D. M. et al. Proteome-wide analysis reveals an age-associated cellular phenotype of in situ aged human fibroblasts. Aging 6, 856–878 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  169. 169.

    Walther, D. M. & Mann, M. Accurate quantification of more than 4000 mouse tissue proteins reveals minimal proteome changes during aging. Mol. Cell. Proteomics 10, M110.004523 (2011).

    PubMed  Google Scholar 

  170. 170.

    Ori, A. et al. Integrated transcriptome and proteome analyses reveal organ-specific proteome deterioration in old rats. Cell Syst. 1, 224–237 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  171. 171.

    Ciryam, P., Kundra, R., Morimoto, R. I., Dobson, C. M. & Vendruscolo, M. Supersaturation is a major driving force for protein aggregation in neurodegenerative diseases. Trends Pharmacol. Sci. 36, 72–77 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  172. 172.

    Ciryam, P., Tartaglia, G. G., Morimoto, R. I., Dobson, C. M. & Vendruscolo, M. Widespread aggregation and neurodegenerative diseases are associated with supersaturated proteins. Cell Rep. 5, 781–790 (2013). This paper introduces supersaturation as a concept in controlling protein solubility.

    CAS  PubMed  Google Scholar 

  173. 173.

    Powers, E. T., Morimoto, R. I., Dillin, A., Kelly, J. W. & Balch, W. E. Biological and chemical approaches to diseases of proteostasis deficiency. Annu. Rev. Biochem. 78, 959–991 (2009).

    CAS  PubMed  Google Scholar 

  174. 174.

    Sala, A. J., Bott, L. C. & Morimoto, R. I. Shaping proteostasis at the cellular, tissue, and organismal level. J. Cell Biol. 216, 1231–1241 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  175. 175.

    Brehme, M. et al. A chaperome subnetwork safeguards proteostasis in aging and neurodegenerative disease. Cell Rep. 9, 1135–1150 (2014). This paper presents a census of the human chaperome and a description of a subnetwork that safeguards proteostasis.

    CAS  PubMed  PubMed Central  Google Scholar 

  176. 176.

    Kitamura, A. et al. Dysregulation of the proteasome increases the toxicity of ALS-linked mutant SOD1. Genes Cells 19, 209–224 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  177. 177.

    Gupta, R. et al. Firefly luciferase mutants as sensors of proteome stress. Nat. Methods 8, 879–884 (2011).

    CAS  PubMed  Google Scholar 

  178. 178.

    Vilchez, D. et al. Increased proteasome activity in human embryonic stem cells is regulated by PSMD11. Nature 489, 304–308 (2012). This paper shows that stem cells have an increased level of proteasomal activity that is regulated by the proteasome subunit PSMD11.

    CAS  PubMed  PubMed Central  Google Scholar 

  179. 179.

    Noormohammadi, A. et al. Somatic increase of CCT8 mimics proteostasis of human pluripotent stem cells and extends C. elegans lifespan. Nat. Commun. 7, 13649 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  180. 180.

    Bufalino, M. R., DeVeale, B. & van der Kooy, D. The asymmetric segregation of damaged proteins is stem cell-type dependent. J. Cell Biol. 201, 523–530 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  181. 181.

    Leeman, D. S. et al. Lysosome activation clears aggregates and enhances quiescent neural stem cell activation during aging. Science 359, 1277–1283 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  182. 182.

    Moore, D. L., Pilz, G. A., Arauzo-Bravo, M. J., Barral, Y. & Jessberger, S. A mechanism for the segregation of age in mammalian neural stem cells. Science 349, 1334–1338 (2015).

    CAS  Google Scholar 

  183. 183.

    Kenyon, C. The first long-lived mutants: discovery of the insulin/IGF-1 pathway for ageing. Phil. Trans. R. Soc. B 366, 9–16 (2011).

    CAS  PubMed  Google Scholar 

  184. 184.

    Kenyon, C., Chang, J., Gensch, E., Rudner, A. & Tabtiang, R. A. C. elegans mutant that lives twice as long as wild type. Nature 366, 461–464 (1993). This paper shows that mutations in the daf-2 gene cause a dramatic lifespan extension in C. elegans.

    CAS  PubMed  Google Scholar 

  185. 185.

    Kirstein-Miles, J., Scior, A., Deuerling, E. & Morimoto, R. I. The nascent polypeptide-associated complex is a key regulator of proteostasis. EMBO J. 32, 1451–1468 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  186. 186.

    Stout, G. J. et al. Insulin/IGF-1-mediated longevity is marked by reduced protein metabolism. Mol. Syst. Biol. 9, 679 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  187. 187.

    Tsaytler, P., Harding, H. P., Ron, D. & Bertolotti, A. Selective inhibition of a regulatory subunit of protein phosphatase 1 restores proteostasis. Science 332, 91–94 (2011).

    CAS  PubMed  Google Scholar 

  188. 188.

    Frakes, A. E. & Dillin, A. The UPR(ER): sensor and coordinator of organismal homeostasis. Mol. Cell 66, 761–771 (2017).

    CAS  PubMed  Google Scholar 

  189. 189.

    Hansen, M. et al. Lifespan extension by conditions that inhibit translation in Caenorhabditis elegans. Aging Cell 6, 95–110 (2007).

    CAS  PubMed  Google Scholar 

  190. 190.

    Pan, K. Z. et al. Inhibition of mRNA translation extends lifespan in Caenorhabditis elegans. Aging Cell 6, 111–119 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  191. 191.

    Syntichaki, P., Troulinaki, K. & Tavernarakis, N. eIF4E function in somatic cells modulates ageing in Caenorhabditis elegans. Nature 445, 922–926 (2007).

    CAS  PubMed  Google Scholar 

  192. 192.

    Sherman, M. Y. & Qian, S. B. Less is more: improving proteostasis by translation slow down. Trends Biochem. Sci. 38, 585–591 (2013).

    CAS  PubMed  Google Scholar 

  193. 193.

    Vilchez, D., Saez, I. & Dillin, A. The role of protein clearance mechanisms in organismal ageing and age-related diseases. Nat. Commun. 5, 5659 (2014).

    CAS  PubMed  Google Scholar 

  194. 194.

    Caniard, A. et al. Proteasome function is not impaired in healthy aging of the lung. Aging 7, 776–792 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  195. 195.

    Hamer, G., Matilainen, O. & Holmberg, C. I. A photoconvertible reporter of the ubiquitin-proteasome system in vivo. Nat. Methods 7, 473–478 (2010).

    CAS  PubMed  Google Scholar 

  196. 196.

    Tsakiri, E. N. et al. Differential regulation of proteasome functionality in reproductive versus somatic tissues of Drosophila during aging or oxidative stress. FASEB J. 27, 2407–2420 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  197. 197.

    Morrow, G. & Tanguay, R. M. Drosophila melanogaster Hsp22: a mitochondrial small heat shock protein influencing the aging process. Front. Genet. 6, 1026 (2015).

    PubMed  PubMed Central  Google Scholar 

  198. 198.

    Yamaguchi, T. et al. Age-related increase of insoluble, phosphorylated small heat shock proteins in human skeletal muscle. J. Gerontol. A 62, 481–489 (2007).

    Google Scholar 

  199. 199.

    Jiao, W., Li, P., Zhang, J., Zhang, H. & Chang, Z. Small heat-shock proteins function in the insoluble protein complex. Biochem. Biophys. Res. Commun. 335, 227–231 (2005).

    CAS  PubMed  Google Scholar 

  200. 200.

    Khan, S., Khamis, I. & Heikkila, J. J. The small heat shock protein, HSP30, is associated with aggresome-like inclusion bodies in proteasomal inhibitor-, arsenite-, and cadmium-treated Xenopus kidney cells. Comp. Biochem. Physiol. A 189, 130–140 (2015).

    CAS  Google Scholar 

  201. 201.

    Walker, G. A. & Lithgow, G. J. Lifespan extension in C. elegans by a molecular chaperone dependent upon insulin-like signals. Aging Cell 2, 131–139 (2003).

    CAS  PubMed  Google Scholar 

  202. 202.

    Cohen, E., Bieschke, J., Perciavalle, R. M., Kelly, J. W. & Dillin, A. Opposing activities protect against age-onset proteotoxicity. Science 313, 1604–1610 (2006). This paper provides evidence for controlled protein aggregation during ageing as a beneficial process.

    CAS  PubMed  Google Scholar 

  203. 203.

    El-Ami, T. et al. A novel inhibitor of the insulin/IGF signaling pathway protects from age-onset, neurodegeneration-linked proteotoxicity. Aging Cell 13, 165–174 (2014).

    CAS  PubMed  Google Scholar 

  204. 204.

    Moll, L., Ben-Gedalya, T., Reuveni, H. & Cohen, E. The inhibition of IGF-1 signaling promotes proteostasis by enhancing protein aggregation and deposition. FASEB J. 30, 1656–1669 (2016).

    CAS  PubMed  Google Scholar 

  205. 205.

    Wild, E. J. & Tabrizi, S. J. Therapies targeting DNA and RNA in Huntington’s disease. Lancet Neurol. 16, 837–847 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  206. 206.

    Cohen, F. E. & Kelly, J. W. Therapeutic approaches to protein-misfolding diseases. Nature 426, 905–909 (2003).

    CAS  PubMed  Google Scholar 

  207. 207.

    Sevigny, J. et al. The antibody aducanumab reduces Abeta plaques in Alzheimer’s disease. Nature 537, 50–56 (2016).

    CAS  PubMed  Google Scholar 

  208. 208.

    Bulawa, C. E. et al. Tafamidis, a potent and selective transthyretin kinetic stabilizer that inhibits the amyloid cascade. Proc. Natl Acad. Sci. USA 109, 9629–9634 (2012). This paper describes the first clinically effective anti-aggregation drug.

    CAS  PubMed  Google Scholar 

  209. 209.

    Baranczak, A. & Kelly, J. W. A current pharmacologic agent versus the promise of next generation therapeutics to ameliorate protein misfolding and/or aggregation diseases. Curr. Opin. Chem. Biol. 32, 10–21 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  210. 210.

    Paxman, R. et al. Pharmacologic ATF6 activating compounds are metabolically activated to selectively modify endoplasmic reticulum proteins. eLife 7, e37168 (2018).

    PubMed  PubMed Central  Google Scholar 

  211. 211.

    Krobitsch, S. & Lindquist, S. Aggregation of huntingtin in yeast varies with the length of the polyglutamine expansion and the expression of chaperone proteins. Proc. Natl Acad. Sci. USA 97, 1589–1594 (2000).

    CAS  Google Scholar 

  212. 212.

    Fonte, V. et al. Suppression of in vivo beta-amyloid peptide toxicity by overexpression of the HSP-16.2 small chaperone protein. J. Biol. Chem. 283, 784–791 (2008).

    CAS  PubMed  Google Scholar 

  213. 213.

    Auluck, P. K., Chan, H. Y., Trojanowski, J. Q., Lee, V. M. & Bonini, N. M. Chaperone suppression of alpha-synuclein toxicity in a Drosophila model for Parkinson’s disease. Science 295, 865–868 (2002).

    CAS  PubMed  Google Scholar 

  214. 214.

    Warrick, J. M. et al. Suppression of polyglutamine-mediated neurodegeneration in Drosophila by the molecular chaperone HSP70. Nat. Genet. 23, 425–428 (1999).

    CAS  PubMed  Google Scholar 

  215. 215.

    Hoshino, T. et al. Suppression of Alzheimer’s disease-related phenotypes by expression of heat shock protein 70 in mice. J. Neurosci. 31, 5225–5234 (2011).

    CAS  PubMed  Google Scholar 

  216. 216.

    Cummings, C. J. et al. Over-expression of inducible HSP70 chaperone suppresses neuropathology and improves motor function in SCA1 mice. Hum. Mol. Genet. 10, 1511–1518 (2001).

    CAS  PubMed  Google Scholar 

  217. 217.

    Labbadia, J. et al. Suppression of protein aggregation by chaperone modification of high molecular weight complexes. Brain 135, 1180–1196 (2012).

    PubMed  PubMed Central  Google Scholar 

  218. 218.

    Sittler, A. et al. Geldanamycin activates a heat shock response and inhibits huntingtin aggregation in a cell culture model of Huntington’s disease. Hum. Mol. Genet. 10, 1307–1315 (2001). This paper shows that pharmacological induction of the stress response can prevent aggregation of a disease protein.

    CAS  PubMed  Google Scholar 

  219. 219.

    Nagy, M., Fenton, W. A., Li, D., Furtak, K. & Horwich, A. L. Extended survival of misfolded G85R SOD1-linked ALS mice by transgenic expression of chaperone Hsp110. Proc. Natl Acad. Sci. USA 113, 5424–5428 (2016).

    CAS  PubMed  Google Scholar 

  220. 220.

    Calamini, B. et al. Small-molecule proteostasis regulators for protein conformational diseases. Nat. Chem. Biol. 8, 185–196 (2011).

    PubMed  PubMed Central  Google Scholar 

  221. 221.

    Sontag, E. M. et al. Exogenous delivery of chaperonin subunit fragment ApiCCT1 modulates mutant Huntingtin cellular phenotypes. Proc. Natl Acad. Sci. USA 110, 3077–3082 (2013).

    CAS  PubMed  Google Scholar 

  222. 222.

    Das, I. et al. Preventing proteostasis diseases by selective inhibition of a phosphatase regulatory subunit. Science 348, 239–242 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  223. 223.

    Menzies, F. M. et al. Autophagy and neurodegeneration: pathogenic mechanisms and therapeutic opportunities. Neuron 93, 1015–1034 (2017).

    CAS  PubMed  Google Scholar 

  224. 224.

    Lee, B. H. et al. Enhancement of proteasome activity by a small-molecule inhibitor of USP14. Nature 467, 179–184 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  225. 225.

    Rousseau, A. & Bertolotti, A. An evolutionarily conserved pathway controls proteasome homeostasis. Nature 536, 184–189 (2016). This paper describes an evolutionarily conserved signalling pathway that controls proteasome homeostasis.

    CAS  PubMed  PubMed Central  Google Scholar 

  226. 226.

    Mendillo, M. L. et al. HSF1 drives a transcriptional program distinct from heat shock to support highly malignant human cancers. Cell 150, 549–562 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  227. 227.

    Joshi, S. et al. Adapting to stress — chaperome networks in cancer. Nat. Rev. Cancer 18, 562–575 (2018).

    CAS  PubMed  Google Scholar 

  228. 228.

    Calderwood, S. K. & Neckers, L. Hsp90 in cancer: transcriptional roles in the nucleus. Adv. Cancer Res. 129, 89–106 (2016).

    CAS  PubMed  Google Scholar 

  229. 229.

    Joazeiro, C. A. P. Ribosomal stalling during translation: providing substrates for ribosome-associated protein quality control. Annu. Rev. Cell Dev. Biol. 33, 343–368 (2017).

    CAS  PubMed  Google Scholar 

  230. 230.

    Bengtson, M. H. & Joazeiro, C. A. Role of a ribosome-associated E3 ubiquitin ligase in protein quality control. Nature 467, 470–473 (2010). This paper presents identification of listerin (Ltn1) as the E3 ligase crucial for the proteasomal degradation of failed nascent polypeptide chains on ribosomes.

    CAS  PubMed  PubMed Central  Google Scholar 

  231. 231.

    Brandman, O. et al. A ribosome-bound quality control complex triggers degradation of nascent peptides and signals translation stress. Cell 151, 1042–1054 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  232. 232.

    Shen, P. S. et al. Protein synthesis. Rqc2p and 60S ribosomal subunits mediate mRNA-independent elongation of nascent chains. Science 347, 75–78 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  233. 233.

    Kostova, K. K. et al. CAT-tailing as a fail-safe mechanism for efficient degradation of stalled nascent polypeptides. Science 357, 414–417 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  234. 234.

    Defenouillere, Q. & Fromont-Racine, M. The ribosome-bound quality control complex: from aberrant peptide clearance to proteostasis maintenance. Curr. Genet. 63, 997–1005 (2017).

    CAS  PubMed  Google Scholar 

  235. 235.

    Izawa, T., Park, S. H., Zhao, L., Hartl, F. U. & Neupert, W. Cytosolic protein Vms1 links ribosome quality control to mitochondrial and cellular homeostasis. Cell 171, 890–903 (2017).

    CAS  Google Scholar 

  236. 236.

    Nielson, J. R. et al. Sterol oxidation mediates stress-responsive Vms1 translocation to mitochondria. Mol. Cell 68, 673–685 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  237. 237.

    Verma, R. et al. Vms1 and ANKZF1 peptidyl-tRNA hydrolases release nascent chains from stalled ribosomes. Nature 557, 446–451 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  238. 238.

    Zurita Rendon, O. et al. Vms1p is a release factor for the ribosome-associated quality control complex. Nat. Commun. 9, 2197 (2018).

    PubMed  PubMed Central  Google Scholar 

  239. 239.

    Feng, J., Bussiere, F. & Hekimi, S. Mitochondrial electron transport is a key determinant of life span in Caenorhabditis elegans. Dev. Cell 1, 633–644 (2001).

    CAS  PubMed  Google Scholar 

  240. 240.

    Dillin, A. et al. Rates of behavior and aging specified by mitochondrial function during development. Science 298, 2398–2401 (2002).

    CAS  PubMed  Google Scholar 

  241. 241.

    Durieux, J., Wolff, S. & Dillin, A. The cell-non-autonomous nature of electron transport chain-mediated longevity. Cell 144, 79–91 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  242. 242.

    Tian, Y. et al. Mitochondrial stress induces chromatin reorganization to promote longevity and UPR(mt). Cell 165, 1197–1208 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  243. 243.

    Merkwirth, C. et al. Two conserved histone demethylases regulate mitochondrial stress-induced longevity. Cell 165, 1209–1223 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  244. 244.

    Labbadia, J. et al. Mitochondrial stress restores the heat shock response and prevents proteostasis collapse during aging. Cell Rep. 21, 1481–1494 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references


The authors thank D. Balchin, D. Broch-Trentini, G. Jayaraj and C. Klaips for critically reading the manuscript. Work in the authors’ laboratory is supported by the European Commission under FP7 GA ERC-2012-SyG_318987–ToPAG and the Deutsche Forschungsgemeinschaft (German Research Foundation) within the framework of the Munich Cluster for Systems Neurology.

Author information




The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to F. Ulrich Hartl.

Ethics declarations

Competing interests

F.U.H. holds stock options in, receives consulting fees from and is the chair of the scientific advisory board of Proteostasis Therapeutics, Inc. The other authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


Intrinsically disordered regions

Regions of a protein that lack stable, well-defined tertiary structure; often functionally relevant in interactions with partner proteins.

Tail-anchored proteins

Membrane proteins that are post-translationally inserted into the membrane. They can contain a transmembrane sequence near the carboxy terminus.

E3 ubiquitin ligase

An enzyme that mediates the transfer of ubiquitin from an E2 ubiquitin-conjugating enzyme to a protein substrate.

E2 ubiquitin-conjugating enzyme

An enzyme that catalyses the second step in the enzymatic cascade for the transfer of ubiquitin to protein substrates.


Immature red blood cells.


A factor that assists or regulates the function of a molecular chaperone; some co-chaperones also have chaperone activity in binding non-native proteins.

Chaperone-assisted selective autophagy

A degradation pathway of chaperone-bound proteins in lysosomes.

Chaperone-mediated autophagy

A chaperone-dependent degradation pathway of soluble cytosolic proteins that involves translocation of the substrate protein across the lysosomal membrane.

Endosomal microautophagy

Degradation of cytosolic proteins by late endosomes and/or multivesicular bodies.


A fibrillar aggregate, composed of polypeptides forming a cross-β structure, that has defined tinctorial (dye-binding) properties.

Low-complexity domains

Sequences of amino acids with little diversity that are often intrinsically unstructured.

Polyglutamine expansion

Pathogenic elongation of a polyglutamine stretch in a protein caused by an increased number of CAG trinucleotide repeats; described in a group of unrelated genes.


A class of molecular chaperones forming large, double-ring complexes that transiently enclose a substrate protein for folding (examples include HSP60 in mitochondria and TRiC in the eukaryotic cytosol).

BRICHOS domain

A domain found in several proteins associated with dementia, respiratory distress and cancer, including BRI2, chondromodulin I and surfactant protein C. BRICHOS domains have intramolecular chaperone-like activities and inhibit misfolding and aggregation.


An adaptive response of an organism or biological system towards a low dose of a toxic agent or physical conditions (for example, reactive oxygen radicals or thermal stress) that preconditions the organism to tolerate a higher dose of the same toxic agent.

Critical concentration

The concentration up to which a protein remains soluble; exceeding this concentration results in insolubility and aggregation.

Unfolded protein response

(UPR). A cellular stress response pathway that serves to increase the protein-folding capacity of the endoplasmic reticulum or the mitochondria.

Integrated stress response

A conserved signalling pathway that responds to a variety of cellular conditions and attenuates protein translation via phosphorylation of translation initiation factor 2α (eIF2α).


A tetrameric transport protein that binds to the thyroid hormone thyroxin and retinol-binding protein. Mutant forms dissociate into subunits and aggregate, resulting in transthyretin amyloidosis.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hipp, M.S., Kasturi, P. & Hartl, F.U. The proteostasis network and its decline in ageing. Nat Rev Mol Cell Biol 20, 421–435 (2019).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing