Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Extracellular protein homeostasis in neurodegenerative diseases

Abstract

The protein homeostasis (proteostasis) system encompasses the cellular processes that regulate protein synthesis, folding, concentration, trafficking and degradation. In the case of intracellular proteostasis, the identity and nature of these processes have been extensively studied and are relatively well known. By contrast, the mechanisms of extracellular proteostasis are yet to be fully elucidated, although evidence is accumulating that their age-related progressive impairment might contribute to neuronal death in neurodegenerative diseases. Constitutively secreted extracellular chaperones are emerging as key players in processes that operate to protect neurons and other brain cells by neutralizing the toxicity of extracellular protein aggregates and promoting their safe clearance and disposal. Growing evidence indicates that these extracellular chaperones exert multiple effects to promote cell viability and protect neurons against pathologies arising from the misfolding and aggregation of proteins in the synaptic space and interstitial fluid. In this Review, we outline the current knowledge of the mechanisms of extracellular proteostasis linked to neurodegenerative diseases, and we examine the latest understanding of key molecules and processes that protect the brain from the pathological consequences of extracellular protein aggregation and proteotoxicity. Finally, we contemplate possible therapeutic opportunities for neurodegenerative diseases on the basis of this emerging knowledge.

Key points

  • Evidence is accumulating that age-related impairment of extracellular proteostasis contributes to neuronal death in neurodegenerative diseases.

  • Key elements implicated in the protective functioning of extracellular proteostasis are a growing family of constitutively secreted extracellular chaperones and extracellular proteases, including plasmin, which is regulated by the plasminogen activation system.

  • Multiple studies have already demonstrated the benefits of administering exogenous extracellular chaperones or increasing their level of expression in animal models of neurodegenerative diseases.

  • Strategies to manipulate elements of extracellular proteostasis have the potential to reduce excessive levels of misfolded proteins in the synaptic space and interstitial fluid and thereby to ameliorate associated disease pathologies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Overview of known intracellular proteostasis mechanisms.
Fig. 2: Overview of major known extracellular proteostasis mechanisms.
Fig. 3: Small-molecule drugs to manipulate extracellular proteostasis.

Similar content being viewed by others

References

  1. Aebersold, R. et al. How many human proteoforms are there? Nat. Chem. Biol. 14, 206–214 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Balch, W. E., Morimoto, R. I., Dillin, A. & Kelly, J. W. Adapting proteostasis for disease intervention. Science 319, 916–919 (2008).

    Article  CAS  PubMed  Google Scholar 

  3. Elsasser, S. et al. A comprehensive enumeration of the human proteostasis network. 1. Components of translation, protein folding, and organelle-specific systems. Preprint at bioRxiv https://doi.org/10.1101/2022.08.30.505920 (2022).

    Article  Google Scholar 

  4. Hipp, M. S., Kasturi, P. & Hartl, F. U. The proteostasis network and its decline in ageing. Nat. Rev. Mol. Cell Biol. 20, 421–435 (2019).

    Article  CAS  PubMed  Google Scholar 

  5. Uhlén, M. et al. Proteomics. Tissue-based map human proteome. Science 347, 1260419 (2015).

    Article  PubMed  Google Scholar 

  6. Webster, B. M., Gildea, H. K. & Dillin, A. Protein homeostasis from the outside in. Nat. Cell Biol. 22, 911–912 (2020).

    Article  CAS  PubMed  Google Scholar 

  7. Gallotta, I. et al. Extracellular proteostasis prevents aggregation during pathogenic attack. Nature 584, 410–414 (2020).

    Article  CAS  PubMed  Google Scholar 

  8. Satapathy, S. & Wilson, M. R. The dual roles of clusterin in extracellular and intracellular proteostasis. Trends Biochem. Sci. 46, 652–660 (2021).

    Article  CAS  PubMed  Google Scholar 

  9. Mesgarzadeh, J. S., Buxbaum, J. N. & Wiseman, R. L. Stress-responsive regulation of extracellular proteostasis. J. Cell Biol. 221, e202112104 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Mangione, P. P. et al. Structure, folding dynamics, and amyloidogenesis of D76N β2-microglobulin: roles of shear flow, hydrophobic surfaces, and α-crystallin. J. Biol. Chem. 288, 30917–30930 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Stefani, M. Protein misfolding and aggregation: new examples in medicine and biology of the dark side of the protein world. Biochim. Biophys. Acta Mol. Basis Dis. 1739, 5–25 (2004).

    Article  CAS  Google Scholar 

  12. Knowles, T. P., Vendruscolo, M. & Dobson, C. M. The amyloid state and its association with protein misfolding diseases. Nat. Rev. Mol. Cell Biol. 15, 384–396 (2014).

    Article  CAS  PubMed  Google Scholar 

  13. Selkoe, D. J. & Hardy, J. The amyloid hypothesis of Alzheimer’s disease at 25 years. EMBO Mol. Med. 8, 595–608 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Hampel, H. et al. The amyloid-β pathway in Alzheimer’s disease. Mol. Psychiatry 26, 5481–5503 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Humphreys, D. T., Carver, J. A., Easterbrook-Smith, S. B. & Wilson, M. R. Clusterin has chaperone-like activity similar to that of small heat-shock proteins. J. Biol. Chem. 274, 6875–6881 (1999).

    Article  CAS  PubMed  Google Scholar 

  16. Geraghty, N. J. et al. Expanding the family of extracellular chaperones: identification of human plasma proteins with chaperone activity. Protein Sci. 30, 2272–2286 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Wyatt, A., Yerbury, J., Ecroyd, H. & Wilson, M. Extracellular chaperones and proteostasis. Annu. Rev. Biochem. 82, 295–322 (2013).

    Article  CAS  PubMed  Google Scholar 

  18. Chaplot, K., Jarvela, T. S. & Lindberg, I. Secreted chaperones in neurodegeneration. Front. Aging Neurosci. 12, 268 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Patel, A. et al. ATP as a biological hydrotope. Science 356, 753–756 (2017).

    Article  CAS  PubMed  Google Scholar 

  20. Kurtishi, A., Rosen, B., Patil, K. S., Alves, G. W. & Møller, S. G. Cellular proteostasis in neurodegeneration. Mol. Neurobiol. 56, 3676–3689 (2019).

    Article  CAS  PubMed  Google Scholar 

  21. Feng, L. L., Cai, Y. Q., Zhu, M. C., Xing, L. J. & Wang, X. The yin and yang functions of extracellular ATP and adenosine in tumor immunity. Cancer Cell Int. https://doi.org/10.1186/s12935-020-01195-x (2020).

  22. Lyon, M. S. & Milligan, C. Extracellular heat shock proteins in neurodegenerative diseases: new perspectives. Neurosci. Lett. https://doi.org/10.1016/j.neulet.2019.134462 (2019).

    Article  PubMed  Google Scholar 

  23. Webster, J. M., Darling, A. L., Uversky, V. N. & Blair, L. J. Small heat shock proteins, big impact on protein aggregation in neurodegenerative disease. Front. Pharmacol. 10, 1047 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Choi, W. H., Kim, S., Park, S. & Lee, M. J. Concept and application of circulating proteasomes. Exp. Mol. Med. 53, 1539–1546 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Wyatt, A. R. et al. Clusterin facilitates in vivo clearance of extracellular misfolded proteins. Cell. Mol. Life Sci. 68, 3919–3931 (2011).

    Article  CAS  PubMed  Google Scholar 

  26. Yerbury, J. J., Stewart, E. M., Wyatt, A. R. & Wilson, M. R. Quality control of protein folding in extracellular space. EMBO Rep. 6, 1131–1136 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Constantinescu, P., Brown, R. A., Wyatt, A. R., Ranson, M. & Wilson, M. R. Amorphous protein aggregates stimulate plasminogen activation, leading to release of cytotoxic fragments that are clients for extracellular chaperones. J. Biol. Chem. 292, 14425–14437 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Boland, B. et al. Promoting the clearance of neurotoxic proteins in neurodegenerative disorders of ageing. Nat. Rev. Drug Discov. 17, 660–688 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Coker, A. R., Purvis, A., Baker, D., Pepys, M. B. & Wood, S. P. Molecular chaperone properties of serum amyloid P component. FEBS Lett. 473, 199–202 (2000).

    Article  CAS  PubMed  Google Scholar 

  30. Poon, S., Easterbrook-Smith, S. B., Rybchyn, M. S., Carver, J. A. & Wilson, M. R. Clusterin is an ATP-independent chaperone with very broad substrate specificity that stabilizes stressed proteins in a folding-competent state. Biochemistry 39, 15953–15960 (2000).

    Article  CAS  PubMed  Google Scholar 

  31. Mettenburg, J. M., Webb, D. J. & Gonias, S. L. Distinct binding sites in the structure of alpha 2-macroglobulin mediate the interaction with beta-amyloid peptide and growth factors. J. Biol. Chem. 277, 13338–13345 (2002).

    Article  CAS  PubMed  Google Scholar 

  32. Hammad, S. M., Ranganathan, S., Loukinova, E., Twal, W. O. & Argraves, W. S. Interaction of apolipoprotein J-amyloid beta-peptide complex with low density lipoprotein receptor-related protein-2 megalin — a mechanism to prevent pathological accumulation of amyloid beta-peptide. J. Biol. Chem. 272, 18644–18649 (1997).

    Article  CAS  PubMed  Google Scholar 

  33. Kounnas, M. Z. et al. Identification of glycoprotein 330 as an endocytic receptor for apolipoprotein J/clusterin. J. Biol. Chem. 270, 13070–13075 (1995).

    Article  CAS  PubMed  Google Scholar 

  34. Yeh, F., Wang, Y., Tom, I., Gonzalez, L. & Sheng, M. TREM2 binds to apolipoproteins, including ApoE and clu/ApoJ, and thereby facilitates uptake of amyloid-beta by microglia. Neuron 91, 328–340 (2016).

    Article  CAS  PubMed  Google Scholar 

  35. Kang, S. S. et al. Identification of plexin A4 as a novel clusterin receptor links two Alzheimer’s disease risk genes. Hum. Mol. Genet. 25, 3467–3475 (2015).

    Article  Google Scholar 

  36. Jonsson, T. et al. Variant of TREM2 associated with the risk of Alzheimer’s disease. N. Engl. J. Med. 368, 107–116 (2013).

    Article  CAS  PubMed  Google Scholar 

  37. Itakura, E., Chiba, M., Murata, T. & Matsuura, A. Heparan sulfate is a clearance receptor for aberrant extracellular proteins. J. Cell Biol. https://doi.org/10.1083/JCB.201911126 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Samson, A. et al. Nucleocytoplasmic coagulation: an injury-induced aggregation event that disulfide crosslinks proteins and facilitates their removal by plasmin. Cell Rep. 2, 889–901 (2012).

    Article  CAS  PubMed  Google Scholar 

  39. Samson, A. L. et al. A nonfibrin macromolecular cofactor for tPA-mediated plasmin generation following cellular injury. Blood 114, 1937–1946 (2009).

    Article  CAS  PubMed  Google Scholar 

  40. Park, H. J., Oh, M. K., Kim, N. H., Cho, M. L. & Kim, I. S. Identification of a specific haptoglobin C-terminal fragment in arthritic synovial fluid and its effect on interleukin-6 expression. Immunology 140, 133–141 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Sousa, L., Guarda, M., Meneses, M. J., Macedo, M. P. & Vicente Miranda, H. Insulin-degrading enzyme: an ally against metabolic and neurodegenerative diseases. J. Pathol. 255, 346–361 (2021).

    Article  CAS  PubMed  Google Scholar 

  42. Jeong, S. et al. Interaction of clusterin and matrix metalloproteinase-9 and its implication for epithelial homeostasis and inflammation. Am. J. Pathol. 180, 2028–2039 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Mikkelsen, J. H., Runager, K. & Andersen, C. B. F. The human protein haptoglobin inhibits IsdH-mediated heme-sequestering by Staphylococcus aureus. J. Biol. Chem. 295, 1781–1791 (2020).

    Article  CAS  PubMed  Google Scholar 

  44. Fox, C. R. & Parks, G. D. Complement inhibitors vitronectin and clusterin are recruited from human serum to the surface of coronavirus oc43-infected lung cells through antibody-dependent mechanisms. Viruses https://doi.org/10.3390/v14010029 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Doni, A. et al. Serum amyloid P component is an essential element of resistance against Aspergillus fumigatus. Nat. Commun. https://doi.org/10.1038/s41467-021-24021-y (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Vandooren, J. & Itoh, Y. Alpha-2-macroglobulin in inflammation, immunity and infections. Front. Immunol. https://doi.org/10.3389/fimmu.2021.803244 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Cunin, P. et al. Clusterin facilitates apoptotic cell clearance and prevents apoptotic cell-induced autoimmune responses. Cell Death Dis. 7, e2215 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Fukushima, Y., Tamura, M., Nakagawa, H. & Itoh, K. Induction of glioma cell migration by vitronectin in human serum and cerebrospinal fluid. J. Neurosurg. 107, 578–585 (2007).

    Article  CAS  PubMed  Google Scholar 

  49. Howlett, D. R., Hortobagyi, T. & Francis, P. T. Clusterin associates specifically with abeta40 in Alzheimer’s disease brain tissue. Brain Pathol. 23, 613–709 (2013).

    Article  Google Scholar 

  50. Kovacs, D. M. α2-Macroglobulin in late-onset Alzheimer’s disease. Exp. Gerontol. 35, 473–479 (2000).

    Article  CAS  PubMed  Google Scholar 

  51. Powers, J. M., Schlaepfer, W. W., Willingham, M. C. & Hall, B. J. An immunoperoxidase study of senile cerebral amyloidosis with pathogenetic considerations. J. Neuropathol. Exp. Neurol. 40, 592–612 (1981).

    Article  CAS  PubMed  Google Scholar 

  52. Akiyama, H., Kawamata, T., Dedhar, S. & McGeer, P. L. Immunohistochemical localization of vitronectin, its receptor and beta-3 integrin in Alzheimer brain tissue. J. Neuroimmunol. 32, 19–28 (1991).

    Article  CAS  PubMed  Google Scholar 

  53. Helwig, M. et al. The neuroendocrine protein 7B2 suppresses the aggregation of neurodegenerative disease-related proteins. J. Biol. Chem. 288, 1114–1124 (2013).

    Article  CAS  PubMed  Google Scholar 

  54. Hoshino, A. et al. A novel function for proSAAS as an amyloid anti-aggregant in Alzheimer’s disease. J. Neurochem. 128, 419–430 (2014).

    Article  CAS  PubMed  Google Scholar 

  55. McGeer, E. G., Yasojima, K., Schwab, C. & McGeer, P. L. The pentraxins: possible role in Alzheimer’s disease and other innate inflammatory diseases. Neurobiol. Aging 22, 843–848 (2001).

    Article  CAS  PubMed  Google Scholar 

  56. Del Campo, M. et al. BRI2-BRICHOS is increased in human amyloid plaques in early stages of Alzheimer’s disease. Neurobiol. Aging 35, 1596–1604 (2014).

    Article  PubMed  Google Scholar 

  57. Narayan, P. et al. The extracellular chaperone clusterin sequesters oligomeric forms of the amyloid-beta1-40 peptide. Nat. Struct. Mol. Biol. 19, 79–84 (2012).

    Article  CAS  Google Scholar 

  58. Yerbury, J. J. et al. The extracellular chaperone clusterin influences amyloid formation and toxicity by interacting with prefibrillar structures. FASEB J. 21, 2312–2322 (2007).

    Article  CAS  PubMed  Google Scholar 

  59. Lambert, J. C. et al. Genome-wide association study identifies variants at CLU and CR1 associated with Alzheimer’s disease. Nat. Genet. 41, 1094–1099 (2009).

    Article  CAS  PubMed  Google Scholar 

  60. Jongbloed, W. et al. Clusterin levels in plasma predict cognitive decline and progression to Alzheimer’s disease. J. Alzheimers Dis. 46, 1103–1110 (2015).

    Article  CAS  PubMed  Google Scholar 

  61. Zhu, R., Liu, X. & He, Z. Association between CLU gene rs11136000 polymorphism and Alzheimer’s disease: an updated meta-analysis. Neurol. Sci. 39, 679–689 (2018).

    Article  PubMed  Google Scholar 

  62. Bettens, K. et al. Reduced secreted clusterin as a mechanism for Alzheimer-associated CLU mutations. Mol. Neurodegener. 10, 30 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Wojtas, A. M. et al. Loss of clusterin shifts amyloid deposition to the cerebrovasculature via disruption of perivascular drainage pathways. Proc. Natl Acad. Sci. USA 114, E6962–E6971 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Yerbury, J. J. & Wilson, M. R. Extracellular chaperones modulate the effects of Alzheimer’s patient cerebrospinal fluid on Aβ 1-42 toxicity and uptake. Cell Stress Chaperones 15, 115–121 (2010).

    Article  CAS  PubMed  Google Scholar 

  65. De Retana, S. F. et al. Peripheral administration of human recombinant ApoJ/clusterin modulates brain beta-amyloid levels in APP23 mice. Alzheimers Res. Ther. https://doi.org/10.1186/s13195-019-0498-8 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Qi, X. M., Wang, C., Chu, X. K., Li, G. & Ma, J. F. Intraventricular infusion of clusterin ameliorated cognition and pathology in Tg6799 model of Alzheimer’s disease. BMC Neurosci. https://doi.org/10.1186/s12868-018-0402-7 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Yerbury, J. J., Kumita, J. R., Meehan, S., Dobson, C. M. & Wilson, M. R. Alpha-2-macroglobulin and haptoglobin suppress amyloid formation by interacting with prefibrillar protein species. J. Biol. Chem. 284, 4246–4254 (2009).

    Article  CAS  PubMed  Google Scholar 

  68. Varma, V. R. et al. Alpha-2 macroglobulin in Alzheimer’s disease: a marker of neuronal injury through the RCAN1 pathway. Mol. Psychiatry 22, 13–23 (2017).

    Article  CAS  PubMed  Google Scholar 

  69. Cocciolo, A. et al. Decreased expression and increased oxidation of plasma haptoglobin in Alzheimer disease: insights from redox proteomics. Free Radic. Biol. Med. 53, 1868–1876 (2012).

    Article  CAS  PubMed  Google Scholar 

  70. Wyatt, A. R. et al. Hypochlorite-induced structural modifications enhance the chaperone activity of human alpha2-macroglobulin. Proc. Natl Acad. Sci. USA 111, E2081–E2090 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Liao, A. et al. Genetic association of an α2-macroglobulin (Val1000Ile) polymorphism and Alzheimer’s disease. Hum. Mol. Genet. 7, 1953–1956 (1998).

    Article  CAS  PubMed  Google Scholar 

  72. Guan, P. P., Yang, L. Q., Xu, G. B. & Wang, P. Indomethacin disrupts the formation of β-amyloid plaques via an α2-macroglobulin-activating LRP1-dependent mechanism. Int. J. Mol. Sci. https://doi.org/10.3390/ijms22158185 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  73. West, J. et al. Neuroserpin and transthyretin are extracellular chaperones that preferentially inhibit amyloid formation. Sci. Adv. 7, eabf7606 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Gião, T. et al. Neuroprotection in early stages of Alzheimer’s disease is promoted by transthyretin angiogenic properties. Alzheimer’s Res. Ther. https://doi.org/10.1186/s13195-021-00883-8 (2021).

    Article  Google Scholar 

  75. Costa, R., Ferreira-da-Silva, F., Saraiva, M. J. & Cardoso, I. Transthyretin protects against A-beta peptide toxicity by proteolytic cleavage of the peptide: a mechanism sensitive to the kunitz protease inhibitor. PLoS ONE https://doi.org/10.1371/journal.pone.0002899 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  76. Buxbaum, J. N. et al. Transthyretin protects Alzheimer’s mice from the behavioral and biochemical effects of Aβ toxicity. Proc. Natl Acad. Sci. USA 105, 2681–2686 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Andrade-Talavera, Y., Chen, G., Kurudenkandy, F. R., Johansson, J. & Fisahn, A. Bri2 BRICHOS chaperone rescues impaired fast-spiking interneuron behavior and neuronal network dynamics in an AD mouse model in vitro. Neurobiol. Dis. https://doi.org/10.1016/j.nbd.2021.105514 (2021).

    Article  PubMed  Google Scholar 

  78. Hawkins, P. N. et al. Concentration of serum amyloid P component in the CSF as a possible marker of cerebral amyloid deposits in Alzheimer’s disease. Biochem. Biophys. Res. Commun. 201, 722–726 (1994).

    Article  CAS  PubMed  Google Scholar 

  79. Tennent, G. A., Lovat, L. B. & Pepys, M. B. Serum amyloid P component prevents proteolysis of the amyloid fibrils of Alzheimer disease and systemic amyloidosis. Proc. Natl Acad. Sci. USA 92, 4299–4303 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Pepys, M. B. et al. Targeted pharmacological depletion of serum amyloid P component for treatment of human amyloidosis. Nature 417, 254–259 (2002).

    Article  CAS  PubMed  Google Scholar 

  81. Richards, D. B. et al. Repeat doses of antibody to serum amyloid P component clear amyloid deposits in patients with systemic amyloidosis. Sci. Transl. Med. https://doi.org/10.1126/scitranslmed.aan3128 (2018).

    Article  PubMed  Google Scholar 

  82. Yerbury, J. J., Rybchyn, M. S., Easterbrook-Smith, S. B., Henriques, C. & Wilson, M. R. The acute phase protein haptoglobin is a mammalian extracellular chaperone with an action similar to clusterin. Biochemistry 44, 10914–10925 (2005).

    Article  CAS  PubMed  Google Scholar 

  83. Zhu, C. J., Jiang, G. X., Chen, J. M., Zhou, Z. M. & Cheng, Q. Serum haptoglobin in Chinese patients with Alzheimer’s disease and mild cognitive impairment: a case–control study. Brain Res. Bull. 137, 301–305 (2018).

    Article  CAS  PubMed  Google Scholar 

  84. Feng, Y., Reznik, S. E. & Fricker, L. D. ProSAAS and prohormone convertase 1 are broadly expressed during mouse development. Brain Res. Gene Expr. Patterns 1, 135–140 (2002).

    Article  CAS  PubMed  Google Scholar 

  85. Iguchi, H., Chan, J. S. D., Seidah, N. G. & Chretien, M. Tissue distribution and molecular forms of a novel pituitary protein in the rat. Neuroendocrinology 39, 453–458 (1984).

    Article  CAS  PubMed  Google Scholar 

  86. Oh, S. B. et al. Tissue plasminogen activator arrests Alzheimer’s disease pathogenesis. Neurobiol. Aging 35, 511–519 (2014).

    Article  CAS  PubMed  Google Scholar 

  87. Liu, R. M. et al. Knockout of plasminogen activator inhibitor 1 gene reduces amyloid beta peptide burden in a mouse model of Alzheimer’s disease. Neurobiol. Aging 32, 1079–1089 (2011).

    Article  CAS  PubMed  Google Scholar 

  88. Melchor, J. P., Pawlak, R. & Strickland, S. The tissue plasminogen activator-plasminogen proteolytic cascade accelerates amyloid-β (Aβ) degradation and inhibits Aβ-induced neurodegeneration. J. Neurosci. 23, 8867–8871 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Fabbro, S. & Seeds, N. W. Plasminogen activator activity is inhibited while neuroserpin is up-regulated in the Alzheimer disease brain. J. Neurochem. 109, 303–315 (2009).

    Article  CAS  PubMed  Google Scholar 

  90. Sutton, R., Keohane, M. E., VandenBerg, S. R. & Gonias, S. L. Plasminogen activator inhibitor-1 in the cerebrospinal fluid as an index of neurological disease. Blood Coagul. Fibrinol. 5, 167–171 (1994).

    Article  CAS  Google Scholar 

  91. Tucker, H. M. et al. The plasmin system is induced by and degrades amyloid-β aggregates. J. Neurosci. 20, 3937–3946 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Tucker, H. M., Kihiko-Ehmann, M. & Estus, S. Urokinase-type plasminogen activator inhibits amyloid-β neurotoxicity and fibrillogenesis via plasminogen. J. Neurosci. Res. 70, 249–255 (2002).

    Article  CAS  PubMed  Google Scholar 

  93. Prusiner, S. B. Novel proteinaceous infectious particles cause scrapie. Science 216, 136–144 (1982).

    Article  CAS  PubMed  Google Scholar 

  94. McHattie, S. & Edington, N. Clusterin prevents aggregation of neuropeptide 106–126 in vitro. Biochem. Biophys. Res. Commun. 259, 336–340 (1999).

    Article  CAS  PubMed  Google Scholar 

  95. Xu, F., Karnaukhova, E. & Vostal, J. G. Human cellular prion protein interacts directly with clusterin protein. Biochim. Biophys. Acta Mol. Basis Dis. 1782, 615–620 (2008).

    Article  CAS  Google Scholar 

  96. Freixes, M. et al. Clusterin solubility and aggregation in Creutzfeldt–Jakob disease. Acta Neuropathol. 108, 295–301 (2004).

    Article  CAS  PubMed  Google Scholar 

  97. Kempster, S. et al. Clusterin shortens the incubation and alters the histopathology of bovine spongiform encephalopathy in mice. Neuroreport 15, 1735–1738 (2004).

    Article  CAS  PubMed  Google Scholar 

  98. Hajj, G. N. M., Santos, T. G., Cook, Z. S. P. & Martins, V. R. Developmental expression of prion protein and its ligands stress-inducible protein 1 and vitronectin. J. Comp. Neurol. 517, 371–384 (2009).

    Article  CAS  PubMed  Google Scholar 

  99. Braak, H. & Braak, E. Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol. 82, 239–259 (1991).

    Article  CAS  PubMed  Google Scholar 

  100. Jucker, M. & Walker, L. C. Self-propagation of pathogenic protein aggregates in neurodegenerative diseases. Nature 501, 45–51 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Tarutani, A. & Hasegawa, M. in Progress in Molecular Biology and Translational Science Vol. 168 (ed. Teplow, D. B.) 323–348 (Elsevier B.V., 2019).

  102. Alpaugh, M., Denis, H. L. & Cicchetti, F. Prion-like properties of the mutant huntingtin protein in living organisms: the evidence and the relevance. Mol. Psychiatry 27, 269–280 (2022).

    Article  CAS  PubMed  Google Scholar 

  103. McAlary, L. et al. Amyotrophic lateral sclerosis: proteins, proteostasis, prions, and promises. Front. Cell. Neurosci. https://doi.org/10.3389/fncel.2020.581907 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  104. Poewe, W. et al. Parkinson disease. Nat. Rev. Dis. Prim. 3, 17013 (2017).

    Article  PubMed  Google Scholar 

  105. Lin, Y. et al. Association of CLU gene polymorphism with Parkinson’s disease in the Chinese Han population. J. Gene Med. https://doi.org/10.1002/jgm.3302 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  106. Sampedro, F. et al. CLU rs11136000 promotes early cognitive decline in Parkinson’s disease. Mov. Disord. 35, 508–513 (2020).

    Article  CAS  PubMed  Google Scholar 

  107. Whiten, D. R. et al. Single-molecule characterization of the interactions between extracellular chaperones and toxic α-synuclein oligomers. Cell Rep. 23, 3492–3500 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Yuste-Checa, P. et al. The extracellular chaperone clusterin enhances tau aggregate seeding in a cellular model. Nat. Commun. https://doi.org/10.1038/s41467-021-25060-1 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  109. Kim, K. S. et al. Proteolytic cleavage of extracellular α-synuclein by plasmin: implications for Parkinson disease. J. Biol. Chem. 287, 24862–24872 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Reuland, C. J. & Church, F. C. Synergy between plasminogen activator inhibitor-1, α-synuclein, and neuroinflammation in Parkinson’s disease. Med. Hypotheses https://doi.org/10.1016/j.mehy.2020.109602 (2020).

    Article  PubMed  Google Scholar 

  111. Pan, H. et al. Role of plasminogen activator inhibitor-1 in the diagnosis and prognosis of patients with Parkinson’s disease. Exp. Ther. Med. 15, 5517–5522 (2018).

    PubMed  PubMed Central  Google Scholar 

  112. Gestwicki, J. E. & Shao, H. Inhibitors and chemical probes for molecular chaperone networks. J. Biol. Chem. 294, 2151–2161 (2019).

    Article  CAS  PubMed  Google Scholar 

  113. Pillarsetty, N. et al. Paradigms for precision medicine in epichaperome cancer therapy. Cancer Cell 36, 559–573.e7 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Ginsberg, S. D. et al. Disease‐specific interactome alterations via epichaperomics: the case for Alzheimer’s disease. FEBS J. 289, 2047–2066 (2022).

    Article  CAS  PubMed  Google Scholar 

  115. Ladiwala, A. R. A. et al. Polyphenolic glycosides and aglycones utilize opposing pathways to selectively remodel and inactivate toxic oligomers of amyloid β. ChemBioChem 12, 1749–1758 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Aprile, F. A. et al. Rational design of a conformation-specific antibody for the quantification of Aβ oligomers. Proc. Natl Acad. Sci. USA 117, 13509–13518 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Chia, S. et al. SAR by kinetics for drug discovery in protein misfolding diseases. Proc. Natl Acad. Sci. USA 115, 10245–10250 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Michaels, T. C. et al. Thermodynamic and kinetic design principles for amyloid-aggregation inhibitors. Proc. Natl Acad. Sci. USA 117, 24251–24257 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Evans, C. G., Chang, L. & Gestwicki, J. E. Heat shock protein 70 (hsp70) as an emerging drug target. J. Med. Chem. 53, 4585–4602 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Sakamoto, K. M. et al. PROTACs: chimeric molecules that target proteins to the Skp1–Cullin–F box complex for ubiquitination and degradation. Proc. Natl Acad. Sci. USA 98, 8554–8559 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Ahn, G., Banik, S. M. & Bertozzi, C. R. Degradation from the outside in: targeting extracellular and membrane proteins for degradation through the endolysosomal pathway. Cell Chem. Biol. 28, 1072–1080 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Caianiello, D. F. et al. Bifunctional small molecules that mediate the degradation of extracellular proteins. Nat. Chem. Biol. 17, 947–953 (2021).

    Article  CAS  PubMed  Google Scholar 

  123. Zhou, Y., Teng, P., Montgomery, N. T., Li, X. & Tang, W. Development of triantennary N-acetylgalactosamine conjugates as degraders for extracellular proteins. ACS Cent. Sci. 7, 499–506 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Cotton, A. D., Nguyen, D. P., Gramespacher, J. A., Seiple, I. B. & Wells, J. A. Development of antibody-based PROTACs for the degradation of the cell-surface immune checkpoint protein PDL1. J. Am. Chem. Soc. 143, 593–598 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Cudic, M. & Fields, G. B. Extracellular proteases as targets for drug development. Curr. Prot. Pept. Sci. 10, 297–307 (2009).

    Article  CAS  Google Scholar 

  126. Nalivaeva, N. N. & Turner, A. J. Targeting amyloid clearance in Alzheimer’s disease as a therapeutic strategy. Br. J. Pharmacol. 176, 3447–3463 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Kurochkin, I. V., Guarnera, E. & Berezovsky, I. N. Insulin-degrading enzyme in the fight against Alzheimer’s disease. Trends Pharmacol. Sci. 39, 49–58 (2018).

    Article  CAS  PubMed  Google Scholar 

  128. Yamamoto, N. et al. Epigallocatechin gallate induces extracellular degradation of amyloid β-protein by increasing neprilysin secretion from astrocytes through activation of ERK and PI3K pathways. Neurosci 362, 70–78 (2017).

    Article  CAS  Google Scholar 

  129. Hammarstrom, P., Wiseman, R. L., Powers, E. T. & Kelly, J. W. Prevention of transthyretin amyloid disease by changing protein misfolding energetics. Science 299, 713–716 (2003).

    Article  PubMed  Google Scholar 

  130. Bulawa, C. E. et al. Tafamidis, a potent and selective transthyretin kinetic stabilizer that inhibits the amyloid cascade. Proc. Natl Acad. Sci. USA 109, 9629–9634 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Heller, G. T. et al. Small-molecule sequestration of amyloid-β as a drug discovery strategy for Alzheimer’s disease. Sci. Adv. 6, eabb5924 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Lohr, T., Kohlhoff, K., Heller, G. T., Camilloni, C. & Vendruscolo, M. A small molecule stabilizes the disordered native state of the Alzheimer’s Aβ peptide. ACS Chem. Neurosci. 13, 1738–1745 (2022).

    Article  CAS  PubMed  Google Scholar 

  133. Leguizamon Herrera, V. L., Buell, A. K., Willbold, D. & Barz, B. Interaction of therapeutic d-peptides with aβ42 monomers, thermodynamics, and binding analysis. ACS Chem. Neurosci. 13, 1638–1650 (2022).

    Article  CAS  PubMed  Google Scholar 

  134. Serebryany, E. et al. A native chemical chaperone in the human eye lens. eLife 11, e76923 (2022).

    CAS  Google Scholar 

  135. Tarasoff-Conway, J. M. et al. Clearance systems in the brain — implications for Alzheimer disease. Nat. Rev. Neurol. 11, 457–470 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Perni, M. et al. Massively parallel C. elegans tracking provides multi-dimensional fingerprints for phenotypic discovery. J. Neurosci. Meth. 306, 57–67 (2018).

    Article  Google Scholar 

  137. Amin, N. D. & Paşca, S. P. Building models of brain disorders with three-dimensional organoids. Neuron 100, 389–405 (2018).

    Article  CAS  PubMed  Google Scholar 

  138. Pellegrini, L. & Lancaster, M. A. Modeling neurodegeneration with mutant-tau organoids. Cell 184, 4377–4379 (2021).

    Article  CAS  PubMed  Google Scholar 

  139. Gradinaru, V., Mogri, M., Thompson, K. R., Henderson, J. M. & Deisseroth, K. Optical deconstruction of Parkinsonian neural circuitry. Science 324, 354–359 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Wyatt, A. R. et al. Protease-activated alpha-2-macroglobulin can inhibit amyloid formation via two distinct mechanisms. FEBS Lett. 587, 398–403 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. French, K., Yerbury, J. J. & Wilson, M. R. Protease activation of alpha 2-macroglobulin modulates a chaperone-like action with broad specificity. Biochemistry 47, 1176–1185 (2008).

    Article  CAS  PubMed  Google Scholar 

  142. Ingenbleek, Y. & Bernstein, L. H. Plasma transthyretin as a biomarker of lean body mass and catabolic states. Adv. Nutr. 6, 572–580 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Serot, J. M., Christmann, D., Dubost, T. & Couturier, M. Cerebrospinal fluid transthyretin: aging and late onset Alzheimer’s disease. J. Neurol. Neurosurg. Psychiatry 63, 506–508 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Shapiro, S. S. & Martinez, J. Human prothrombin metabolism in normal man and in hypocoagulable subjects. J. Clin. Invest. 48, 1292–1298 (1969).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Krenzlin, H. et al. High CSF thrombin concentration and activity is associated with an unfavorable outcome in patients with intracerebral hemorrhage. PLoS ONE https://doi.org/10.1371/journal.pone.0241565 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  146. Berglund, L. et al. A genecentric human protein atlas for expression profiles based on antibodies. Mol. Cell. Proteom. 7, 2019–2027 (2008).

    Article  CAS  Google Scholar 

  147. Gümüs, P., Nizam, N., Nalbantsoy, A., Özcxaka, O. & Buduneli, N. Saliva and serum levels of pentraxin-3 and interleukin-1β in generalized aggressive or chronic periodontitis. J. Periodontol. 85, e40–e46 (2014).

    Article  PubMed  Google Scholar 

  148. Ozawa, D. et al. Multifaceted anti-amyloidogenic and pro-amyloidogenic effects of C-reactive protein and serum amyloid P component in vitro. Sci. Rep. https://doi.org/10.1038/srep29077 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  149. Ijsselstijn, L. et al. Serum levels of pregnancy zone protein are elevated in presymptomatic Alzheimer’s disease. J. Proteome Res. 10, 4902–4910 (2011).

    Article  CAS  PubMed  Google Scholar 

  150. Cater, J. H. et al. Human pregnancy zone protein stabilizes misfolded proteins including preeclampsia- and Alzheimer’s associated amyloid beta peptide. Proc. Natl Acad. Sci. USA 116, 6101–6110 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Laurell, M., Christensson, A., Abrahamsson, P. A., Stenflo, J. & Lilja, H. Protein C inhibitor in human body fluids: seminal plasma is rich in inhibitor antigen deriving from cells throughout the male reproductive system. J. Clin. Invest. 89, 1094–1101 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Sharma, S. K. et al. Insulin-degrading enzyme prevents α-synuclein fibril formation in a nonproteolytical manner. Sci. Rep. https://doi.org/10.1038/srep12531 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  153. Tegg, M. Plasma insulin-degrading enzyme: characterisation and evaluation as a potential biomarker for Alzheimer’s disease. https://ro.ecu.edu.au/theses/1198 (2014).

  154. de Tullio, M. B. et al. Proteolytically inactive insulin-degrading enzyme inhibits amyloid formation yielding non-neurotoxic aβ peptide aggregates. PLoS ONE https://doi.org/10.1371/journal.pone.0059113 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  155. Roger, T. et al. Plasma levels of macrophage migration inhibitory factor and d-dopachrome tautomerase show a highly specific profile in early life. Front. Immunol. https://doi.org/10.3389/fimmu.2017.00026 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  156. Cherepkova, O. A., Lyutova, E. M., Eronina, T. B. & Gurvits, B. Y. Chaperone-like activity of macrophage migration inhibitory factor. Int. J. Biochem. Cell Biol. 38, 43–55 (2006).

    Article  CAS  PubMed  Google Scholar 

  157. Asmar, M. H., Gaudreau, A., Maniakas, A., Mfuna Endam, L. & Desrosiers, M. An evaluation of SPARC protein as a serum biomarker of chronic rhinosinusitis. Otolaryngol. Head Neck Surg. 160, 158–164 (2019).

    Article  PubMed  Google Scholar 

  158. Emerson, R. O., Sage, E. H., Ghosh, J. G. & Clark, J. I. Chaperone-like activity revealed in the matricellular protein SPARC. J. Cell. Biochem. 98, 701–705 (2006).

    Article  CAS  PubMed  Google Scholar 

  159. Peinado, J. R., Sami, F., Rajpurohit, N. & Lindberg, I. Blockade of islet amyloid polypeptide fibrillation and cytotoxicity by the secretory chaperones 7B2 and proSAAS. FEBS Lett. 587, 3406–3411 (2013).

    Article  CAS  PubMed  Google Scholar 

  160. Natori, S., Iguchi, H., Kurose, S. N., Bloom, S. R. & Nawata, H. Age-related change in 7B2 (a novel pituitary polypeptide) concentrations in human cerebrospinal fluid. Regul. Pept. 22, 371–376 (1988).

    Article  CAS  PubMed  Google Scholar 

  161. Natori, S. et al. Age-related change in plasma concentration of 7B2 (a novel pituitary polypeptide) in normal humans. Life Sci. 41, 977–981 (1987).

    Article  CAS  PubMed  Google Scholar 

  162. Schob, S. et al. Elevated surfactant protein levels and increased flow of cerebrospinal fluid in cranial magnetic resonance imaging. Mol. Neurobiol. 55, 6227–6236 (2018).

    Article  CAS  PubMed  Google Scholar 

  163. Poska, H. et al. Recombinant Bri3 BRICHOS domain is a molecular chaperone with effect against amyloid formation and non-fibrillar protein aggregation. Sci. Rep. https://doi.org/10.1038/s41598-020-66718-y (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  164. Jarvela, T. S. et al. The neural chaperone proSAAS blocks α-synuclein fibrillation and neurotoxicity. Proc. Natl Acad. Sci. USA 113, E4708–E4715 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Thorn, D. C., Ecroyd, H., Sunde, M., Poon, S. & Carver, J. A. Amyloid fibril formation by bovine milk αs2-casein occurs under physiological conditions yet is prevented by its natural counterpart, αs1-casein. Biochemistry 47, 3926–3936 (2008).

    Article  CAS  PubMed  Google Scholar 

  166. Thorn, D. C. et al. Amyloid fibril formation by bovine milk κ-casein and its inhibition by the molecular chaperones α3- and β-casein. Biochemistry 44, 17027–17036 (2005).

    Article  CAS  PubMed  Google Scholar 

  167. Morgan, P. E., Treweek, T. M., Lindner, R. A., Price, W. E. & Carver, J. A. Casein proteins as molecular chaperones. J. Agric. Food Chem. 53, 2670–2683 (2005).

    Article  CAS  PubMed  Google Scholar 

  168. Folger, A. & Wang, Y. The cytotoxicity and clearance of mutant huntingtin and other misfolded proteins. Cells 10, 2835 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Nisaa, K. & Ben-Zvi, A. Chaperone networks are shaped by cellular differentiation and identity. Trends Cell Biol. 32, 470–474 (2022).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to researching data for the article, discussion of content and reviewing/editing the manuscript. M.R.W. and M.V. contributed equally to the writing of the article.

Corresponding author

Correspondence to Mark R. Wilson.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Neurology thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wilson, M.R., Satapathy, S. & Vendruscolo, M. Extracellular protein homeostasis in neurodegenerative diseases. Nat Rev Neurol 19, 235–245 (2023). https://doi.org/10.1038/s41582-023-00786-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41582-023-00786-2

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing