Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Functions and mechanisms of non-histone protein acetylation

An Author Correction to this article was published on 02 July 2019

This article has been updated

Abstract

Nε-lysine acetylation was discovered more than half a century ago as a post-translational modification of histones and has been extensively studied in the context of transcription regulation. In the past decade, proteomic analyses have revealed that non-histone proteins are frequently acetylated and constitute a major portion of the acetylome in mammalian cells. Indeed, non-histone protein acetylation is involved in key cellular processes relevant to physiology and disease, such as gene transcription, DNA damage repair, cell division, signal transduction, protein folding, autophagy and metabolism. Acetylation affects protein functions through diverse mechanisms, including by regulating protein stability, enzymatic activity, subcellular localization and crosstalk with other post-translational modifications and by controlling protein–protein and protein–DNA interactions. In this Review, we discuss recent progress in our understanding of the scope, functional diversity and mechanisms of non-histone protein acetylation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Regulation of reversible lysine acetylation.
Fig. 2: Biological processes that are regulated by non-histone protein acetylation (I).
Fig. 3: Biological processes that are regulated by non-histone protein acetylation (II).
Fig. 4: Regulation of autophagy by non-histone protein acetylation.
Fig. 5: Functional mechanisms of acetylation.
Fig. 6: Crosstalk between acetylation and other post-translational modifications.

Similar content being viewed by others

Change history

  • 02 July 2019

    An amendment to this paper has been published and can be accessed via a link at the top of the paper.

References

  1. Choudhary, C. & Mann, M. Decoding signalling networks by mass spectrometry-based proteomics. Nat. Rev. Mol. Cell Biol. 11, 427–439 (2010).

    CAS  PubMed  Google Scholar 

  2. Aebersold, R. et al. How many human proteoforms are there? Nat. Chem. Biol. 14, 206–214 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Allfrey, V. G., Faulkner, R. & Mirsky, A. E. Acetylation and methylation of histones and their possible role in the regulation of RNA synthesis. Proc. Natl Acad. Sci. USA 51, 786–794 (1964). This is the first study to identify lysine acetylation and methylation as protein post-translational modifications and suggest their role in transcription regulation.

    CAS  PubMed  Google Scholar 

  4. Sterner, R., Vidali, G. & Allfrey, V. G. Studies of acetylation and deacetylation in high mobility group proteins: identification of the sites of acetylation in HMG-1. J. Biol. Chem. 254, 11577–11583 (1979).

    CAS  PubMed  Google Scholar 

  5. L’Hernault, S. W. & Rosenbaum, J. L. Chlamydomonas alpha-tubulin is posttranslationally modified in the flagella during flagellar assembly. J. Cell Biol. 97, 258–263 (1983).

    PubMed  Google Scholar 

  6. Verdin, E. & Ott, M. 50 years of protein acetylation: from gene regulation to epigenetics, metabolism and beyond. Nat. Rev. Mol. Cell Biol. 16, 258–264 (2015).

    CAS  PubMed  Google Scholar 

  7. Sabari, B. R., Zhang, D., Allis, C. D. & Zhao, Y. Metabolic regulation of gene expression through histone acylations. Nat. Rev. Mol. Cell Biol. 18, 90–101 (2017). References 6 and 7 are excellent reviews that provide a historical overview of the field of acetylation (reference 6) and a detailed background on the discovery and regulation of diverse types of lysine acylation (reference 7).

    CAS  PubMed  Google Scholar 

  8. Kim, S. C. et al. Substrate and functional diversity of lysine acetylation revealed by a proteomics survey. Mol. Cell 23, 607–618 (2006).

    CAS  PubMed  Google Scholar 

  9. Choudhary, C. et al. Lysine acetylation targets protein complexes and co-regulates major cellular functions. Science 325, 834–840 (2009). References 8 and 9 are the first studies to report proteome-wide surveys of lysine acetylation, revealing the widespread occurrence of this modification in mammalian cells.

    CAS  PubMed  Google Scholar 

  10. Choudhary, C., Weinert, B. T., Nishida, Y., Verdin, E. & Mann, M. The growing landscape of lysine acetylation links metabolism and cell signalling. Nat. Rev. Mol. Cell Biol. 15, 536–550 (2014).

    CAS  PubMed  Google Scholar 

  11. Chen, Y. et al. Quantitative acetylome analysis reveals the roles of SIRT1 in regulating diverse substrates and cellular pathways. Mol. Cell. Proteomics 11, 1048–1062 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Scholz, C. et al. Acetylation site specificities of lysine deacetylase inhibitors in human cells. Nat. Biotechnol. 33, 415–423 (2015).

    CAS  PubMed  Google Scholar 

  13. Carrico, C., Meyer, J. G., He, W., Gibson, B. W. & Verdin, E. The mitochondrial acylome emerges: proteomics, regulation by sirtuins, and metabolic and disease implications. Cell Metab. 27, 497–512 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Weinert, B. T. et al. Time-resolved analysis reveals rapid dynamics and broad scope of the CBP/p300 acetylome. Cell 174, 231–244 (2018). This paper reports the first comprehensive survey of substrates of two mammalian acetyltransferases — CBP and p300 — which uncovered hundreds of novel CBP-regulated and/or p300-regulated sites and their in vivo acetylation kinetics.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Zhao, S. et al. Regulation of cellular metabolism by protein lysine acetylation. Science 327, 1000–1004 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Sivanand, S., Viney, I. & Wellen, K. E. Spatiotemporal control of acetyl-CoA metabolism in chromatin regulation. Trends Biochem. Sci. 43, 61–74 (2018).

    CAS  PubMed  Google Scholar 

  17. Weinert, B. T. et al. Acetylation dynamics and stoichiometry in Saccharomyces cerevisiae. Mol. Syst. Biol. 10, 716 (2014). This study provides the first proteome-wide estimate of acetylation stoichiometry and reveals cellular compartment-dependent regulation of acetylation in vivo.

    PubMed  Google Scholar 

  18. Chow, J. D. et al. Genetic inhibition of hepatic acetyl-CoA carboxylase activity increases liver fat and alters global protein acetylation. Mol. Metab. 3, 419–431 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Drazic, A., Myklebust, L. M., Ree, R. & Arnesen, T. The world of protein acetylation. Biochim. Biophys. Acta 1864, 1372–1401 (2016).

    CAS  PubMed  Google Scholar 

  20. Jin, Q. et al. Distinct roles of GCN5/PCAF-mediated H3K9ac and CBP/p300-mediated H3K18/27ac in nuclear receptor transactivation. EMBO J. 30, 249–262 (2011).

    CAS  PubMed  Google Scholar 

  21. Huang, F., Abmayr, S. M. & Workman, J. L. Regulation of KAT6 acetyltransferases and their roles in cell cycle progression, stem cell maintenance, and human disease. Mol. Cell. Biol. 36, 1900–1907 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Kawasumi, R. et al. ESCO1/2’s roles in chromosome structure and interphase chromatin organization. Genes Dev. 31, 2136–2150 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Alomer, R. M. et al. Esco1 and Esco2 regulate distinct cohesin functions during cell cycle progression. Proc. Natl Acad. Sci. USA 114, 9906–9911 (2017).

    CAS  PubMed  Google Scholar 

  24. Magin, R. S., March, Z. M. & Marmorstein, R. The N-terminal acetyltransferase Naa10/ARD1 does not acetylate lysine residues. J. Biol. Chem. 291, 5270–5277 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Fan, J. et al. Tyr phosphorylation of PDP1 toggles recruitment between ACAT1 and SIRT3 to regulate the pyruvate dehydrogenase complex. Mol. Cell 53, 534–548 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Lasko, L. M. et al. Discovery of a selective catalytic p300/CBP inhibitor that targets lineage-specific tumours. Nature 550, 128–132 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Haberland, M., Montgomery, R. L. & Olson, E. N. The many roles of histone deacetylases in development and physiology: implications for disease and therapy. Nat. Rev. Genet. 10, 32–42 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Yang, X. J. & Seto, E. The Rpd3/Hda1 family of lysine deacetylases: from bacteria and yeast to mice and men. Nat. Rev. Mol. Cell Biol. 9, 206–218 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Houtkooper, R. H., Pirinen, E. & Auwerx, J. Sirtuins as regulators of metabolism and healthspan. Nat. Rev. Mol. Cell Biol. 13, 225–238 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Du, J. et al. Sirt5 is a NAD-dependent protein lysine demalonylase and desuccinylase. Science 334, 806–809 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Peng, C. et al. The first identification of lysine malonylation substrates and its regulatory enzyme. Mol. Cell. Proteomics 10, M111.012658 (2011).

    Google Scholar 

  32. Tan, M. et al. Lysine glutarylation is a protein posttranslational modification regulated by SIRT5. Cell Metab. 19, 605–617 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Anderson, K. A. et al. SIRT4 is a lysine deacylase that controls leucine metabolism and insulin secretion. Cell Metab. 25, 838–855 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Jiang, H. et al. SIRT6 regulates TNF-alpha secretion through hydrolysis of long-chain fatty acyl lysine. Nature 496, 110–113 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Xing, S. et al. Tcf1 and Lef1 transcription factors establish CD8+ T cell identity through intrinsic HDAC activity. Nat. Immunol. 17, 695–703 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Gu, W. & Roeder, R. G. Activation of p53 sequence-specific DNA binding by acetylation of the p53 C-terminal domain. Cell 90, 595–606 (1997). This is the first study to demonstrate a key role of acetylation in regulating the function of the transcription factor p53.

  37. Reed, S. M. & Quelle, D. E. p53 acetylation: regulation and consequences. Cancers 7, 30–69 (2014).

    PubMed  PubMed Central  Google Scholar 

  38. Zhang, J. et al. Acetylation of Smc3 by Eco1 is required for S phase sister chromatid cohesion in both human and yeast. Mol. Cell 31, 143–151 (2008).

    CAS  PubMed  Google Scholar 

  39. Rolef Ben-Shahar, T. et al. Eco1-dependent cohesin acetylation during establishment of sister chromatid cohesion. Science 321, 563–566 (2008).

    PubMed  Google Scholar 

  40. Unal, E. et al. A molecular determinant for the establishment of sister chromatid cohesion. Science 321, 566–569 (2008).

    PubMed  Google Scholar 

  41. Deardorff, M. A. et al. HDAC8 mutations in Cornelia de Lange syndrome affect the cohesin acetylation cycle. Nature 489, 313–317 (2012). References 38–41 discover an evolutionarily conserved role of SMC3 acetylation in chromatid cohesion and identify ESCO1 and HDAC8 as a highly selective acetyltransferase and deacetylase, respectively, that regulate SMC3 acetylation.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Sun, Y., Jiang, X., Chen, S., Fernandes, N. & Price, B. D. A role for the Tip60 histone acetyltransferase in the acetylation and activation of ATM. Proc. Natl Acad. Sci. USA 102, 13182–13187 (2005).

    CAS  PubMed  Google Scholar 

  43. Tang, J. et al. Acetylation limits 53BP1 association with damaged chromatin to promote homologous recombination. Nat. Struct. Mol. Biol. 20, 317–325 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Jacquet, K. et al. The TIP60 complex regulates bivalent chromatin recognition by 53BP1 through direct H4K20me binding and H2AK15 acetylation. Mol. Cell 62, 409–421 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Sivanand, S. et al. Nuclear acetyl-CoA production by ACLY promotes homologous recombination. Mol. Cell 67, 252–265 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Guo, X. et al. Acetylation of 53BP1 dictates the DNA double strand break repair pathway. Nucleic Acids Res. 46, 689–703 (2018).

    CAS  PubMed  Google Scholar 

  47. Yamamori, T. et al. SIRT1 deacetylates APE1 and regulates cellular base excision repair. Nucleic Acids Res. 38, 832–845 (2010).

    CAS  PubMed  Google Scholar 

  48. Hasan, S. et al. Regulation of human flap endonuclease-1 activity by acetylation through the transcriptional coactivator p300. Mol. Cell 7, 1221–1231 (2001).

    CAS  PubMed  Google Scholar 

  49. Fan, W. & Luo, J. SIRT1 regulates UV-induced DNA repair through deacetylating XPA. Mol. Cell 39, 247–258 (2010).

    CAS  PubMed  Google Scholar 

  50. Zhao, M. et al. PCAF/GCN5-mediated acetylation of RPA1 promotes nucleotide excision repair. Cell Rep. 20, 1997–2009 (2017).

    CAS  PubMed  Google Scholar 

  51. Cazzalini, O. et al. CBP and p300 acetylate PCNA to link its degradation with nucleotide excision repair synthesis. Nucleic Acids Res. 42, 8433–8448 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Fischer, A., Muhlhauser, W. W. D., Warscheid, B. & Radziwill, G. Membrane localization of acetylated CNK1 mediates a positive feedback on RAF/ERK signaling. Sci. Adv. 3, e1700475 (2017).

    PubMed  PubMed Central  Google Scholar 

  53. Li, Y., Xu, W., McBurney, M. W. & Longo, V. D. SirT1 inhibition reduces IGF-I/IRS-2/Ras/ERK1/2 signaling and protects neurons. Cell Metab. 8, 38–48 (2008).

    PubMed  PubMed Central  Google Scholar 

  54. Okumura, K. et al. PCAF modulates PTEN activity. J. Biol. Chem. 281, 26562–26568 (2006).

    CAS  PubMed  Google Scholar 

  55. Ikenoue, T., Inoki, K., Zhao, B. & Guan, K. L. PTEN acetylation modulates its interaction with PDZ domain. Cancer Res. 68, 6908–6912 (2008).

    CAS  PubMed  Google Scholar 

  56. Hopkins, B. D., Hodakoski, C., Barrows, D., Mense, S. M. & Parsons, R. E. PTEN function: the long and the short of it. Trends Biochem. Sci. 39, 183–190 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Sundaresan, N. R. et al. The deacetylase SIRT1 promotes membrane localization and activation of Akt and PDK1 during tumorigenesis and cardiac hypertrophy. Sci. Signal. 4, ra46 (2011).

    CAS  PubMed  Google Scholar 

  58. Glidden, E. J. et al. Multiple site acetylation of Rictor stimulates mammalian target of rapamycin complex 2 (mTORC2)-dependent phosphorylation of Akt protein. J. Biol. Chem. 287, 581–588 (2012).

    CAS  PubMed  Google Scholar 

  59. Masui, K. et al. Glucose-dependent acetylation of Rictor promotes targeted cancer therapy resistance. Proc. Natl Acad. Sci. USA 112, 9406–9411 (2015).

    CAS  PubMed  Google Scholar 

  60. Kovacs, J. J. et al. HDAC6 regulates Hsp90 acetylation and chaperone-dependent activation of glucocorticoid receptor. Mol. Cell 18, 601–607 (2005).

    CAS  PubMed  Google Scholar 

  61. George, P. et al. Combination of the histone deacetylase inhibitor LBH589 and the hsp90 inhibitor 17-AAG is highly active against human CML-BC cells and AML cells with activating mutation of FLT-3. Blood 105, 1768–1776 (2005).

    CAS  PubMed  Google Scholar 

  62. Rao, R. et al. HDAC6 inhibition enhances 17-AAG–mediated abrogation of hsp90 chaperone function in human leukemia cells. Blood 112, 1886–1893 (2008).

    CAS  PubMed  Google Scholar 

  63. Akella, J. S. et al. MEC-17 is an alpha-tubulin acetyltransferase. Nature 467, 218–222 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Hubbert, C. et al. HDAC6 is a microtubule-associated deacetylase. Nature 417, 455–458 (2002). This study identifies HDAC6 as an α-tubulin deacetylase.

    CAS  PubMed  Google Scholar 

  65. Zhang, Y. et al. HDAC-6 interacts with and deacetylates tubulin and microtubules in vivo. EMBO J. 22, 1168–1179 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Szyk, A. et al. Molecular basis for age-dependent microtubule acetylation by tubulin acetyltransferase. Cell 157, 1405–1415 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Xu, Z. et al. Microtubules acquire resistance from mechanical breakage through intralumenal acetylation. Science 356, 328–332 (2017). References 63, 66 and 67 identify TAT1 as a highly selective cytoplasmic acetyltransferase for α-tubulin, reveal an unconventional mechanism by which it acetylates tubulin within the microtubule lumen and uncover a role of tubulin acetylation in regulating microtubule stability.

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Li, L. et al. MEC-17 deficiency leads to reduced alpha-tubulin acetylation and impaired migration of cortical neurons. J. Neurosci. 32, 12673–12683 (2012).

    CAS  PubMed  Google Scholar 

  69. Serrador, J. M. et al. HDAC6 deacetylase activity links the tubulin cytoskeleton with immune synapse organization. Immunity 20, 417–428 (2004).

    CAS  PubMed  Google Scholar 

  70. Zhang, Y. et al. Deacetylation of cortactin by SIRT1 promotes cell migration. Oncogene 28, 445–460 (2009).

    CAS  PubMed  Google Scholar 

  71. Ito, A. et al. The subcellular localization and activity of cortactin is regulated by acetylation and interaction with Keap1. Sci. Signal. 8, ra120 (2015).

    PubMed  Google Scholar 

  72. Zhang, X. et al. HDAC6 modulates cell motility by altering the acetylation level of cortactin. Mol. Cell 27, 197–213 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Cohen, T. J. et al. An acetylation switch controls TDP-43 function and aggregation propensity. Nat. Commun. 6, 5845 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Wang, P., Wander, C. M., Yuan, C. X., Bereman, M. S. & Cohen, T. J. Acetylation-induced TDP-43 pathology is suppressed by an HSF1-dependent chaperone program. Nat. Commun. 8, 82 (2017).

    PubMed  PubMed Central  Google Scholar 

  75. Cohen, T. J. et al. The acetylation of tau inhibits its function and promotes pathological tau aggregation. Nat. Commun. 2, 252 (2011).

    PubMed  PubMed Central  Google Scholar 

  76. Min, S. W. et al. Critical role of acetylation in tau-mediated neurodegeneration and cognitive deficits. Nat. Med. 21, 1154–1162 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Cohen, T. J., Friedmann, D., Hwang, A. W., Marmorstein, R. & Lee, V. M. The microtubule-associated tau protein has intrinsic acetyltransferase activity. Nat. Struct. Mol. Biol. 20, 756–762 (2013).

    CAS  PubMed  Google Scholar 

  78. Min, S. W. et al. Acetylation of tau inhibits its degradation and contributes to tauopathy. Neuron 67, 953–966 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Cook, C. et al. Acetylation of the KXGS motifs in tau is a critical determinant in modulation of tau aggregation and clearance. Hum. Mol. Genet. 23, 104–116 (2014).

    CAS  PubMed  Google Scholar 

  80. Shimazu, T., Horinouchi, S. & Yoshida, M. Multiple histone deacetylases and the CREB-binding protein regulate pre-mRNA 3'-end processing. J. Biol. Chem. 282, 4470–4478 (2007).

    CAS  PubMed  Google Scholar 

  81. Sharma, S. et al. Acetylation-dependent control of global poly(A) RNA degradation by CBP/p300 and HDAC1/2. Mol. Cell 63, 927–938 (2016).

    CAS  PubMed  Google Scholar 

  82. Lin, S. Y. et al. GSK3-TIP60-ULK1 signaling pathway links growth factor deprivation to autophagy. Science 336, 477–481 (2012).

    CAS  PubMed  Google Scholar 

  83. Wan, W. et al. mTORC1 phosphorylates acetyltransferase p300 to regulate autophagy and lipogenesis. Mol. Cell 68, 323–335 (2017).

    CAS  PubMed  Google Scholar 

  84. Lee, I. H. & Finkel, T. Regulation of autophagy by the p300 acetyltransferase. J. Biol. Chem. 284, 6322–6328 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Funderburk, S. F., Wang, Q. J. & Yue, Z. The Beclin 1-VPS34 complex — at the crossroads of autophagy and beyond. Trends Cell Biol. 20, 355–362 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Su, H. et al. VPS34 acetylation controls its lipid kinase activity and the initiation of canonical and non-canonical autophagy. Mol. Cell 67, 907–921 (2017).

    CAS  PubMed  Google Scholar 

  87. Sun, T. et al. Acetylation of Beclin 1 inhibits autophagosome maturation and promotes tumour growth. Nat. Commun. 6, 7215 (2015).

    PubMed  PubMed Central  Google Scholar 

  88. Lee, I. H. et al. A role for the NAD-dependent deacetylase Sirt1 in the regulation of autophagy. Proc. Natl Acad. Sci. USA 105, 3374–3379 (2008).

    CAS  PubMed  Google Scholar 

  89. Huang, R. et al. Deacetylation of nuclear LC3 drives autophagy initiation under starvation. Mol. Cell 57, 456–466 (2015).

    CAS  PubMed  Google Scholar 

  90. Pandey, U. B. et al. HDAC6 rescues neurodegeneration and provides an essential link between autophagy and the UPS. Nature 447, 859–863 (2007).

    CAS  PubMed  Google Scholar 

  91. Lee, J. Y. et al. HDAC6 controls autophagosome maturation essential for ubiquitin-selective quality-control autophagy. EMBO J. 29, 969–980 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Iwata, A., Riley, B. E., Johnston, J. A. & Kopito, R. R. HDAC6 and microtubules are required for autophagic degradation of aggregated huntingtin. J. Biol. Chem. 280, 40282–40292 (2005).

    CAS  PubMed  Google Scholar 

  93. Lin, H., Su, X. & He, B. Protein lysine acylation and cysteine succination by intermediates of energy metabolism. ACS Chem. Biol. 7, 947–960 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Schwer, B., Bunkenborg, J., Verdin, R. O., Andersen, J. S. & Verdin, E. Reversible lysine acetylation controls the activity of the mitochondrial enzyme acetyl-CoA synthetase 2. Proc. Natl Acad. Sci. USA 103, 10224–10229 (2006).

    CAS  PubMed  Google Scholar 

  95. Hallows, W. C., Lee, S. & Denu, J. M. Sirtuins deacetylate and activate mammalian acetyl-CoA synthetases. Proc. Natl Acad. Sci. USA 103, 10230–10235 (2006).

    CAS  PubMed  Google Scholar 

  96. Wang, Y. P. et al. Regulation of G6PD acetylation by SIRT2 and KAT9 modulates NADPH homeostasis and cell survival during oxidative stress. EMBO J. 33, 1304–1320 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Wagner, G. R. & Hirschey, M. D. Nonenzymatic protein acylation as a carbon stress regulated by sirtuin deacylases. Mol. Cell 54, 5–16 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Weinert, B. T., Moustafa, T., Iesmantavicius, V., Zechner, R. & Choudhary, C. Analysis of acetylation stoichiometry suggests that SIRT3 repairs nonenzymatic acetylation lesions. EMBO J. 34, 2620–2632 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Hirschey, M. D. et al. SIRT3 regulates mitochondrial fatty-acid oxidation by reversible enzyme deacetylation. Nature 464, 121–125 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Mateo, F. et al. The transcriptional co-activator PCAF regulates cdk2 activity. Nucleic Acids Res. 37, 7072–7084 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. McCullough, C. E. & Marmorstein, R. Molecular basis for histone acetyltransferase regulation by binding partners, associated domains, and autoacetylation. ACS Chem. Biol. 11, 632–642 (2016).

    CAS  PubMed  Google Scholar 

  102. Thompson, P. R. et al. Regulation of the p300 HAT domain via a novel activation loop. Nat. Struct. Mol. Biol. 11, 308–315 (2004).

    CAS  PubMed  Google Scholar 

  103. Cao, W., Bao, C., Padalko, E. & Lowenstein, C. J. Acetylation of mitogen-activated protein kinase phosphatase-1 inhibits Toll-like receptor signaling. J. Exp. Med. 205, 1491–1503 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Pillai, V. B. et al. Acetylation of a conserved lysine residue in the ATP binding pocket of p38 augments its kinase activity during hypertrophy of cardiomyocytes. Mol. Cell. Biol. 31, 2349–2363 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Nihira, N. T. et al. Acetylation-dependent regulation of MDM2 E3 ligase activity dictates its oncogenic function. Sci. Signal. 10, eaai8026 (2017).

    PubMed  PubMed Central  Google Scholar 

  106. Gronroos, E., Hellman, U., Heldin, C. H. & Ericsson, J. Control of Smad7 stability by competition between acetylation and ubiquitination. Mol. Cell 10, 483–493 (2002).

    CAS  PubMed  Google Scholar 

  107. Jiang, W. et al. Acetylation regulates gluconeogenesis by promoting PEPCK1 degradation via recruiting the UBR5 ubiquitin ligase. Mol. Cell 43, 33–44 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Du, Z. et al. DNMT1 stability is regulated by proteins coordinating deubiquitination and acetylation-driven ubiquitination. Sci. Signal. 3, ra80 (2010).

    PubMed  PubMed Central  Google Scholar 

  109. Lv, L. et al. Acetylation targets the M2 isoform of pyruvate kinase for degradation through chaperone-mediated autophagy and promotes tumor growth. Mol. Cell 42, 719–730 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Zhao, D. et al. Lysine-5 acetylation negatively regulates lactate dehydrogenase A and is decreased in pancreatic cancer. Cancer Cell 23, 464–476 (2013).

    CAS  PubMed  Google Scholar 

  111. Fujisawa, T. & Filippakopoulos, P. Functions of bromodomain-containing proteins and their roles in homeostasis and cancer. Nat. Rev. Mol. Cell Biol. 18, 246–262 (2017).

    CAS  PubMed  Google Scholar 

  112. Mujtaba, S. et al. Structural basis of lysine-acetylated HIV-1 Tat recognition by PCAF bromodomain. Mol. Cell 9, 575–586 (2002).

    CAS  PubMed  Google Scholar 

  113. Langini, C., Caflisch, A. & Vitalis, A. The ATAD2 bromodomain binds different acetylation marks on the histone H4 in similar fuzzy complexes. J. Biol. Chem. 292, 16734–16745 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Chen, J. et al. VEGF amplifies transcription through ETS1 acetylation to enable angiogenesis. Nat. Commun. 8, 383 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Shi, J. et al. Disrupting the interaction of BRD4 with diacetylated Twist suppresses tumorigenesis in basal-like breast cancer. Cancer Cell 25, 210–225 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Paz, J. C. et al. Combinatorial regulation of a signal-dependent activator by phosphorylation and acetylation. Proc. Natl Acad. Sci. USA 111, 17116–17121 (2014).

    CAS  PubMed  Google Scholar 

  117. Chen, L., Fischle, W., Verdin, E. & Greene, W. C. Duration of nuclear NF-kappaB action regulated by reversible acetylation. Science 293, 1653–1657 (2001).

    CAS  Google Scholar 

  118. Wang, D. et al. Acetylation-regulated interaction between p53 and SET reveals a widespread regulatory mode. Nature 538, 118–122 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Westerheide, S. D. et al. Stress-inducible regulation of heat shock factor 1 by the deacetylase SIRT1. Science 323, 1063–1066 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Luo, J. et al. Acetylation of p53 augments its site-specific DNA binding both in vitro and in vivo. Proc. Natl Acad. Sci. USA 101, 2259–2264 (2004).

    CAS  PubMed  Google Scholar 

  121. Tang, Y., Luo, J., Zhang, W. & Gu, W. Tip60-dependent acetylation of p53 modulates the decision between cell-cycle arrest and apoptosis. Mol. Cell 24, 827–839 (2006).

    CAS  PubMed  Google Scholar 

  122. Sykes, S. M. et al. Acetylation of the p53 DNA-binding domain regulates apoptosis induction. Mol. Cell 24, 841–851 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Boyes, J., Byfield, P., Nakatani, Y. & Ogryzko, V. Regulation of activity of the transcription factor GATA-1 by acetylation. Nature 396, 594–598 (1998).

    CAS  PubMed  Google Scholar 

  124. Inuzuka, H. et al. Acetylation-dependent regulation of Skp2 function. Cell 150, 179–193 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Li, T., Diner, B. A., Chen, J. & Cristea, I. M. Acetylation modulates cellular distribution and DNA sensing ability of interferon-inducible protein IFI16. Proc. Natl Acad. Sci. USA 109, 10558–10563 (2012).

    CAS  PubMed  Google Scholar 

  126. Baltus, G. A. et al. Acetylation of sox2 induces its nuclear export in embryonic stem cells. Stem Cells 27, 2175–2184 (2009).

    CAS  PubMed  Google Scholar 

  127. Soutoglou, E., Katrakili, N. & Talianidis, I. Acetylation regulates transcription factor activity at multiple levels. Mol. Cell 5, 745–751 (2000).

    CAS  PubMed  Google Scholar 

  128. Zhao, L. J., Subramanian, T., Zhou, Y. & Chinnadurai, G. Acetylation by p300 regulates nuclear localization and function of the transcriptional corepressor CtBP2. J. Biol. Chem. 281, 4183–4189 (2006).

  129. Bonaldi, T. et al. Monocytic cells hyperacetylate chromatin protein HMGB1 to redirect it towards secretion. EMBO J. 22, 5551–5560 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Yoon, M. J. et al. SIRT1-mediated eNAMPT secretion from adipose tissue regulates hypothalamic NAD+and function in mice. Cell Metab. 21, 706–717 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Vikram, A. et al. Sirtuin 1 regulates cardiac electrical activity by deacetylating the cardiac sodium channel. Nat. Med. 23, 361–367 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Kumar, S. et al. Sirtuin1-regulated lysine acetylation of p66Shc governs diabetes-induced vascular oxidative stress and endothelial dysfunction. Proc. Natl Acad. Sci. USA 114, 1714–1719 (2017).

    CAS  PubMed  Google Scholar 

  133. Yang, X. J. & Seto, E. Lysine acetylation: codified crosstalk with other posttranslational modifications. Mol. Cell 31, 449–461 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Weinert, B. T. et al. Lysine succinylation is a frequently occurring modification in prokaryotes and eukaryotes and extensively overlaps with acetylation. Cell Rep. 4, 842–851 (2013). References 17 and 134 provide the first strong evidence for in vivo non-enzymatic acetylation and succinylation in eukaryotes.

    CAS  PubMed  Google Scholar 

  135. Wagner, S. A. et al. A proteome-wide, quantitative survey of in vivo ubiquitylation sites reveals widespread regulatory roles. Mol. Cell. Proteomics 10, M111.013284 (2011).

    Google Scholar 

  136. Li, M., Luo, J., Brooks, C. L. & Gu, W. Acetylation of p53 inhibits its ubiquitination by Mdm2. J. Biol. Chem. 277, 50607–50611 (2002).

    CAS  PubMed  Google Scholar 

  137. Ito, A. et al. p300/CBP-mediated p53 acetylation is commonly induced by p53-activating agents and inhibited by MDM2. EMBO J. 20, 1331–1340 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Kurash, J. K. et al. Methylation of p53 by Set7/9 mediates p53 acetylation and activity in vivo. Mol. Cell 29, 392–400 (2008).

    CAS  PubMed  Google Scholar 

  139. Liu, X. et al. Methyltransferase Set7/9 regulates p53 activity by interacting with Sirtuin 1 (SIRT1). Proc. Natl Acad. Sci. USA 108, 1925–1930 (2011).

    CAS  PubMed  Google Scholar 

  140. Kim, D. H. et al. A dysregulated acetyl/SUMO switch of FXR promotes hepatic inflammation in obesity. EMBO J. 34, 184–199 (2015).

    PubMed  Google Scholar 

  141. Hietakangas, V. et al. Phosphorylation of serine 303 is a prerequisite for the stress-inducible SUMO modification of heat shock factor 1. Mol. Cell. Biol. 23, 2953–2968 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Gregoire, S. et al. Control of MEF2 transcriptional activity by coordinated phosphorylation and sumoylation. J. Biol. Chem. 281, 4423–4433 (2006).

    CAS  PubMed  Google Scholar 

  143. Zhao, X., Sternsdorf, T., Bolger, T. A., Evans, R. M. & Yao, T. P. Regulation of MEF2 by histone deacetylase 4- and SIRT1 deacetylase-mediated lysine modifications. Mol. Cell. Biol. 25, 8456–8464 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  144. Stankovic-Valentin, N. et al. An acetylation/deacetylation-SUMOylation switch through a phylogenetically conserved psiKXEP motif in the tumor suppressor HIC1 regulates transcriptional repression activity. Mol. Cell. Biol. 27, 2661–2675 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Hietakangas, V. et al. PDSM, a motif for phosphorylation-dependent SUMO modification. Proc. Natl Acad. Sci. USA 103, 45–50 (2006).

    CAS  PubMed  Google Scholar 

  146. Shalizi, A. et al. A calcium-regulated MEF2 sumoylation switch controls postsynaptic differentiation. Science 311, 1012–1017 (2006).

    CAS  PubMed  Google Scholar 

  147. Chen, L. F. et al. NF-kappaB RelA phosphorylation regulates RelA acetylation. Mol. Cell. Biol. 25, 7966–7975 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  148. Yang, X. D., Tajkhorshid, E. & Chen, L. F. Functional interplay between acetylation and methylation of the RelA subunit of NF-kappaB. Mol. Cell. Biol. 30, 2170–2180 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  149. Matsuzaki, H. et al. Acetylation of Foxo1 alters its DNA-binding ability and sensitivity to phosphorylation. Proc. Natl Acad. Sci. USA 102, 11278–11283 (2005).

    CAS  PubMed  Google Scholar 

  150. Tatham, M. H. et al. A proteomic approach to analyze the aspirin-mediated lysine acetylome. Mol. Cell. Proteomics 16, 310–326 (2017).

    CAS  PubMed  Google Scholar 

  151. Zhou, T., Chung, Y. H., Chen, J. & Chen, Y. Site-specific identification of lysine acetylation stoichiometries in mammalian cells. J. Proteome Res. 15, 1103–1113 (2016).

    CAS  PubMed  Google Scholar 

  152. Gil, J. et al. Lysine acetylation stoichiometry and proteomics analyses reveal pathways regulated by sirtuin 1 in human cells. J. Biol. Chem. 292, 18129–18144 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  153. Kaczmarska, Z. et al. Structure of p300 in complex with acyl-CoA variants. Nat. Chem. Biol. 13, 21–29 (2017).

    CAS  PubMed  Google Scholar 

  154. Flynn, E. M. et al. A subset of human bromodomains recognizes butyryllysine and crotonyllysine histone peptide modifications. Structure 23, 1801–1814 (2015).

    CAS  PubMed  Google Scholar 

  155. Andrews, F. H. et al. The Taf14 YEATS domain is a reader of histone crotonylation. Nat. Chem. Biol. 12, 396–398 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  156. Xiong, X. et al. Selective recognition of histone crotonylation by double PHD fingers of MOZ and DPF2. Nat. Chem. Biol. 12, 1111–1118 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  157. Paik, W. K., Pearson, D., Lee, H. W. & Kim, S. Nonenzymatic acetylation of histones with acetyl-CoA. Biochim. Biophys. Acta 213, 513–522 (1970).

    CAS  PubMed  Google Scholar 

  158. Pougovkina, O. et al. Mitochondrial protein acetylation is driven by acetyl-CoA from fatty acid oxidation. Hum. Mol. Genet. 23, 3513–3522 (2014).

    CAS  PubMed  Google Scholar 

  159. Davies, M. N. et al. The acetyl group buffering action of carnitine acetyltransferase offsets macronutrient-induced lysine acetylation of mitochondrial proteins. Cell Rep. 14, 243–254 (2016).

    CAS  PubMed  Google Scholar 

  160. Baeza, J., Smallegan, M. J. & Denu, J. M. Site-specific reactivity of nonenzymatic lysine acetylation. ACS Chem. Biol. 10, 122–128 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  161. Wagner, G. R. & Payne, R. M. Widespread and enzyme-independent Nepsilon-acetylation and Nepsilon-succinylation of proteins in the chemical conditions of the mitochondrial matrix. J. Biol. Chem. 288, 29036–29045 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  162. James, A. M. et al. Non-enzymatic N-acetylation of lysine residues by acetylCoA often occurs via a proximal S-acetylated thiol intermediate sensitive to glyoxalase II. Cell Rep. 18, 2105–2112 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  163. James, A. M., Smith, A. C., Smith, C. L., Robinson, A. J. & Murphy, M. P. Proximal cysteines that enhance lysine N-acetylation of cytosolic proteins in mice are less conserved in longer-living species. Cell Rep. 24, 1445–1455 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  164. Wagner, G. R. et al. A class of reactive acyl-CoA species reveals the non-enzymatic origins of protein acylation. Cell Metab. 25, 823–837 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  165. Scott, I., Webster, B. R., Li, J. H. & Sack, M. N. Identification of a molecular component of the mitochondrial acetyltransferase programme: a novel role for GCN5L1. Biochem. J. 443, 655–661 (2012).

    CAS  PubMed  Google Scholar 

  166. Clayton-Smith, J. et al. Whole-exome-sequencing identifies mutations in histone acetyltransferase gene KAT6B in individuals with the Say-Barber-Biesecker variant of Ohdo syndrome. Am. J. Hum. Genet. 89, 675–681 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  167. Campeau, P. M. et al. Mutations in KAT6B, encoding a histone acetyltransferase, cause Genitopatellar syndrome. Am. J. Hum. Genet. 90, 282–289 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  168. Tham, E. et al. Dominant mutations in KAT6A cause intellectual disability with recognizable syndromic features. Am. J. Hum. Genet. 96, 507–513 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  169. Arboleda, V. A. et al. De novo nonsense mutations in KAT6A, a lysine acetyl-transferase gene, cause a syndrome including microcephaly and global developmental delay. Am. J. Hum. Genet. 96, 498–506 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  170. Mattioli, F. et al. Mutations in histone acetylase modifier BRPF1 cause an autosomal-dominant form of intellectual disability with associated ptosis. Am. J. Hum. Genet. 100, 105–116 (2017).

    CAS  PubMed  Google Scholar 

  171. Yan, K. et al. Mutations in the chromatin regulator gene BRPF1 cause syndromic intellectual disability and deficient histone acetylation. Am. J. Hum. Genet. 100, 91–104 (2017).

    CAS  PubMed  Google Scholar 

  172. Mullighan, C. G. et al. CREBBP mutations in relapsed acute lymphoblastic leukaemia. Nature 471, 235–239 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  173. Pasqualucci, L. et al. Inactivating mutations of acetyltransferase genes in B cell lymphoma. Nature 471, 189–195 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  174. Falkenberg, K. J. & Johnstone, R. W. Histone deacetylases and their inhibitors in cancer, neurological diseases and immune disorders. Nat. Rev. Drug Discov. 13, 673–691 (2014).

    CAS  PubMed  Google Scholar 

  175. Fischer, A., Sananbenesi, F., Wang, X., Dobbin, M. & Tsai, L. H. Recovery of learning and memory is associated with chromatin remodelling. Nature 447, 178–182 (2007).

    CAS  PubMed  Google Scholar 

  176. Vecsey, C. G. et al. Histone deacetylase inhibitors enhance memory and synaptic plasticity via CREB:CBP-dependent transcriptional activation. J. Neurosci. 27, 6128–6140 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  177. Archin, N. M. et al. Administration of vorinostat disrupts HIV-1 latency in patients on antiretroviral therapy. Nature 487, 482–485 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  178. Imai, S. & Guarente, L. NAD+and sirtuins in aging and disease. Trends Cell Biol. 24, 464–471 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  179. Bonkowski, M. S. & Sinclair, D. A. Slowing ageing by design: the rise of NAD+ and sirtuin-activating compounds. Nat. Rev. Mol. Cell Biol. 17, 679–690 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  180. Yoshino, J., Baur, J. A. & Imai, S. I. NAD+ intermediates: the biology and therapeutic potential of NMN and NR. Cell Metab. 27, 513–528 (2018).

    CAS  PubMed  Google Scholar 

  181. Baell, J. B. et al. Inhibitors of histone acetyltransferases KAT6A/B induce senescence and arrest tumour growth. Nature 560, 253–257 (2018).

    CAS  PubMed  Google Scholar 

  182. Filippakopoulos, P. et al. Selective inhibition of BET bromodomains. Nature 468, 1067–1073 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank the members of their laboratory for helpful discussions. They sincerely apologize to their colleagues whose interesting work they were unable to cite owing to space constraints. C.C. is supported by the Hallas Møller Investigator Fellowship from the Novo Nordisk Foundation (NNF14OC0008541). This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No 648039). The Novo Nordisk Foundation Center for Protein Research is supported financially by the Novo Nordisk Foundation (grant agreement: NNF14CC0001).

Reviewer information

Nature Reviews Molecular Cell Biology thanks M. Hirschey, Y. Zhao and the other anonymous reviewer(s) for their contribution to the peer review of this work.

Author information

Authors and Affiliations

Authors

Contributions

T.N., B.T.W. and C.C. researched data for the article; B.T.W. and T.N. made substantial contributions to the discussion of content; C.C. wrote the manuscript; and T.N., B.T.W. and C.C. reviewed and edited the manuscript before submission.

Corresponding author

Correspondence to Chunaram Choudhary.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Glossary

Bromodomain

A protein domain of ~110 amino acids that binds to acetylated lysine and is found in many proteins involved in transcription regulation.

Lysine acylations

Post-translational modifications of lysine with different types of acyl-CoA, such as acetyl-CoA, butyryl-CoA, propionyl-CoA, succinyl-CoA, glutaryl-CoA and crotonyl-CoA.

ε-Amino side chain

The amino group located on the epsilon carbon of the lysine side chain.

Acyl stress

Cellular stress caused by the accumulation of non-enzymatic lysine acylations.

Cornelia de Lange syndrome

A genetic developmental disorder that is characterized by reduced growth, bone abnormalities and intellectual disability.

Tudor domain

A protein–protein interaction domain first identified in the fruitfly protein Tudor. Some Tudor domains bind to methylated lysine or arginine residues.

Pleckstrin homology domain

(PH domain). A protein domain that is found in diverse proteins that are involved in cell signalling and cytoskeleton formation; some PH domains bind to phosphoinositides and thus recruit proteins to the plasma membrane.

PDZ domain

A protein domain that binds to short peptide sequences in interacting proteins. Proteins with PDZ domains serve as scaffolds of multi-protein complexes, often at the cell membrane and cell–cell junctions.

Chaperone

A protein that assists in the folding and unfolding of client proteins and thus contributes to the assembly and disassembly of macromolecular protein complexes.

KIX domain

A domain in the acetyltransferases CREB-binding protein (CBP) and p300 that mediates their interaction with phosphorylated CREB and other transcription regulators.

YEATS domain

A domain in several chromatin-binding proteins; some YEATS domains bind to acetylated or crotonylated lysine.

Double plant homeodomain

Also known as double PHD finger (DPF), a protein interaction domain that binds to acylated lysine residues.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Narita, T., Weinert, B.T. & Choudhary, C. Functions and mechanisms of non-histone protein acetylation. Nat Rev Mol Cell Biol 20, 156–174 (2019). https://doi.org/10.1038/s41580-018-0081-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41580-018-0081-3

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing