Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Effects of climate change and human activities on vector-borne diseases

Abstract

Vector-borne diseases are transmitted by haematophagous arthropods (for example, mosquitoes, ticks and sandflies) to humans and wild and domestic animals, with the largest burden on global public health disproportionately affecting people in tropical and subtropical areas. Because vectors are ectothermic, climate and weather alterations (for example, temperature, rainfall and humidity) can affect their reproduction, survival, geographic distribution and, consequently, ability to transmit pathogens. However, the effects of climate change on vector-borne diseases can be multifaceted and complex, sometimes with ambiguous consequences. In this Review, we discuss the potential effects of climate change, weather and other anthropogenic factors, including land use, human mobility and behaviour, as possible contributors to the redistribution of vectors and spread of vector-borne diseases worldwide.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Climate and weather effects on vector life cycle and pathogen transmission.
Fig. 2: Impact of extreme weather on vectors and vector-borne diseases.
Fig. 3: Potential impact of climate change on geographical distribution of vectors.
Fig. 4: Potential impact of land use on vectors and vector-borne diseases.
Fig. 5: Potential effects of human mobility and behaviour on vectors and vector-borne diseases.

Similar content being viewed by others

References

  1. World Health Organization. Global vector control response 2017–2030. WHO https://www.who.int/publications/i/item/9789241512978 (2017).

  2. Messina, J. P. et al. The current and future global distribution and population at risk of dengue. Nat. Microbiol. 4, 1508–1515 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Weaver, S. C., Charlier, C., Vasilakis, N. & Lecuit, M. Zika, chikungunya, and other emerging vector-borne viral diseases. Annu. Rev. Med. 69, 395–408 (2018).

    Article  CAS  PubMed  Google Scholar 

  4. The Intergovernmental Panel on Climate Change. Climate change 2022: impacts, adaptation and vulnerability. IPCC Sixth Assessment. IPCC https://www.ipcc.ch/report/ar6/wg2/ (2022).

  5. Armstrong McKay, D. I. et al. Exceeding 1.5 °C global warming could trigger multiple climate tipping points. Science 377, eabn7950 (2022).

    Article  PubMed  Google Scholar 

  6. Rose, N. H. et al. Dating the origin and spread of specialization on human hosts in. eLife 12, e83524 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Eigenbrode, S. D., Bosque-Pérez, N. A. & Davis, T. S. Insect-borne plant pathogens and their vectors: ecology, evolution, and complex interactions. Annu. Rev. Entomol. 63, 169–191 (2018).

    Article  CAS  PubMed  Google Scholar 

  8. Singh, B. K. et al. Climate change impacts on plant pathogens, food security and paths forward. Nat. Rev. Microbiol. 21, 640–656 (2023).

    Article  CAS  PubMed  Google Scholar 

  9. Delatte, H., Gimonneau, G., Triboire, A. & Fontenille, D. Influence of temperature on immature development, survival, longevity, fecundity, and gonotrophic cycles of Aedes albopictus, vector of chikungunya and dengue in the Indian Ocean. J. Med. Entomol. 46, 33–41 (2009).

    Article  CAS  PubMed  Google Scholar 

  10. Shocket, M. S. et al. Transmission of West Nile and five other temperate mosquito-borne viruses peaks at temperatures between 23 °C and 26 °C. eLife 9, e58511 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Shapiro, L. L. M., Whitehead, S. A. & Thomas, M. B. Quantifying the effects of temperature on mosquito and parasite traits that determine the transmission potential of human malaria. PLoS Biol. 15, e2003489 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Lambrechts, L. et al. Impact of daily temperature fluctuations on dengue virus transmission by Aedes aegypti. Proc. Natl Acad. Sci. USA 108, 7460–7465 (2011).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  13. Ogden, N. H. & Lindsay, L. R. Effects of climate and climate change on vectors and vector-borne diseases: ticks are different. Trends Parasitol. 32, 646–656 (2016).

    Article  PubMed  Google Scholar 

  14. Ogden, N. H., Ben Beard, C., Ginsberg, H. S. & Tsao, J. I. Possible effects of climate change on ixodid ticks and the pathogens they transmit: predictions and observations. J. Med. Entomol. 58, 1536–1545 (2020).

    Article  Google Scholar 

  15. Wang, B. et al. Historical change of El Niño properties sheds light on future changes of extreme El Niño. Proc. Natl Acad. Sci. USA 116, 22512–22517 (2019).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  16. Lawman, A. E. et al. Unraveling forced responses of extreme El Niño variability over the Holocene. Sci. Adv. 8, eabm4313 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Wengel, C. et al. Future high-resolution El Niño/Southern Oscillation dynamics. Nat. Clim. Change 11, 758–765 (2021).

    Article  ADS  Google Scholar 

  18. Linthicum, K. J. et al. Climate and satellite indicators to forecast Rift Valley fever epidemics in Kenya. Science 285, 397–400 (1999).

    Article  CAS  PubMed  Google Scholar 

  19. Linthicum, K. J., Britch, S. C. & Anyamba, A. Rift valley fever: an emerging mosquito-borne disease. Annu. Rev. Entomol. 61, 395–415 (2016).

    Article  CAS  PubMed  Google Scholar 

  20. Lindsay, S. W., Bødker, R., Malima, R., Msangeni, H. A. & Kisinza, W. Effect of 1997–98 El Niño on highland malaria in Tanzania. Lancet 355, 989–990 (2000).

    Article  CAS  PubMed  Google Scholar 

  21. Boyce, R. M. et al. Dihydroartemisinin–piperaquine chemoprevention and malaria incidence after severe flooding: evaluation of a pragmatic intervention in rural Uganda. Clin. Infect. Dis. 74, 2191–2199 (2022).

    Article  CAS  PubMed  Google Scholar 

  22. Roiz, D., Boussès, P., Simard, F., Paupy, C. & Fontenille, D. Autochthonous chikungunya transmission and extreme climate events in southern France. PLoS Negl. Trop. Dis. 9, e0003854 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Grossi-Soyster, E. N. et al. Serological and spatial analysis of alphavirus and flavivirus prevalence and risk factors in a rural community in western Kenya. PLoS Negl. Trop. Dis. 11, e0005998 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Diniz, D. F. A., de Albuquerque, C. M. R., Oliva, L. O., de Melo-Santos, M. A. V. & Ayres, C. F. J. Diapause and quiescence: dormancy mechanisms that contribute to the geographical expansion of mosquitoes and their evolutionary success. Parasit. Vectors 10, 310 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Barrera, R. et al. Impacts of hurricanes Irma and Maria on. Am. J. Trop. Med. Hyg. 100, 1413–1420 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Caillouët, K. A. & Robertson, S. L. Temporal and spatial impacts of hurricane damage on West Nile virus transmission and human risk. J. Am. Mosq. Control. Assoc. 36, 106–119 (2020).

    Article  PubMed  Google Scholar 

  27. Paull, S. H. et al. Drought and immunity determine the intensity of West Nile virus epidemics and climate change impacts. Proc. Biol. Sci. 284, 20162078 (2017).

    PubMed  PubMed Central  Google Scholar 

  28. Lowe, R. et al. Combined effects of hydrometeorological hazards and urbanisation on dengue risk in Brazil: a spatiotemporal modelling study. Lancet Planet. Health 5, e209–e219 (2021).

    Article  PubMed  Google Scholar 

  29. Forero-Becerra, E., Acosta, A., Benavides, E., Martínez-Díaz, H. C. & Hidalgo, M. Amblyomma mixtum free-living stages: inferences on dry and wet seasons use, preference, and niche width in an agroecosystem (Yopal, Casanare, Colombia). PLoS ONE 17, e0245109 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Weiler, M., Duscher, G. G., Wetscher, M. & Walochnik, J. Tick abundance: a one year study on the impact of flood events along the banks of the River Danube, Austria. Exp. Appl. Acarol. 71, 151–157 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Stafford, K. C. Survival of immature Ixodes scapularis (Acari: Ixodidae) at different relative humidities. J. Med. Entomol. 31, 310–314 (1994).

    Article  PubMed  Google Scholar 

  32. Mordecai, E. A. et al. Thermal biology of mosquito-borne disease. Ecol. Lett. 22, 1690–1708 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Brady, O. J. et al. Vectorial capacity and vector control: reconsidering sensitivity to parameters for malaria elimination. Trans. R. Soc. Trop. Med. Hyg. 110, 107–117 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Samuel, G. H., Adelman, Z. N. & Myles, K. M. Temperature-dependent effects on the replication and transmission of arthropod-borne viruses in their insect hosts. Curr. Opin. Insect Sci. 16, 108–113 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Reisen, W. K., Fang, Y. & Martinez, V. M. Effects of temperature on the transmission of west nile virus by Culex tarsalis (Diptera: Culicidae). J. Med. Entomol. 43, 309–317 (2006).

    Article  PubMed  Google Scholar 

  36. Mullens, B. A., Tabachnick, W. J., Holbrook, F. R. & Thompson, L. H. Effects of temperature on virogenesis of bluetongue virus serotype 11 in Culicoides variipennis sonorensis. Med. Vet. Entomol. 9, 71–76 (1995).

    Article  CAS  PubMed  Google Scholar 

  37. Jacquot, M., Nomikou, K., Palmarini, M., Mertens, P. & Biek, R. Bluetongue virus spread in Europe is a consequence of climatic, landscape and vertebrate host factors as revealed by phylogeographic inference. Proc. Biol. Sci. 284, 20170919 (2017).

    PubMed  PubMed Central  Google Scholar 

  38. Reisen, W. K., Meyer, R. P., Presser, S. B. & Hardy, J. L. Effect of temperature on the transmission of western equine encephalomyelitis and St. Louis encephalitis viruses by Culex tarsalis (Diptera: Culicidae). J. Med. Entomol. 30, 151–160 (1993).

    Article  CAS  PubMed  Google Scholar 

  39. Kramer, L. D., Hardy, J. L. & Presser, S. B. Effect of temperature of extrinsic incubation on the vector competence of Culex tarsalis for western equine encephalomyelitis virus. Am. J. Trop. Med. Hyg. 32, 1130–1139 (1983).

    Article  CAS  PubMed  Google Scholar 

  40. Paaijmans, K. P. et al. Influence of climate on malaria transmission depends on daily temperature variation. Proc. Natl Acad. Sci. USA 107, 15135–15139 (2010).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  41. Liu-Helmersson, J., Stenlund, H., Wilder-Smith, A. & Rocklov, J. Vectorial capacity of Aedes aegypti: effects of temperature and implications for global dengue epidemic potential. PLoS ONE 9, e89783 (2014).

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  42. Samuel, G. H., Adelman, Z. N. & Myles, K. M. Antiviral immunity and virus-mediated antagonism in disease vector mosquitoes. Trends Microbiol. 26, 447–461 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Schnettler, E. et al. Noncoding flavivirus RNA displays RNA interference suppressor activity in insect and mammalian cells. J. Virol. 86, 13486–13500 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Adelman, Z. N. et al. Cooler temperatures destabilize RNA interference and increase susceptibility of disease vector mosquitoes to viral infection. PLoS Negl. Trop. Dis. 7, e2239 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Macdonald, G. The Epidemiology and Control of Malaria (Oxford Univ. Press, 1957).

  46. Ribeiro Dos Santos, G. et al. Estimating the effect of the wMel release programme on the incidence of dengue and chikungunya in Rio de Janeiro, Brazil: a spatiotemporal modelling study. Lancet Infect. Dis. 22, 1587–1595 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Utarini, A. et al. Efficacy of Wolbachia-infected mosquito deployments for the control of dengue. N. Engl. J. Med. 384, 2177–2186 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Vásquez, V. N., Kueppers, L. M., Rašić, G. & Marshall, J. M. Mel replacement of dengue-competent mosquitoes is robust to near-term change. Nat. Clim. Change 13, 848–855 (2023).

    Article  ADS  Google Scholar 

  49. Olmo, R. P. et al. Mosquito vector competence for dengue is modulated by insect-specific viruses. Nat. Microbiol. 8, 135–149 (2023).

    Article  CAS  PubMed  Google Scholar 

  50. Franklinos, L. H. V., Jones, K. E., Redding, D. W. & Abubakar, I. The effect of global change on mosquito-borne disease. Lancet Infect. Dis. 19, e302–e312 (2019).

    Article  PubMed  Google Scholar 

  51. Messina, J. P. et al. Mapping global environmental suitability for Zika virus. eLife 5, e15272 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Kraemer, M. U. G. et al. Past and future spread of the arbovirus vectors Aedes aegypti and Aedes albopictus. Nat. Microbiol. 4, 854–863 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Mordecai, E. A. et al. Detecting the impact of temperature on transmission of Zika, dengue, and chikungunya using mechanistic models. PloS Negl. Trop. Dis. 11, e0005568 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Iwamura, T., Guzman-Holst, A. & Murray, K. A. Accelerating invasion potential of disease vector Aedes aegypti under climate change. Nat. Commun. 11, 2130 (2020).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  55. Ryan, S. J., Carlson, C. J., Mordecai, E. A. & Johnson, L. R. Global expansion and redistribution of Aedes-borne virus transmission risk with climate change. PLoS Negl. Trop. Dis. 13, e0007213 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Santos-Vega, M. et al. The neglected role of relative humidity in the interannual variability of urban malaria in Indian cities. Nat. Commun. 13, 533 (2022).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  57. Smith, M. W. et al. Incorporating hydrology into climate suitability models changes projections of malaria transmission in Africa. Nat. Commun. 11, 4353 (2020).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  58. Colón-González, F. J. et al. Projecting the risk of mosquito-borne diseases in a warmer and more populated world: a multi-model, multi-scenario intercomparison modelling study. Lancet Planet. Health 5, e404–e414 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Tjaden, N. B. et al. Modelling the effects of global climate change on Chikungunya transmission in the 21st century. Sci. Rep. 7, 3813 (2017).

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  60. Gaythorpe, K. A., Hamlet, A., Cibrelus, L., Garske, T. & Ferguson, N. M. The effect of climate change on yellow fever disease burden in Africa. eLife 9, e55619 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Kraemer, M. U. et al. The global distribution of the arbovirus vectors Aedes aegypti and Ae. albopictus. eLife 4, e08347 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Estrada-Peña, A. & Fernández-Ruiz, N. A retrospective assessment of temperature trends in Northern Europe reveals a deep impact on the life cycle of Ixodes ricinus (Acari: Ixodidae). Pathogens 9, 345 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Minigan, J. N., Hager, H. A., Peregrine, A. S. & Newman, J. A. Current and potential future distribution of the American dog tick (Dermacentor variabilis, Say) in North America. Ticks Tick. Borne Dis. 9, 354–362 (2018).

    Article  PubMed  Google Scholar 

  64. Shocket, M. S., Ryan, S. J. & Mordecai, E. A. Temperature explains broad patterns of Ross River virus transmission. eLife 7, e37762 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Samy, A. M. et al. Climate change influences on the global potential distribution of the mosquito Culex quinquefasciatus, vector of West Nile virus and lymphatic filariasis. PLoS ONE 11, e0163863 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Mordecai, E. A., Ryan, S. J., Caldwell, J. M., Shah, M. M. & LaBeaud, A. D. Climate change could shift disease burden from malaria to arboviruses in Africa. Lancet Planet. Health 4, e416–e423 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Wang, Z. et al. The relationship between rising temperatures and malaria incidence in Hainan, China, from 1984 to 2010: a longitudinal cohort study. Lancet Planet. Health 6, e350–e358 (2022).

    Article  PubMed  Google Scholar 

  68. Recht, J. et al. Malaria in Brazil, Colombia, Peru and Venezuela: current challenges in malaria control and elimination. Malar. J. 16, 273 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Wilder-Smith, A. et al. Epidemic arboviral diseases: priorities for research and public health. Lancet Infect. Dis. 17, e101–e106 (2017).

    Article  PubMed  Google Scholar 

  70. Cohen, J. A chikungunya vaccine is likely to get approved. Who will get it? Science 382, 503–504 (2023).

    Article  CAS  PubMed  ADS  Google Scholar 

  71. Thomas, S. J. Is new dengue vaccine efficacy data a relief or cause for concern? NPJ Vaccines 8, 55 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Nash, D. et al. The outbreak of West Nile virus infection in the New York City area in 1999. N. Engl. J. Med. 344, 1807–1814 (2001).

    Article  CAS  PubMed  Google Scholar 

  73. Nunes, M. R. et al. Emergence and potential for spread of Chikungunya virus in Brazil. BMC Med. 13, 102 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Faria, N. R. et al. Zika virus in the Americas: early epidemiological and genetic findings. Science 352, 345–349 (2016).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  75. Jones, K. E. et al. Global trends in emerging infectious diseases. Nature 451, 990–993 (2008).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  76. Gibb, R. et al. Zoonotic host diversity increases in human-dominated ecosystems. Nature 584, 398–402 (2020).

    Article  CAS  PubMed  ADS  Google Scholar 

  77. Song, X. P. et al. Global land change from 1982 to 2016. Nature 560, 639–643 (2018).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  78. Santos, C. V. B. D., Sevá, A. D. P. & Werneck, G. L. Does deforestation drive visceral leishmaniasis transmission? A causal analysis. Proc. Biol. Sci. 288, 20211537 (2021).

    PubMed  PubMed Central  Google Scholar 

  79. MacDonald, A. J. & Mordecai, E. A. Amazon deforestation drives malaria transmission, and malaria burden reduces forest clearing. Proc. Natl Acad. Sci. USA 116, 22212–22218 (2019).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  80. Walsh, J. F., Molyneux, D. H. & Birley, M. H. Deforestation: effects on vector-borne disease. Parasitology 106, S55–S75 (1993).

    Article  PubMed  Google Scholar 

  81. Russell, M. C. et al. Both consumptive and non-consumptive effects of predators impact mosquito populations and have implications for disease transmission. eLife 11, e71503 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Ducheyne, E. et al. The impact of habitat fragmentation on tsetse abundance on the plateau of eastern Zambia. Prev. Vet. Med. 91, 11–18 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Van den Bossche, P., Shumba, W. & Makhambera, P. The distribution and epidemiology of bovine trypanosomosis in Malawi. Vet. Parasitol. 88, 163–176 (2000).

    Article  PubMed  Google Scholar 

  84. Estrada-Peña, A. & Jongejan, F. Ticks feeding on humans: a review of records on human-biting Ixodoidea with special reference to pathogen transmission. Exp. Appl. Acarol. 23, 685–715 (1999).

    Article  PubMed  Google Scholar 

  85. Kurokawa, C. et al. Interactions between Borrelia burgdorferi and ticks. Nat. Rev. Microbiol. 18, 587–600 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Levi, T., Keesing, F., Holt, R. D., Barfield, M. & Ostfeld, R. S. Quantifying dilution and amplification in a community of hosts for tick-borne pathogens. Ecol. Appl. 26, 484–498 (2016).

    Article  PubMed  Google Scholar 

  87. Occhibove, F., Kenobi, K., Swain, M. & Risley, C. An eco-epidemiological modeling approach to investigate dilution effect in two different tick-borne pathosystems. Ecol. Appl. 32, e2550 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  88. Ogden, N. H. & Tsao, J. I. Biodiversity and Lyme disease: dilution or amplification? Epidemics 1, 196–206 (2009).

    Article  CAS  PubMed  Google Scholar 

  89. Li, S. L. et al. Mapping environmental suitability of Haemagogus and Sabethes spp.mosquitoes to understand sylvatic transmission risk of yellow fever virus in Brazil. PLoS Negl. Trop. Dis. 16, e0010019 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  90. Faria, N. R. et al. Genomic and epidemiological monitoring of yellow fever virus transmission potential. Science 361, 894–899 (2018).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  91. MacDonald, A. J. Abiotic and habitat drivers of tick vector abundance, diversity, phenology and human encounter risk in southern California. PLoS ONE 13, e0201665 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  92. Kweka, E. J., Kimaro, E. E. & Munga, S. Effect of deforestation and land use changes on mosquito productivity and development in western Kenya highlands: implication for malaria risk. Front. Public Health 4, 238 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  93. Burkett-Cadena, N. D. & Vittor, A. Y. Deforestation and vector-borne disease: forest conversion favors important mosquito vectors of human pathogens. Basic. Appl. Ecol. 26, 101–110 (2018).

    Article  PubMed  Google Scholar 

  94. Plowright, R. K. et al. Pathways to zoonotic spillover. Nat. Rev. Microbiol. 15, 502–510 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Weaver, S. C. Urbanization and geographic expansion of zoonotic arboviral diseases: mechanisms and potential strategies for prevention. Trends Microbiol. 21, 360–363 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Hurtt, G. C. et al. Harmonization of land-use scenarios for the period 1500–2100: 600 years of global gridded annual land-use transitions, wood harvest, and resulting secondary lands. Clim. Change 109, 117 (2011).

    Article  ADS  Google Scholar 

  97. Waage, J. et al. Changing food systems and infectious disease risks in low-income and middle-income countries. Lancet Planet. Health 6, e760–e768 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  98. Chan, K. et al. Malaria transmission and prevalence in rice-growing versus non-rice-growing villages in Africa: a systematic review and meta-analysis. Lancet Planet. Health 6, e257–e269 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  99. Sarfraz, M. S. et al. Analyzing the spatio-temporal relationship between dengue vector larval density and land-use using factor analysis and spatial ring mapping. BMC Public Health 12, 853 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  100. Franklinos, L. H. V. et al. Joint spatiotemporal modelling reveals seasonally dynamic patterns of Japanese encephalitis vector abundance across India. PLoS Negl. Trop. Dis. 16, e0010218 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  101. Jones, B. A. et al. Zoonosis emergence linked to agricultural intensification and environmental change. Proc. Natl Acad. Sci. USA 110, 8399–8404 (2013).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  102. Shah, H. A., Huxley, P., Elmes, J. & Murray, K. A. Agricultural land-uses consistently exacerbate infectious disease risks in Southeast Asia. Nat. Commun. 10, 4299 (2019).

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  103. Sinka, M. E. et al. The dominant Anopheles vectors of human malaria in the Asia–Pacific region: occurrence data, distribution maps and bionomic précis. Parasit. Vectors 4, 89 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  104. Trung, H. D. et al. Malaria transmission and major malaria vectors in different geographical areas of Southeast Asia. Trop. Med. Int. Health 9, 230–237 (2004).

    Article  CAS  PubMed  Google Scholar 

  105. Boccolini, D. et al. Impact of environmental changes and human-related factors on the potential malaria vector, Anopheles labranchiae (Diptera: Culicidae), in Maremma, Central Italy. J. Med. Entomol. 49, 833–842 (2012).

    Article  CAS  PubMed  Google Scholar 

  106. Gregory, N., Ewers, R. M., Chung, A. Y. C. & Cator, L. J. Oil palm expansion increases the vectorial capacity of dengue vectors in Malaysian Borneo. PLoS Negl. Trop. Dis. 16, e0009525 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  107. Le Flohic, G., Porphyre, V., Barbazan, P. & Gonzalez, J. P. Review of climate, landscape, and viral genetics as drivers of the Japanese encephalitis virus ecology. PLoS Negl. Trop. Dis. 7, e2208 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  108. Tchouassi, D. P. et al. Mosquito host choices on livestock amplifiers of Rift Valley fever virus in Kenya. Parasit. Vectors 9, 184 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  109. Kumar Pant, D., Tenzin, T., Chand, R., Kumar Sharma, B. & Raj Bist, P. Spatio-temporal epidemiology of Japanese encephalitis in Nepal, 2007–2015. PLoS ONE 12, e0180591 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  110. Yakob, L. et al. Japanese encephalitis emergence in Australia: the potential population at risk. Clin. Infect. Dis. 76, 335–337 (2022).

    Article  Google Scholar 

  111. Lord, J. S., Gurley, E. S. & Pulliam, J. R. Rethinking Japanese encephalitis virus transmission: a framework for implicating host and vector species. PLoS Negl. Trop. Dis. 9, e0004074 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  112. Morgan, C. E. et al. Association between domesticated animal ownership and Plasmodium falciparum parasite prevalence in the Democratic Republic of the Congo: a national cross-sectional study. Lancet Microbe 4, e516–e523 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  113. Kuhn, K. G., Campbell-Lendrum, D. H., Armstrong, B. & Davies, C. R. Malaria in Britain: past, present, and future. Proc. Natl Acad. Sci. USA 100, 9997–10001 (2003).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  114. Hayek, M. N. The infectious disease trap of animal agriculture. Sci. Adv. 8, eadd6681 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  115. He, C. et al. Future global urban water scarcity and potential solutions. Nat. Commun. 12, 4667 (2021).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  116. Kache, P. A. et al. Bridging landscape ecology and urban science to respond to the rising threat of mosquito-borne diseases. Nat. Ecol. Evol. 6, 1601–1616 (2022).

    Article  PubMed  Google Scholar 

  117. Wilke, A. B. B. et al. Urbanization favors the proliferation of Aedes aegypti and Culex quinquefasciatus in urban areas of Miami-Dade County, Florida. Sci. Rep. 11, 22989 (2021).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  118. Allan, R., Budge, S. & Sauskojus, H. What sounds like Aedes, acts like Aedes, but is not Aedes? Lessons from dengue virus control for the management of invasive Anopheles. Lancet Glob. Health 11, e165–e169 (2023).

    Article  CAS  PubMed  Google Scholar 

  119. Metz, H. C. et al. Evolution of a mosquito’s hatching behavior to match its human-provided habitat. Am. Nat. 201, 200–214 (2023).

    Article  PubMed  Google Scholar 

  120. Rose, N. H. et al. Climate and urbanization drive mosquito preference for humans. Curr. Biol. 30, 3570–3579.e6 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Zhao, Z. et al. Mosquito brains encode unique features of human odour to drive host seeking. Nature 605, 706–712 (2022).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  122. Maquart, P. O., Froehlich, Y. & Boyer, S. Plastic pollution and infectious diseases. Lancet Planet. Health 6, e842–e845 (2022).

    Article  PubMed  Google Scholar 

  123. Wilke, A. B. B. et al. Urbanization creates diverse aquatic habitats for immature mosquitoes in urban areas. Sci. Rep. 9, 15335 (2019).

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  124. Carlson, J., Keating, J., Mbogo, C. M., Kahindi, S. & Beier, J. C. Ecological limitations on aquatic mosquito predator colonization in the urban environment. J. Vector Ecol. 29, 331–339 (2004).

    PubMed  PubMed Central  Google Scholar 

  125. Zhao, L., Lee, X., Smith, R. B. & Oleson, K. Strong contributions of local background climate to urban heat islands. Nature 511, 216–219 (2014).

    Article  CAS  PubMed  ADS  Google Scholar 

  126. Zhao, L. et al. Global multi-model projections of local urban climates. Nat. Clim. Change 11, 152–157 (2021).

    Article  ADS  Google Scholar 

  127. Patz, J. A., Campbell-Lendrum, D., Holloway, T. & Foley, J. A. Impact of regional climate change on human health. Nature 438, 310–317 (2005).

    Article  CAS  PubMed  ADS  Google Scholar 

  128. Caminade, C., McIntyre, K. M. & Jones, A. E. Impact of recent and future climate change on vector-borne diseases. Ann. N. Y. Acad. Sci. 1436, 157–173 (2019).

    Article  PubMed  ADS  Google Scholar 

  129. Nieuwenhuijsen, M. J. Green infrastructure and health. Annu. Rev. Public Health 42, 317–328 (2021).

    Article  PubMed  Google Scholar 

  130. Medeiros-Sousa, A. R., Fernandes, A., Ceretti-Junior, W., Wilke, A. B. B. & Marrelli, M. T. Mosquitoes in urban green spaces: using an island biogeographic approach to identify drivers of species richness and composition. Sci. Rep. 7, 17826 (2017).

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  131. Obame-Nkoghe, J. et al. Urban green spaces and vector-borne disease risk in Africa: the case of an unclean forested park in libreville (Gabon, Central Africa). Int. J. Environ. Res. Public Health 20, 5774 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  132. Liu, L., Zhong, Y., Ao, S. & Wu, H. Exploring the relevance of green space and epidemic diseases based on panel data in China from 2007 to 2016. Int. J. Environ. Res. Public Health 16, 2551 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  133. Weiss, D. J. et al. Global maps of travel time to healthcare facilities. Nat. Med. 26, 1835–1838 (2020).

    Article  CAS  PubMed  Google Scholar 

  134. Plowright, R. K. et al. Land use-induced spillover: a call to action to safeguard environmental, animal, and human health. Lancet Planet. Health 5, e237–e245 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  135. Kibret, S., McCartney, M., Lautze, J., Nhamo, L. & Yan, G. The impact of large and small dams on malaria transmission in four basins in Africa. Sci. Rep. 11, 13355 (2021).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  136. Kibret, S., Lautze, J., McCartney, M., Nhamo, L. & Yan, G. Malaria around large dams in Africa: effect of environmental and transmission endemicity factors. Malar. J. 18, 303 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  137. Kibret, S. Time to revisit how dams are affecting malaria transmission. Lancet Planet. Health 2, e378–e379 (2018).

    Article  PubMed  Google Scholar 

  138. De Salazar, P. M., Cox, H., Imhoff, H., Alexandre, J. S. F. & Buckee, C. O. The association between gold mining and malaria in Guyana: a statistical inference and time-series analysis. Lancet Planet. Health 5, e731–e738 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  139. Fletcher, I. K. et al. Synergies between environmental degradation and climate variation on malaria re-emergence in southern Venezuela: a spatiotemporal modelling study. Lancet Planet. Health 6, e739–e748 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  140. Rotureau, B., Joubert, M., Clyti, E., Djossou, F. & Carme, B. Leishmaniasis among gold miners, French Guiana. Emerg. Infect. Dis. 12, 1169–1170 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  141. Duron, O. et al. Novel chronic anaplasmosis in splenectomized patient, Amazon rainforest. Emerg. Infect. Dis. 28, 1673–1676 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  142. VanAcker, M. C., Little, E. A. H., Molaei, G., Bajwa, W. I. & Diuk-Wasser, M. A. Enhancement of risk for Lyme disease by landscape connectivity, New York, New York, USA. Emerg. Infect. Dis. 25, 1136–1143 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  143. Yasuoka, J. & Levins, R. Impact of deforestation and agricultural development on anopheline ecology and malaria epidemiology. Am. J. Trop. Med. Hyg. 76, 450–460 (2007).

    Article  PubMed  Google Scholar 

  144. Stern, A. M. The public health service in the Panama Canal: a forgotten chapter of U.S. public health. Public. Health Rep. 120, 675–679 (2005).

    Article  PubMed  Google Scholar 

  145. Kraemer, M. U. G. et al. Mapping global variation in human mobility. Nat. Hum. Behav. 4, 800–810 (2020).

    Article  PubMed  Google Scholar 

  146. Tatem, A. J., Hay, S. I. & Rogers, D. J. Global traffic and disease vector dispersal. Proc. Natl Acad. Sci. USA 103, 6242–6247 (2006).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  147. Chippaux, J. P. & Chippaux, A. Yellow fever in Africa and the Americas: a historical and epidemiological perspective. J. Venom. Anim. Toxins Incl. Trop. Dis. 24, 20 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  148. Cuthbert, R. N. et al. Invasive hematophagous arthropods and associated diseases in a changing world. Parasit. Vectors 16, 291 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  149. Tian, H. et al. Increasing airline travel may facilitate co-circulation of multiple dengue virus serotypes in Asia. PLoS Negl. Trop. Dis. 11, e0005694 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  150. Nunes, M. R. et al. Air travel is associated with intracontinental spread of dengue virus serotypes 1–3 in Brazil. PLoS Negl. Trop. Dis. 8, e2769 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  151. Baker, R. E. et al. Infectious disease in an era of global change. Nat. Rev. Microbiol. 20, 193–205 (2022).

    Article  CAS  PubMed  Google Scholar 

  152. Costard, S. et al. African swine fever: how can global spread be prevented? Philos. Trans. R. Soc. Lond. B Biol. Sci. 364, 2683–2696 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  153. Rodriguez, M., Hooghuis, H. & Castaño, M. African horse sickness in Spain. Vet. Microbiol. 33, 129–142 (1992).

    Article  CAS  PubMed  Google Scholar 

  154. Diagne, C. et al. High and rising economic costs of biological invasions worldwide. Nature 592, 571–576 (2021).

    Article  CAS  PubMed  ADS  Google Scholar 

  155. Juliano, S. A. & Lounibos, L. P. Ecology of invasive mosquitoes: effects on resident species and on human health. Ecol. Lett. 8, 558–574 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  156. Backus, L. H., Pascoe, E. L. & Foley, J. Will new ticks invade North America? How to identify future invaders. Trends Parasitol. 38, 805–814 (2022).

    Article  PubMed  Google Scholar 

  157. The Bureau of Transportation Statistics, part of the U.S. Department of Transportation. Air transport, passengers carried. BTS https://www.bts.gov/newsroom/full-year-2022-us-airline-traffic-data (2022).

  158. International Organization for Migration. World Migration Report 2022 https://publications.iom.int/books/world-migration-report-2022 (2021).

  159. McMichael, C. Human mobility, climate change, and health: unpacking the connections. Lancet Planet. Health 4, e217–e218 (2020).

    Article  PubMed  Google Scholar 

  160. Schütte, S., Gemenne, F., Zaman, M., Flahault, A. & Depoux, A. Connecting planetary health, climate change, and migration. Lancet Planet. Health 2, e58–e59 (2018).

    Article  PubMed  Google Scholar 

  161. Bharti, N. Linking human behaviors and infectious diseases. Proc. Natl Acad. Sci. USA 118, e2101345118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Nsoesie, E. O. et al. Global distribution and environmental suitability for chikungunya virus, 1952 to 2015. Euro Surveill. https://doi.org/10.2807/1560-7917.ES.2016.21.20.30234 (2016).

  163. Reiter, P. et al. Texas lifestyle limits transmission of dengue virus. Emerg. Infect. Dis. 9, 86–89 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  164. Davis, L. W. & Gertler, P. J. Contribution of air conditioning adoption to future energy use under global warming. Proc. Natl Acad. Sci. USA 112, 5962–5967 (2015).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  165. Centers for Disase Control and Prevention (CDC). Knowledge, attitudes, and behaviors about West Nile virus — Connecticut, 2002. MMWR Morb. Mortal. Wkly. Rep. 52, 886–888 (2003).

    Google Scholar 

  166. McCarthy, T. A. et al. West Nile virus serosurvey and assessment of personal prevention efforts in an area with intense epizootic activity: Connecticut, 2000. Ann. N. Y. Acad. Sci. 951, 307–316 (2001).

    Article  CAS  PubMed  ADS  Google Scholar 

  167. Haenchen, S. D. et al. Mosquito avoidance practices and knowledge of arboviral diseases in cities with differing recent history of disease. Am. J. Trop. Med. Hyg. 95, 945–953 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  168. Adams, L. E. et al. Epidemiology of dengue, chikungunya, and Zika virus disease in U.S. states and territories, 2017. Am. J. Trop. Med. Hyg. 101, 884–890 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  169. Salje, H. et al. How social structures, space, and behaviors shape the spread of infectious diseases using chikungunya as a case study. Proc. Natl Acad. Sci. USA 113, 13420–13425 (2016).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  170. Slatculescu, A. M. et al. Rurality, socioeconomic status, and residence in environmental risk areas associated with increased lyme disease incidence in Ontario, Canada: a case–control study. Vector Borne Zoonotic Dis. 22, 572–581 (2022).

    Article  PubMed  Google Scholar 

  171. Aenishaenslin, C. et al. Behavioral risk factors associated with reported tick exposure in a Lyme disease high incidence region in Canada. BMC Public Health 22, 807 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  172. Costa, G. B., Smithyman, R., O’Neill, S. L. & Moreira, L. A. How to engage communities on a large scale? Lessons from World Mosquito Program in Rio de Janeiro, Brazil. Gates Open. Res. 4, 109 (2020).

    Article  PubMed  Google Scholar 

  173. de Souza, W. M. et al. Spatiotemporal dynamics and recurrence of chikungunya virus in Brazil: an epidemiological study. Lancet Microbe 4, e319–e329 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  174. Rohat, G. et al. Intersecting vulnerabilities: climatic and demographic contributions to future population exposure to Aedes-borne viruses in the United States. Environ. Res. Lett. 15, 084046 (2020).

    Article  ADS  Google Scholar 

  175. McDonald, E. et al. Surveillance for West Nile virus disease — United States, 2009–2018. MMWR Surveill. Summ. 70, 1–15 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  176. de Lima, S. T. S. et al. Fatal outcome of chikungunya virus infection in Brazil. Clin. Infect. Dis. 73, e2436–e2443 (2021).

    Article  PubMed  Google Scholar 

  177. Rowe, E. K. et al. Challenges in dengue fever in the elderly: a typical presentation and risk of severe dengue and hospital-acquired infection [corrected]. PLoS Negl. Trop. Dis. 8, e2777 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  178. Power, G. M. et al. Socioeconomic risk markers of arthropod-borne virus (arbovirus) infections: a systematic literature review and meta-analysis. BMJ Glob. Health 7, e007735 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  179. Haakenstad, A. et al. Tracking spending on malaria by source in 106 countries, 2000–16: an economic modelling study. Lancet Infect. Dis. 19, 703–716 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  180. Shepard, D. S., Undurraga, E. A., Halasa, Y. A. & Stanaway, J. D. The global economic burden of dengue: a systematic analysis. Lancet Infect. Dis. 16, 935–941 (2016).

    Article  PubMed  Google Scholar 

  181. Ngonghala, C. N. et al. Poverty, disease, and the ecology of complex systems. PloS Biol. 12, e1001827 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  182. Romanello, M. et al. The 2023 report of the Lancet Countdown on health and climate change: the imperative for a health-centred response in a world facing irreversible harms. Lancet 402, 2346–2394 (2023).

    Article  PubMed  Google Scholar 

  183. Brady, O. J. et al. The cost-effectiveness of controlling dengue in Indonesia using wMel Wolbachia released at scale: a modelling study. BMC Med. 18, 186 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  184. Nwaiwu, A. U., Musekiwa, A., Tamuzi, J. L., Sambala, E. Z. & Nyasulu, P. S. The incidence and mortality of yellow fever in Africa: a systematic review and meta-analysis. BMC Infect. Dis. 21, 1089 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  185. Fieler, A. M. et al. Larval thermal characteristics of multiple ixodid ticks. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 257, 110939 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Li, S. et al. Lyme disease risks in Europe under multiple uncertain drivers of change. Env. Health Perspect. 127, 67010 (2019).

    Article  Google Scholar 

Download references

Acknowledgements

W.M.d.S. is supported by a Global Virus Network fellowship, Burroughs Wellcome Fund — Climate Change and Human Health Seed Grants (no. 1022448) and Wellcome Trust — Digital Technology Development Award in Climate Sensitive Infectious Disease Modelling (no. 226075/Z/22/Z). S.C.W. is supported by National Institutes of Health (NIH) grant AI120942.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Scott C. Weaver.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Microbiology thanks Matthew Baylis, Cyril Caminade and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Anthropogenic

Resulting from the influence of humans on nature.

Enzootic

Ancestral, often continuous cycles of zoonotic arboviruses involving wild animals serving as amplification and/or reservoir hosts.

Epizootic

An outbreak of disease in non-human animal populations.

Global warming

Long-term heating of the Earth’s surface observed since the pre-industrial period.

Spillback

Transmission of pathogens from humans to wild animals, sometimes resulting in stable enzootic cycles.

Spillover

Pathogen transmission from zoonotic wildlife hosts to humans, sometimes resulting in stable human-amplified transmission.

Thermal performance curves

Effects of ambient temperature on biological rate processes of organisms, including vectors, from behaviour to biological processes, that can be used to predict the potential effects of global warming on ecological systems.

Tipping points

Critical thresholds in a climate system that, when exceeded, can lead to a significant change in the climate state, often with predicted irreversible changes.

Trans-stadial transmission

Sequential passage of pathogens acquired during one life stage, or stadium, through the moult to the next stage or stages, or stadium.

Vector competence

The intrinsic ability of an arthropod to become infected and transmit a pathogen.

Zoonotic

Infections that spill over from non-human animals to humans.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Souza, W.M., Weaver, S.C. Effects of climate change and human activities on vector-borne diseases. Nat Rev Microbiol (2024). https://doi.org/10.1038/s41579-024-01026-0

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41579-024-01026-0

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology