Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Antimicrobial treatment and resistance in sexually transmitted bacterial infections

Abstract

Sexually transmitted infections (STIs) have been part of human life since ancient times, and their symptoms affect quality of life, and sequelae are common. Socioeconomic and behavioural trends affect the prevalence of STIs, but the discovery of antimicrobials gave hope for treatment, control of the spread of infection and lower rates of sequelae. This has to some extent been achieved, but increasing antimicrobial resistance and increasing transmission in high-risk sexual networks threaten this progress. For Neisseria gonorrhoeae, the only remaining first-line treatment (with ceftriaxone) is at risk of becoming ineffective, and for Mycoplasma genitalium, for which fewer alternative antimicrobial classes are available, incurable infections have already been reported. For Chlamydia trachomatis, in vitro resistance to first-line tetracyclines and macrolides has never been confirmed despite decades of treatment of this highly prevalent STI. Similarly, Treponema pallidum, the cause of syphilis, has remained susceptible to first-line penicillin.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Global maps of the Mycoplasma genitalium antimicrobial resistance rates.
Fig. 2: Global maps of the Neisseria gonorrhoeae ceftriaxone and azithromycin resistance rates.

Similar content being viewed by others

References

  1. Li, Y. et al. The estimated lifetime quality-adjusted life-years lost due to chlamydia, gonorrhea, and trichomoniasis in the United States in 2018. J. Infect. Dis. 227, 1007–1018 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Tang, W. et al. Pregnancy and fertility-related adverse outcomes associated with Chlamydia trachomatis infection: a global systematic review and meta-analysis. Sex. Transm. Infect. 96, 322–329 (2020).

    Article  PubMed  Google Scholar 

  3. Hook, E. W., III & Handsfield, H. H. in Sexually Transmitted Diseases (eds Holmes, K. K. et al.) Ch. 35 (McGraw Hill, 2008).

  4. Gomez, G. B. et al. Untreated maternal syphilis and adverse outcomes of pregnancy: a systematic review and meta-analysis. Bull. World Health Organ. 91, 217–226 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Malekinejad, M. et al. Risk of HIV acquisition among men who have sex with men infected with bacterial sexually transmitted infections: a systematic review and meta-analysis. Sex. Transm. Dis. 48, e138–e148 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  6. WHO. Global progress report on HIV, viral hepatitis and sexually transmitted infections. World Health Organization https://www.who.int/publications/i/item/9789240027077 (2021).

  7. Furegato, M. et al. Examining the role of socioeconomic deprivation in ethnic differences in sexually transmitted infection diagnosis rates in England: evidence from surveillance data. Epidemiol. Infect. 144, 3253–3262 (2016).

    Article  CAS  PubMed  Google Scholar 

  8. Traeger, M. W. et al. Association of HIV preexposure prophylaxis with incidence of sexually transmitted infections among individuals at high risk of HIV infection. JAMA 321, 1380–1390 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Bjartling, C., Osser, S. & Persson, K. The frequency of salpingitis and ectopic pregnancy as epidemiologic markers of Chlamydia trachomatis. Acta Obstet. Gynecol. Scand. 79, 123–128 (2000).

    Article  CAS  PubMed  Google Scholar 

  10. Unemo, M. et al. WHO global antimicrobial resistance surveillance for Neisseria gonorrhoeae 2017-18: a retrospective observational study. Lancet Microbe 2, e627–e636 (2021).

    Article  CAS  PubMed  Google Scholar 

  11. Machalek, D. A. et al. Prevalence of mutations associated with resistance to macrolides and fluoroquinolones in Mycoplasma genitalium: a systematic review and meta-analysis. Lancet Infect. Dis. 20, 1302–1314 (2020).

    Article  CAS  PubMed  Google Scholar 

  12. Wang, S. A. et al. Evaluation of antimicrobial resistance and treatment failures for Chlamydia trachomatis: a meeting report. J. Infect. Dis. 191, 917–923 (2005).

    Article  PubMed  Google Scholar 

  13. O’Neill, C. E. et al. Chlamydia trachomatis clinical isolates identified as tetracycline resistant do not exhibit resistance in vitro: whole-genome sequencing reveals a mutation in porB but no evidence for tetracycline resistance genes. Microbiology 159, 748–756 (2013).

    Article  PubMed  Google Scholar 

  14. Kong, F. Y. S., Horner, P., Unemo, M. & Hocking, J. S. Pharmacokinetic considerations regarding the treatment of bacterial sexually transmitted infections with azithromycin: a review. J. Antimicrob. Chemother. 74, 1157–1166 (2019).

    Article  CAS  PubMed  Google Scholar 

  15. Geisler, W. M. et al. Azithromycin versus doxycycline for urogenital Chlamydia trachomatis infection. N. Engl. J. Med. 373, 2512–2521 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Sena, A. C. et al. Optimising treatments for sexually transmitted infections: surveillance, pharmacokinetics and pharmacodynamics, therapeutic strategies, and molecular resistance prediction. Lancet Infect. Dis. 20, e181–e191 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Molini, B. J. et al. Macrolide resistance in Treponema pallidum correlates with 23S rDNA mutations in recently isolated clinical strains. Sex. Transm. Dis. 43, 579–583 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Beale, M. A. et al. Global phylogeny of Treponema pallidum lineages reveals recent expansion and spread of contemporary syphilis. Nat. Microbiol. 6, 1549–1560 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Janier, M. et al. 2020 European guideline on the management of syphilis. J. Eur. Acad. Dermatol. Venereol. 35, 574–588 (2021).

    Article  CAS  PubMed  Google Scholar 

  20. Baumann, L. et al. Prevalence of Mycoplasma genitalium in different population groups: systematic review and meta-analysis. Sex. Transm. Infect. 94, 255–262 (2018).

    Article  PubMed  Google Scholar 

  21. Sonnenberg, P. et al. Epidemiology of Mycoplasma genitalium in British men and women aged 16-44 years: evidence from the third National Survey of Sexual Attitudes and Lifestyles (Natsal-3). Int. J. Epidemiol. 44, 1982–1994 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Manhart, L. E., Holmes, K. K., Hughes, J. P., Houston, L. S. & Totten, P. A. Mycoplasma genitalium among young adults in the United States: an emerging sexually transmitted infection. Am. J. Public Health 97, 1118–1125 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Rowley, J. et al. Chlamydia, gonorrhoea, trichomoniasis and syphilis: global prevalence and incidence estimates, 2016. Bull. World Health Organ. 97, 548–562P (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Unemo, M. et al. Gonorrhoea. Nat. Rev. Dis. Prim. 5, 79 (2019).

    Article  PubMed  Google Scholar 

  25. Whelan, J., Abbing-Karahagopian, V., Serino, L. & Unemo, M. Gonorrhoea: a systematic review of prevalence reporting globally. BMC Infect. Dis. 21, 1152 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Surveillance atlas of infectious diseases. European Centre for Disease Prevention and Control https://www.ecdc.europa.eu/en/surveillance-atlas-infectious-diseases (2023).

  27. Sonnenberg, P. et al. Prevalence, risk factors, and uptake of interventions for sexually transmitted infections in Britain: findings from the National Surveys of Sexual Attitudes and Lifestyles (Natsal). Lancet 382, 1795–1806 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Unemo, M. et al. Clinical and analytical evaluation of the new Aptima Mycoplasma genitalium assay, with data on M. genitalium prevalence and antimicrobial resistance in M. genitalium in Denmark, Norway and Sweden in 2016. Clin. Microbiol. Infect. 24, 533–539 (2018).

    Article  CAS  PubMed  Google Scholar 

  29. Frølund, M. et al. Urethritis-associated pathogens in urine from men with non-gonococcal urethritis: a case-control study. Acta Derm. Venereol. 96, 689–694 (2016).

    Article  PubMed  Google Scholar 

  30. Salado-Rasmussen, K. et al. Clinical importance of superior sensitivity of the Aptima TMA-based assays for Mycoplasma genitalium detection. J. Clin. Microbiol. 60, e0236921 (2022).

    Article  PubMed  Google Scholar 

  31. Taylor-Robinson, D. & Jensen, J. S. Mycoplasma genitalium: from chrysalis to multicolored butterfly. Clin. Microbiol. Rev. 24, 498–514 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Jensen, J. S. & Bradshaw, C. Management of Mycoplasma genitalium infections — can we hit a moving target? BMC Infect. Dis. 15, 343 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Lis, R., Rowhani-Rahbar, A. & Manhart, L. E. Mycoplasma genitalium infection and female reproductive tract disease: a meta-analysis. Clin. Infect. Dis. 61, 418–426 (2015).

    Article  PubMed  Google Scholar 

  34. Clausen, H. F. et al. Serological investigation of Mycoplasma genitalium in infertile women. Hum. Reprod. 16, 1866–1874 (2001).

    Article  CAS  PubMed  Google Scholar 

  35. Svenstrup, H. F. et al. Mycoplasma genitalium, Chlamydia trachomatis, and tubal factor infertility — a prospective study. Fertil. Steril. 90, 513–520 (2008).

    Article  PubMed  Google Scholar 

  36. Lind, K., Lindhardt, B. Ø., Schütten, H. J., Blom, J. & Christiansen, C. Serological cross-reactions between Mycoplasma genitalium and Mycoplasma pneumoniae. J. Clin. Microbiol. 20, 1036–1043 (1984).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Hocking, J. S., Geisler, W. M. & Kong, F. Y. S. Update on the epidemiology, screening, and management of Chlamydia trachomatis infection. Infect. Dis. Clin. North Am. 37, 267–288 (2023).

    Article  PubMed  Google Scholar 

  38. Stamm, W. E. in Sexually Transmitted Diseases (eds Holmes, K. K. et al.) Ch. 32, (McGraw Hill, 2008).

  39. Peeling, R. W., Mabey, D., Chen, X. S. & Garcia, P. J. Syphilis. Lancet 402, 336–346 (2023).

    Article  PubMed  Google Scholar 

  40. Gilmour, L. S. & Walls, T. Congenital syphilis: a review of global epidemiology. Clin. Microbiol. Rev. 36, e0012622 (2023).

    Article  PubMed  Google Scholar 

  41. Lanjouw, E. et al. 2015 European guideline on the management of Chlamydia trachomatis infections. Int. J. STD AIDS 27, 333–348 (2016).

    Article  CAS  PubMed  Google Scholar 

  42. Day, M. J. et al. Stably high azithromycin resistance and decreasing ceftriaxone susceptibility in Neisseria gonorrhoeae in 25 European countries, 2016. BMC Infect. Dis. 18, 609 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Unemo, M. et al. World Health Organization Global Gonococcal Antimicrobial Surveillance Program (WHO GASP): review of new data and evidence to inform international collaborative actions and research efforts. Sex. Health 16, 412–425 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Wi, T. et al. Antimicrobial resistance in Neisseria gonorrhoeae: global surveillance and a call for international collaborative action. PloS Med. 14, e1002344 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Fifer, H., Saunders, J., Soni, S., Sadiq, S. T. & FitzGerald, M. 2018 UK national guideline for the management of infection with Neisseria gonorrhoeae. Int. J. STD AIDS 31, 4–15 (2020).

    Article  PubMed  Google Scholar 

  46. Workowski, K. A. et al. Sexually transmitted infections treatment guidelines, 2021. MMWR Recomm. Rep. https://doi.org/10.15585/mmwr.rr7004a1 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Unemo, M. et al. 2020 European guideline for the diagnosis and treatment of gonorrhoea in adults. Int. J. STD AIDS https://doi.org/10.1177/0956462420949126 (2020).

  48. Hamasuna, R. et al. The JAID/JSC guidelines to Clinical Management of Infectious Disease 2017 concerning male urethritis and related disorders. J. Infect. Chemother. 27, 546–554 (2021).

    Article  PubMed  Google Scholar 

  49. Guidelines of Clinical Management of Sexually Transmitted Diseases [in Chinese]. (Shanghai Science and Technology Press, 2020).

  50. WHO guidelines for the treatment of Neisseria gonorrhoeae. World Health Organization https://apps.who.int/iris/bitstream/handle/10665/246114/9789241549691-eng.pdf;jsessionid=7B95502B9A64B5FCDF3E7AE5F88087D6?sequence=1 (2016).

  51. Public Health Agency of Canada. Gonorrhea guide: key information and resources. Government of Canada https://www.canada.ca/en/public-health/services/infectious-diseases/sexual-health-sexually-transmitted-infections/canadian-guidelines/gonorrhea.html#a2 (2023).

  52. The Australasian STI management guidelines, gonorrhoea. The Australasian Sexual and Reproductive Health Alliance (ASHA) https://www.sti.guidelines.org.au/sexually-transmissible-infections/gonorrhoea (2021).

  53. Chisholm, S. A. et al. Cephalosporin MIC creep among gonococci: time for a pharmacodynamic rethink? J. Antimicrob. Chemother. 65, 2141–2148 (2010).

    Article  CAS  PubMed  Google Scholar 

  54. Theuretzbacher, U. et al. Pharmacokinetic/pharmacodynamic considerations for new and current therapeutic drugs for uncomplicated gonorrhoea — challenges and opportunities. Clin. Microbiol. Infect. 26, 1630–1635 (2020).

    Article  CAS  PubMed  Google Scholar 

  55. Jacobsson, S. et al. Pharmacodynamics of zoliflodacin plus doxycycline combination therapy against Neisseria gonorrhoeae in a gonococcal hollow-fiber infection model. Front. Pharmacol. 14, 1291885 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Jacobsson, S. et al. Pharmacodynamic evaluation of lefamulin in the treatment of gonorrhea using a hollow fiber infection model simulating Neisseria gonorrhoeae infections. Front. Pharmacol. 13, 1035841 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Jacobsson, S. et al. Pharmacodynamic evaluation of zoliflodacin treatment of Neisseria gonorrhoeae strains with amino acid substitutions in the zoliflodacin target GyrB using a dynamic hollow fiber infection model. Front. Pharmacol. 13, 874176 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Jacobsson, S. et al. Pharmacodynamic evaluation of dosing, bacterial kill, and resistance suppression for zoliflodacin against Neisseria gonorrhoeae in a dynamic hollow fiber infection model. Front. Pharmacol. 12, 682135 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Bradshaw, C. S., Jensen, J. S. & Waites, K. B. New horizons in Mycoplasma genitalium treatment. J. Infect. Dis. 216, S412–S419 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Horner, P. et al. Which azithromycin regimen should be used for treating Mycoplasma genitalium? A meta-analysis. Sex. Transm. Infect. 94, 14–20 (2018).

    Article  PubMed  Google Scholar 

  61. Waites, K. B., Crabb, D. M., Atkinson, T. P., Geisler, W. M. & Xiao, L. Omadacycline is highly active in vitro against Mycoplasma genitalium. Microbiol. Spectr. 10, e0365422 (2022).

    Article  PubMed  Google Scholar 

  62. Falk, L., Fredlund, H. & Jensen, J. S. Tetracycline treatment does not eradicate Mycoplasma genitalium. Sex. Transm. Infect. 79, 318–319 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Manhart, L. E. et al. Standard treatment regimens for nongonococcal urethritis have similar but declining cure rates: a randomized controlled trial. Clin. Infect. Dis. 56, 934–942 (2013).

    Article  CAS  PubMed  Google Scholar 

  64. Read, T. R. H. et al. Outcomes of resistance-guided sequential treatment of Mycoplasma genitalium infections: a prospective evaluation. Clin. Infect. Dis. 68, 554–560 (2018).

    Article  PubMed Central  Google Scholar 

  65. Jensen, J. S. et al. 2021 European guideline on the management of Mycoplasma genitalium infections. J. Eur. Acad. Dermatol. Venereol. 36, 641–650 (2022).

    Article  CAS  PubMed  Google Scholar 

  66. The Australasian STI management guidelines, Mycoplasma genitalium. The Australasian Sexual and Reproductive Health Alliance (ASHA) http://www.sti.guidelines.org.au/sexually-transmissible-infections/mycoplasma-genitalium (2021).

  67. Soni, S. et al. British Association for Sexual Health and HIV national guideline for the management of infection with Mycoplasma genitalium (2018). Int. J. STD AIDS 30, 938–950 (2019).

    Article  PubMed  Google Scholar 

  68. Bradshaw, C. S., Chen, M. Y. & Fairley, C. K. Persistence of Mycoplasma genitalium following azithromycin therapy. PloS ONE 3, e3618 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Read, T. R. H. et al. Use of pristinamycin for macrolide-resistant mycoplasma genitalium infection. Emerg. Infect. Dis. 24, 328–335 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Doyle, M. et al. Nonquinolone options for the treatment of Mycoplasma genitalium in the era of increased resistance. Open Forum Infect. Dis. 7, ofaa291 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  71. Kong, F. Y. et al. The efficacy of azithromycin and doxycycline for the treatment of rectal chlamydia infection: a systematic review and meta-analysis. J. Antimicrob. Chemother. 70, 1290–1297 (2015).

    Article  CAS  PubMed  Google Scholar 

  72. Dukers-Muijrers, N. H., Schachter, J., van Liere, G. A., Wolffs, P. F. & Hoebe, C. J. What is needed to guide testing for anorectal and pharyngeal Chlamydia trachomatis and Neisseria gonorrhoeae in women and men? Evidence and opinion. BMC Infect. Dis. 15, 533 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Jensen, J. S., Bradshaw, C. S., Tabrizi, S. N., Fairley, C. K. & Hamasuna, R. Azithromycin treatment failure in Mycoplasma genitalium-positive patients with nongonococcal urethritis is associated with induced macrolide resistance. Clin. Infect. Dis. 47, 1546–1553 (2008).

    Article  CAS  PubMed  Google Scholar 

  74. Unemo, M. & Shafer, W. M. Antimicrobial resistance in Neisseria gonorrhoeae in the 21st century: past, evolution, and future. Clin. Microbiol. Rev. 27, 587–613 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  75. Golparian, D. et al. Genomic evolution of Neisseria gonorrhoeae since the preantibiotic era (1928-2013): antimicrobial use/misuse selects for resistance and drives evolution. BMC Genom. 21, 116 (2020).

    Article  CAS  Google Scholar 

  76. Golparian, D. & Unemo, M. Antimicrobial resistance prediction in Neisseria gonorrhoeae: current status and future prospects. Expert Rev. Mol. Diagn. 22, 29–48 (2022).

    Article  CAS  PubMed  Google Scholar 

  77. Sanchez-Buso, L. et al. A community-driven resource for genomic epidemiology and antimicrobial resistance prediction of Neisseria gonorrhoeae at Pathogenwatch. Genome Med. 13, 61 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Ohnishi, M. et al. Is Neisseria gonorrhoeae initiating a future era of untreatable gonorrhea?: detailed characterization of the first strain with high-level resistance to ceftriaxone. Antimicrob. Agents Chemother. 55, 3538–3545 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Unemo, M. & Nicholas, R. A. Emergence of multidrug-resistant, extensively drug-resistant and untreatable gonorrhea. Future Microbiol. 7, 1401–1422 (2012).

    Article  CAS  PubMed  Google Scholar 

  80. Bignell, C. & Unemo, M. European guideline on the diagnosis and treatment of gonorrhoea in adults. Int. J. STD AIDS 24, 2013 (2012).

    Google Scholar 

  81. Bignell, C., Fitzgerald, M., Guideline Development Group & British Association for Sexual Health & HIV UK., UK national guideline for the management of gonorrhoea in adults, 2011. Int. J. STD AIDS 22, 541–547 (2011).

    Article  CAS  PubMed  Google Scholar 

  82. Fifer, H. et al. Failure of dual antimicrobial therapy in treatment of gonorrhea. N. Engl. J. Med. 374, 2504–2506 (2016).

    Article  PubMed  Google Scholar 

  83. Nakayama, S. et al. New ceftriaxone- and multidrug-resistant Neisseria gonorrhoeae strain with a novel mosaic penA gene isolated in Japan. Antimicrob. Agents Chemother. 60, 4339–4341 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Lahra, M. M. et al. Cooperative recognition of internationally disseminated ceftriaxone-resistant Neisseria gonorrhoeae strain. Emerg. Infect. Dis. 24, 735–740 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Golparian, D. et al. Multidrug-resistant Neisseria gonorrhoeae isolate, belonging to the internationally spreading Japanese FC428 clone, with ceftriaxone resistance and intermediate resistance to azithromycin, Ireland, August 2018. Eur. Surveill. 23, 1800617 (2018).

    Article  Google Scholar 

  86. Lefebvre, B. et al. Ceftriaxone-resistant Neisseria gonorrhoeae, Canada, 2017. Emerg. Infect. Dis. 24, 381–383 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Terkelsen, D. et al. Multidrug-resistant Neisseria gonorrhoeae infection with ceftriaxone resistance and intermediate resistance to azithromycin, Denmark, 2017. Eur. Surveill. 22, 17-00659 (2017).

    Article  Google Scholar 

  88. Poncin, T. et al. Multidrug-resistant Neisseria gonorrhoeae failing treatment with ceftriaxone and doxycycline in France, November 2017. Eur. Surveill. 23, 1800264 (2018).

    Article  Google Scholar 

  89. Ko, K. K. K. et al. First case of ceftriaxone-resistant multidrug-resistant neisseria gonorrhoeae in Singapore. Antimicrob. Agents Chemother. 63, e02624–e02718 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Eyre, D. W. et al. Detection in the United Kingdom of the Neisseria gonorrhoeae FC428 clone, with ceftriaxone resistance and intermediate resistance to azithromycin, October to December 2018. Eur. Surveill. 24, 1900147 (2019).

    Article  Google Scholar 

  91. Day, M. et al. Detection of 10 cases of ceftriaxone-resistant Neisseria gonorrhoeae in the United Kingdom, December 2021 to June 2022. Eur. Surveill. 27, 2200803 (2022).

    Article  Google Scholar 

  92. Lin, X. et al. Dissemination and genome analysis of high-level ceftriaxone-resistant penA 60.001 Neisseria gonorrhoeae strains from the Guangdong Gonococcal Antibiotics Susceptibility Programme (GD-GASP), 2016-2019. Emerg. Microbes Infect. 11, 344–350 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Lee, K. et al. Clonal expansion and spread of the ceftriaxone-resistant Neisseria gonorrhoeae strain FC428, identified in Japan in 2015, and closely related isolates. J. Antimicrob. Chemother. 74, 1812–1819 (2019).

    Article  CAS  PubMed  Google Scholar 

  94. Ouk, V. et al. The enhanced gonococcal surveillance programme, Cambodia. Lancet Infect. Dis. 23, e332–e333 (2023).

    Article  PubMed  Google Scholar 

  95. Jennison, A. V. et al. Genetic relatedness of ceftriaxone-resistant and high-level azithromycin resistant Neisseria gonorrhoeae cases, United Kingdom and Australia, February to April 2018. Eur. Surveill. 24, 1900118 (2019).

    Article  Google Scholar 

  96. Eyre, D. W. et al. Gonorrhoea treatment failure caused by a Neisseria gonorrhoeae strain with combined ceftriaxone and high-level azithromycin resistance, England, February 2018. Eur. Surveill. 23, 1800323 (2018).

    Article  Google Scholar 

  97. Pleininger, S. et al. Extensively drug-resistant (XDR) Neisseria gonorrhoeae causing possible gonorrhoea treatment failure with ceftriaxone plus azithromycin in Austria, April 2022. Eur. Surveill. 27, 2200455 (2022).

    Article  CAS  Google Scholar 

  98. van der Veen, S. Global transmission of the penA Allele 60.001-containing high-level ceftriaxone-resistant gonococcal FC428 clone and antimicrobial therapy of associated cases: a review. Infect. Microbes Dis. 5, 13–20 (2023).

    Article  Google Scholar 

  99. Golparian, D. et al. Multidrug-resistant Neisseria gonorrhoeae isolate SE690: mosaic penA-60.001 gene causing ceftriaxone resistance internationally has spread to the more antimicrobial-susceptible genomic lineage, Sweden, September 2022. Eur. Surveill. 28, 2300125 (2023).

    Article  Google Scholar 

  100. Al-Maslamani, M. et al. First characterisation of antimicrobial susceptibility and resistance of Neisseria gonorrhoeae isolates in Qatar, 2017-2020. PloS ONE 17, e0264737 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Machado, H. M. et al. National surveillance of Neisseria gonorrhoeae antimicrobial susceptibility and epidemiological data of gonorrhoea patients across Brazil, 2018-20. JAC Antimicrob. Resist. 4, dlac076 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  102. Aniskevich, A. et al. Antimicrobial resistance in Neisseria gonorrhoeae isolates and gonorrhoea treatment in the Republic of Belarus, Eastern Europe, 2009-2019. BMC Infect. Dis. 21, 520 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Congo-Ouedraogo, M. et al. Genomic and antimicrobial resistance analyses of Neisseria gonorrhoeae isolates, Burkina Faso, 2018-2019. J. Eur. Acad. Dermatol. Venereol. 36, e565–e568 (2022).

    Article  CAS  PubMed  Google Scholar 

  104. Lahra, M. M., Shoushtari, M. & Hogan, T. R. Australian Gonococcal Surveillance Programme 1 April to 30 June 2021. Commun. Dis. Intell. https://doi.org/10.33321/cdi.2021.45.68 (2021).

  105. Thorington, R. S. et al. Antimicrobial susceptibilities of Neisseria gonorrhoeae in Canada, 2020. Can. Commun. Dis. Rep. 48, 571–579 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  106. UK Health Security Agency. Antimicrobial resistance in Neisseria gonorrhoeae in England and Wales: key findings from the Gonococcal Resistance to Antimicrobials Surveillance Programme (GRASP 2021). UK Health Security Agency https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/1118837/GRASP_2021_report.pdf (2022).

  107. Sexually Transmitted Disease Surveillance 2020: Gonococcal Isolate Surveillance Project (GISP). Centers for Disease Control and Prevention https://www.cdc.gov/std/gisp/default.htm (2022).

  108. Sarenje, K. L. et al. Antimicrobial resistance of Neisseria gonorrhoeae isolated from patients attending sexually transmitted infection clinics in Urban Hospitals, Lusaka, Zambia. BMC Infect. Dis. 22, 688 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Harris, S. R. et al. Public health surveillance of multidrug-resistant clones of Neisseria gonorrhoeae in Europe: a genomic survey. Lancet Infect. Dis. 18, 758–768 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  110. Golparian, D. et al. Genomic epidemiology of Neisseria gonorrhoeae elucidating the gonococcal antimicrobial resistance and lineages/sublineages across Brazil, 2015-16. J. Antimicrob. Chemother. 75, 3163–3172 (2020).

    Article  CAS  PubMed  Google Scholar 

  111. Golparian, D. et al. Genomic surveillance and antimicrobial resistance in Neisseria gonorrhoeae isolates in Bangkok, Thailand in 2018. J. Antimicrob. Chemother. 77, 2171–2182 (2022).

    Article  CAS  PubMed  Google Scholar 

  112. Gianecini, R. A. et al. Genome-based epidemiology and antimicrobial resistance determinants of Neisseria gonorrhoeae isolates with decreased susceptibility and resistance to extended-spectrum cephalosporins in Argentina in 2011-16. J. Antimicrob. Chemother. 74, 1551–1559 (2019).

    Article  CAS  PubMed  Google Scholar 

  113. Lan, P. T. et al. Genomic analysis and antimicrobial resistance of Neisseria gonorrhoeae isolates from Vietnam in 2011 and 2015-16. J. Antimicrob. Chemother. 75, 1432–1438 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Town, K. et al. Genomic and phenotypic variability in Neisseria gonorrhoeae antimicrobial susceptibility, England. Emerg. Infect. Dis. 26, 505–515 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Yahara, K. et al. Emergence and evolution of antimicrobial resistance genes and mutations in Neisseria gonorrhoeae. Genome Med. 13, 51 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Peng, J. P. et al. A whole-genome sequencing analysis of Neisseria gonorrhoeae isolates in China: an observational study. EClinicalMedicine 7, 47–54 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  117. Grad, Y. H. et al. Genomic epidemiology of Neisseria gonorrhoeae with reduced susceptibility to cefixime in the USA: a retrospective observational study. Lancet Infect. Dis. 14, 220–226 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  118. Demczuk, W. et al. Genomic epidemiology and molecular resistance mechanisms of azithromycin-resistant Neisseria gonorrhoeae in Canada from 1997 to 2014. J. Clin. Microbiol. 54, 1304–1313 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Reimche, J. L. et al. Genomic analysis of the predominant strains and antimicrobial resistance determinants within 1479 Neisseria gonorrhoeae isolates from the US Gonococcal Isolate Surveillance Project in 2018. Sex. Transm. Dis. 48, S78–S87 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  120. Hadad, R. et al. First national genomic epidemiological study of Neisseria gonorrhoeae strains spreading across Sweden in 2016. Front. Microbiol. 12, 820998 (2021).

    Article  PubMed  Google Scholar 

  121. Sanchez-Buso, L. et al. Europe-wide expansion and eradication of multidrug-resistant Neisseria gonorrhoeae lineages: a genomic surveillance study. Lancet Microbe 3, e452–e463 (2022).

    Article  CAS  PubMed  Google Scholar 

  122. Kakooza, F. et al. Genomic surveillance and antimicrobial resistance determinants in Neisseria gonorrhoeae isolates from Uganda, Malawi and South Africa, 2015-20. J. Antimicrob. Chemother. 78, 1982–1991 (2023).

    Article  CAS  PubMed  Google Scholar 

  123. Jensen, J. S., Fernandes, P. & Unemo, M. In vitro activity of the new fluoroketolide solithromycin (CEM-101) against macrolide-resistant and -susceptible Mycoplasma genitalium strains. Antimicrob. Agents Chemother. 58, 3151–3156 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  124. Kenyon, C., Manoharan-Basil, S. S. & Van Dijck, C. Is there a resistance threshold for macrolide consumption? Positive evidence from an ecological analysis of resistance data from Streptococcus pneumoniae, Treponema pallidum, and Mycoplasma genitalium. Microb. Drug Resist. 27, 1079–1086 (2021).

    Article  CAS  PubMed  Google Scholar 

  125. Read, T. R. et al. Azithromycin 1.5g over 5 days compared to 1g single dose in urethral mycoplasma genitalium: impact on treatment outcome and resistance. Clin. Infect. Dis. 64, 250–256 (2017).

    Article  CAS  PubMed  Google Scholar 

  126. Shimada, Y. et al. Emergence of clinical strains of Mycoplasma genitalium harbouring alterations in ParC associated with fluoroquinolone resistance. Int. J. Antimicrob. Agents 36, 255–258 (2010).

    Article  PubMed  Google Scholar 

  127. Hamasuna, R. et al. Mutations in ParC and GyrA of moxifloxacin-resistant and susceptible Mycoplasma genitalium strains. PloS ONE 13, e0198355 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  128. Li, Y. et al. Mycoplasma genitalium in symptomatic male urethritis: macrolide use is associated with increased resistance. Clin. Infect. Dis. 70, 805–810 (2020).

    Article  CAS  PubMed  Google Scholar 

  129. Hamasuna, R. et al. Analysis of fluoroquinolone-resistance using MIC determination and homology modelling of ParC of contemporary Mycoplasma genitalium strains. J. Infect. Chemother. 28, 377–383 (2022).

    Article  CAS  PubMed  Google Scholar 

  130. Murray, G. L. et al. parC variants in Mycoplasma genitalium: trends over time and association with moxifloxacin failure. Antimicrob. Agents Chemother. 66, e0027822 (2022).

    Article  PubMed  Google Scholar 

  131. Sweeney, E. L., Bradshaw, C. S., Murray, G. L. & Whiley, D. M. Individualised treatment of Mycoplasma genitalium infection-incorporation of fluoroquinolone resistance testing into clinical care. Lancet Infect. Dis. 22, e267–e270 (2022).

    Article  CAS  PubMed  Google Scholar 

  132. Murray, G. L. et al. gyrA mutations in Mycoplasma genitalium and their contribution to moxifloxacin failure: time for the next generation of resistance-guided therapy. Clin. Infect. Dis. 76, 2187–2195 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Damiao Gouveia, A. C., Unemo, M. & Jensen, J. S. In vitro activity of zoliflodacin (ETX0914) against macrolide-resistant, fluoroquinolone-resistant and antimicrobial-susceptible Mycoplasma genitalium strains. J. Antimicrob. Chemother. 73, 1291–1294 (2018).

    Article  CAS  PubMed  Google Scholar 

  134. Jensen, J. S., Norgaard, C., Scangarella-Oman, N. & Unemo, M. In vitro activity of the first-in-class triazaacenaphthylene gepotidacin alone and in combination with doxycycline against drug-resistant and -susceptible Mycoplasma genitalium. Emerg. Microbes Infect. 9, 1388–1392 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Wood, G. E. et al. Azithromycin and doxycycline resistance profiles of U.S. Mycoplasma genitalium strains and their association with treatment outcomes. J. Clin. Microbiol. 59, e0081921 (2021).

    Article  PubMed  Google Scholar 

  136. Chopra, I. & Roberts, M. Tetracycline antibiotics: mode of action, applications, molecular biology, and epidemiology of bacterial resistance. Microbiol. Mol. Biol. Rev. 65, 232–260 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Amram, E. et al. 16S rRNA gene mutations associated with decreased susceptibility to tetracycline in Mycoplasma bovis. Antimicrob. Agents Chemother. 59, 796–802 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Chua, T. P. et al. Impact of 16S rRNA single nucleotide polymorphisms on Mycoplasma genitalium organism load with doxycycline treatment. Antimicrob. Agents Chemother. 66, e0024322 (2022).

    Article  PubMed  Google Scholar 

  139. Le Roy, C. et al. Identification of 16S rRNA mutations in Mycoplasma genitalium potentially associated with tetracycline resistance in vivo but not selected in vitro in M. genitalium and Chlamydia trachomatis. J. Antimicrob. Chemother. 76, 1150–1154 (2021).

    Article  PubMed  Google Scholar 

  140. Waites, K. B., Crabb, D. M., Xiao, L., Duffy, L. B. & Leal, S. M. Jr In vitro activities of eravacycline and other antimicrobial agents against human mycoplasmas and ureaplasmas. Antimicrob. Agents Chemother. 64, e00698–e00720 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Fernandez-Huerta, M. et al. Single-locus-sequence-based typing of the mgpB gene reveals transmission dynamics in Mycoplasma genitalium. J. Clin. Microbiol. 58, e01886–e01919 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Fookes, M. C. et al. Mycoplasma genitalium: whole genome sequence analysis, recombination and population structure. BMC Genom. 18, 993 (2017).

    Article  Google Scholar 

  143. McGowin, C. L. et al. Draft genome sequences of four axenic Mycoplasma genitalium strains isolated from Denmark, Japan, and Australia. J. Bacteriol. 194, 6010–6011 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Jensen, J. S., Hansen, H. T. & Lind, K. Isolation of Mycoplasma genitalium strains from the male urethra. J. Clin. Microbiol. 34, 286–291 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Molina, J. M. et al. Post-exposure prophylaxis with doxycycline to prevent sexually transmitted infections in men who have sex with men: an open-label randomised substudy of the ANRS IPERGAY trial. Lancet Infect. Dis. 18, 308–317 (2018).

    Article  CAS  PubMed  Google Scholar 

  146. Luetkemeyer, A. F. et al. Postexposure doxycycline to prevent bacterial sexually transmitted infections. N. Engl. J. Med. 388, 1296–1306 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Unemo, M. & Kong, F. Y. S. Doxycycline-PEP — novel and promising but needs monitoring. Nat. Rev. Urol. 20, 522–523 (2023).

    Article  CAS  PubMed  Google Scholar 

  148. Kong, F. Y. S., Kenyon, C. & Unemo, M. Important considerations regarding the widespread use of doxycycline chemoprophylaxis against sexually transmitted infections. J. Antimicrob. Chemother. 78, 1561–1568 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Reichert, E. & Grad, Y. H. Resistance and prevalence implications of doxycycline post-exposure prophylaxis for gonorrhea prevention in men who have sex with men: a modeling study. Preprint at medRxiv https://doi.org/10.1101/2023.04.24.23289033 (2023).

  150. Marti, H. et al. Tet(C) gene transfer between Chlamydia suis strains occurs by homologous recombination after co-infection: implications for spread of tetracycline-resistance among Chlamydiaceae. Front. Microbiol. 8, 156 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  151. Chen, M. Y. et al. Solithromycin versus ceftriaxone plus azithromycin for the treatment of uncomplicated genital gonorrhoea (SOLITAIRE-U): a randomised phase 3 non-inferiority trial. Lancet Infect. Dis. 19, 833–842 (2019).

    Article  CAS  PubMed  Google Scholar 

  152. Hook, E. W. III et al. Efficacy and safety of single-dose oral delafloxacin compared with intramuscular ceftriaxone for uncomplicated gonorrhea treatment: an open-label, noninferiority, phase 3, multicenter, randomized study. Sex. Transm. Dis. 46, 279–286 (2019).

    Article  CAS  PubMed  Google Scholar 

  153. Golparian, D. et al. GyrB in silico mining in 27 151 global gonococcal genomes from 1928-2021 combined with zoliflodacin in vitro testing of 71 international gonococcal isolates with different GyrB, ParC and ParE substitutions confirms high susceptibility. J. Antimicrob. Chemother. 78, 150–154 (2022).

    Article  PubMed  Google Scholar 

  154. Unemo, M. et al. High susceptibility to zoliflodacin and conserved target (GyrB) for zoliflodacin among 1209 consecutive clinical Neisseria gonorrhoeae isolates from 25 European countries, 2018. J. Antimicrob. Chemother. 76, 1221–1228 (2021).

    Article  CAS  PubMed  Google Scholar 

  155. Taylor, S. N. et al. Single-dose zoliflodacin (ETX0914) for treatment of urogenital gonorrhea. N. Engl. J. Med. 379, 1835–1845 (2018).

    Article  CAS  PubMed  Google Scholar 

  156. Jacobsson, S., Golparian, D., Scangarella-Oman, N. & Unemo, M. In vitro activity of the novel triazaacenaphthylene gepotidacin (GSK2140944) against MDR Neisseria gonorrhoeae. J. Antimicrob. Chemother. 73, 2072–2077 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Taylor, S. N. et al. Gepotidacin for the treatment of uncomplicated urogenital gonorrhea: a phase 2, randomized, dose-ranging, single-oral dose evaluation. Clin. Infect. Dis. 67, 504–512 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Scangarella-Oman, N. E. et al. Microbiological analysis from a phase 2 randomized study in adults evaluating single oral doses of gepotidacin in the treatment of uncomplicated urogenital gonorrhea caused by Neisseria gonorrhoeae. Antimicrob. Agents Chemother. 62, e01221–e01318 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  159. Positive results announced in largest pivotal phase 3 trial of a first-in-class oral antibiotic to treat uncomplicated gonorrhoea. Global Antibiotic Research & Development Partnership (GARDP) https://gardp.org/positive-results-announced-in-largest-pivotal-phase-3-trial-of-a-first-in-class-oral-antibiotic-to-treat-uncomplicated-gonorrhoea/ (2023).

  160. Bradford, P. A., Miller, A. A., O’Donnell, J. & Mueller, J. P. Zoliflodacin: an oral spiropyrimidinetrione antibiotic for the treatment of Neisseria gonorrheae, including multi-drug-resistant isolates. ACS Infect. Dis. 6, 1332–1345 (2020).

    Article  CAS  PubMed  Google Scholar 

  161. Jacobsson, S., Paukner, S., Golparian, D., Jensen, J. S. & Unemo, M. In vitro activity of the novel pleuromutilin lefamulin (BC-3781) and effect of efflux pump inactivation on multidrug-resistant and extensively drug-resistant Neisseria gonorrhoeae. Antimicrob. Agents Chemother. 61, e01497–e01517 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Jacobsson, S., Mason, C., Khan, N., Meo, P. & Unemo, M. In vitro activity of the novel oral antimicrobial SMT-571, with a new mechanism of action, against MDR and XDR Neisseria gonorrhoeae: future treatment option for gonorrhoea? J. Antimicrob. Chemother. 74, 1591–1594 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Edwards, J. L. et al. Potent in vitro and ex vivo anti-gonococcal activity of the RpoB inhibitor corallopyronin A. mSphere 7, e0036222 (2022).

    Article  PubMed  Google Scholar 

  164. Jonsson, A. et al. In vitro activity and time-kill curve analysis of sitafloxacin against a global panel of antimicrobial-resistant and multidrug-resistant Neisseria gonorrhoeae isolates. APMIS 126, 29–37 (2018).

    Article  PubMed  Google Scholar 

  165. Unemo, M. et al. Sexually transmitted infections: challenges ahead. Lancet Infect. Dis. 17, e235–e279 (2017).

    Article  PubMed  Google Scholar 

  166. Paukner, S., Gruss, A. & Jensen, J. S. In vitro activity of lefamulin against sexually transmitted bacterial pathogens. Antimicrob. Agents Chemother. 62, e02380–e02417 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Manhart, L. E. et al. Effectiveness of lefamulin for Mycoplasma genitalium (MG) treatment failures in Australia and the United States (US). STI & HIV 2023 World Congress https://stihiv2023.eventscribe.net/fsPopup.asp?efp=Rk1IS0dYVEYxOTcxMA&PosterID=585522&rnd=0.679136&mode=posterInfo (2023).

  168. Wood, G. E., Kim, C. M., Aguila, L. K. T. & Cichewicz, R. H. In vitro susceptibility and resistance of Mycoplasma genitalium to nitroimidazoles. Antimicrob. Agents Chemother. 67, e0000623 (2023).

    Article  PubMed  Google Scholar 

  169. Wiesenfeld, H. C., Meyn, L. A., Darville, T., Macio, I. S. & Hillier, S. L. A randomized controlled trial of ceftriaxone and doxycycline, with or without metronidazole, for the treatment of acute pelvic inflammatory disease. Clin. Infect. Dis. 72, 1181–1189 (2021).

    Article  CAS  PubMed  Google Scholar 

  170. Goodfellow, J. J. et al. Novel use of oral chloramphenicol for treatment-resistant Mycoplasma genitalium. Sex. Transm. Infect. 99, 208–210 (2023).

    PubMed  Google Scholar 

  171. Saito, I. Clinical evaluation of thiamphenicol in treatment of nongonococcal urethritis. Sex. Transm. Dis. 11, 460–462 (1984).

    Article  CAS  PubMed  Google Scholar 

  172. Ferreyra, C. et al. Developing target product profiles for Neisseria gonorrhoeae diagnostics in the context of antimicrobial resistance: an expert consensus. PloS ONE 15, e0237424 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Wi, T. E. et al. Diagnosing sexually transmitted infections in resource-constrained settings: challenges and ways forward. J. Int. AIDS Soc. 22, e25343 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  174. Toskin, I. et al. Call to action for health systems integration of point-of-care testing to mitigate the transmission and burden of sexually transmitted infections. Sex. Transm. Infect. 96, 342–347 (2020).

    Article  PubMed  Google Scholar 

  175. Public Health Agency of Canada. Mycoplasma genitalium guide: key information and resources. Government of Canada https://www.canada.ca/en/public-health/services/infectious-diseases/sexual-health-sexually-transmitted-infections/canadian-guidelines/mycoplasma-genitalium.html#Key_information (2023).

  176. Wada, K., Hamasuna, R., Sadahira, T., Araki, M. & Yamamoto, S. UAA-AAUS guideline for M. genitalium and non-chlamydial non-gonococcal urethritis. J. Infect. Chemother. 27, 1384–1388 (2021).

    Article  CAS  PubMed  Google Scholar 

  177. Pham, C. D. et al. Atypical mutation in Neisseria gonorrhoeae 23S rRNA associated with high-level azithromycin resistance. Antimicrob. Agents Chemother. 65, e00885–e00920 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. The Global Health Observatory. Proportion of isolates tested (WHO-GASP). World Health Organization https://www.who.int/data/gho/data/themes/topics/indicator-groups/indicator-group-details/GHO/proportion-of-isolates-tested-(who-gasp-amr) (2024).

Download references

Acknowledgements

The authors are very grateful to the WHO and the WHO Global Gonococcal Antimicrobial Surveillance Program (GASP), especially T. Wi, M. Escher and I. Maatouk, for sharing antimicrobial resistance data for N. gonorrhoeae.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Jorgen S. Jensen.

Ethics declarations

Competing interests

J.S.J. reports grants, personal fees and non-financial support from Hologic, grants and personal fees from Nabriva, and personal fees from LeoPharma, all outside the submitted work. M.U. declares no competing interests.

Peer review

Peer review information

Nature Reviews Microbiology thanks Jo-Anne Dillon, David Mabey and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

STD Clinical Consultation Network: https://www.stdccn.org

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jensen, J.S., Unemo, M. Antimicrobial treatment and resistance in sexually transmitted bacterial infections. Nat Rev Microbiol (2024). https://doi.org/10.1038/s41579-024-01023-3

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41579-024-01023-3

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing